Research article

Some fractional integral type inequalities for differentiable convex functions

  • Received: 01 April 2025 Revised: 01 May 2025 Accepted: 09 May 2025 Published: 22 May 2025
  • MSC : 26A51, 26D10, 26D15

  • In this paper, we propose to establish some fractional parametrized three-point integral inequalities. We start by developing a new integral identity. Based on this identity, we derive many types of integral inequality, including Ostrowski, midpoint, trapeze, Simpson, and Bullen. A number of known results are also derived. The findings' applications are given.

    Citation: Rabah Debbar, Abdelkader Moumen, Hamid Boulares, Badreddine Meftah, Mohamed Bouye. Some fractional integral type inequalities for differentiable convex functions[J]. AIMS Mathematics, 2025, 10(5): 11899-11917. doi: 10.3934/math.2025537

    Related Papers:

  • In this paper, we propose to establish some fractional parametrized three-point integral inequalities. We start by developing a new integral identity. Based on this identity, we derive many types of integral inequality, including Ostrowski, midpoint, trapeze, Simpson, and Bullen. A number of known results are also derived. The findings' applications are given.



    加载中


    [1] M. Alomari, M. Darus, S. S. Dragomir, P. Cerone, Ostrowski type inequalities for functions whose derivatives are $s$-convex in the second sense, Appl. Math. Lett., 23 (2010), 1071–1076. https://doi.org/10.1016/j.aml.2010.04.038 doi: 10.1016/j.aml.2010.04.038
    [2] M. W. Alomari, M. E. Özdemir, H. Kavurmac, On companion of Ostrowski inequality for mappings whose first derivatives absolute value are convex with applications, Miskolc Math. Notes, 13 (2012), 233–248. https://doi.org/10.18514/mmn.2012.480 doi: 10.18514/mmn.2012.480
    [3] M. U. Awan, M. Z. Javed, M. T. Rassias, M. A. Noor, K. I. Noor, Simpson type inequalities and applications, J. Anal., 29 (2021), 1403–1419. https://doi.org/10.1007/s41478-021-00319-4 doi: 10.1007/s41478-021-00319-4
    [4] C. P. Niculescu, L. E. Persson, Convex functions and their applications. A contemporary approach, New York: Springer, 2006. https://doi.org/10.1007/0-387-31077-0
    [5] G. Farid, G. M. Habibullah, An extension of Hadamard fractional integral, Int. J. Math. Anal., 9 (2015), 471–482. https://doi.org/10.12988/ijma.2015.5118 doi: 10.12988/ijma.2015.5118
    [6] Y. C. Kwun, G. Farid, W. Nazeer, S. Ullah, S. M. Kang, Generalized Riemann-Liouville $k$-fractional integrals associated with Ostrowski type inequalities and error bounds of Hadamard inequalities, IEEE Access, 6 (2018), 64946–64953. https://doi.org/10.1109/ACCESS.2018.2878266 doi: 10.1109/ACCESS.2018.2878266
    [7] M. Z. Sarıkaya, F. Ertuğral, On the generalized Hermite-Hadamard inequalities, An. Univ. Craiova Ser. Mat. Inform., 47 (2020), 193–213. https://doi.org/10.52846/ami.v47i1.1139 doi: 10.52846/ami.v47i1.1139
    [8] F. Jarad, E. Uğurlu, T. Abdeljawad, D. Baleanu, On a new class of fractional operators, Adv. Differ. Equ., 2017 (2017), 247. https://doi.org/10.1186/s13662-017-1306-z doi: 10.1186/s13662-017-1306-z
    [9] U. N. Katugampola, New approach to a generalized fractional integral, Appl. Math. Comput., 218 (2011), 860–865. https://doi.org/10.1016/j.amc.2011.03.062 doi: 10.1016/j.amc.2011.03.062
    [10] S. Mubeen, G. M. Habibullah, $k$-Fractional integrals and application, Int. J. Contemp. Math. Sciences, 7 (2012), 89–94.
    [11] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, North-Holland Math. Stud., 204 (2006). https://doi.org/10.1016/S0304-0208(06)80001-0 doi: 10.1016/S0304-0208(06)80001-0
    [12] M. E. Özdemir, E. Setm A. Alomari, Integral inequalities via several kinds of convexity, Creat. Math. Inform., 20 (2011), 62–73. https://doi.org/10.37193/CMI.2011.01.08 doi: 10.37193/CMI.2011.01.08
    [13] N. Nasri, F. Aissaoui, K. Bouhali, A. Frioui, B. Meftah, K. Zennir, T. Radwan, Fractional weighted midpoint-type inequalities for $s$-convex functions, Symmetry, 15 (2023), 612. https://doi.org/10.3390/sym15030612 doi: 10.3390/sym15030612
    [14] F. Alsharari, R. Fakhfakh, A. Lakhdari, On fractal-fractional Simpson-type inequalities: New insights and refinements of classical results, Mathematics, 12 (2024), 3886. https://doi.org/10.3390/math12243886 doi: 10.3390/math12243886
    [15] S. S. Dragomir, Hermite-Hadamard type inequalities for generalized Riemann-Liouville fractional integrals of $h$-convex functions, Math. Method. Appl. Sci., 44 (2019), 2364–2380. https://doi.org/10.1002/mma.5893 doi: 10.1002/mma.5893
    [16] B. Meftah, A. Azaizia, Fractional Ostrowski type inequalities for functions whose first derivatives are $MT$-preinvex, Matua Revista Del Programa De Matematicas, 1 (2019), 33–43.
    [17] M. Z. Sarikaya, On the some generalization of inequalities associated with Bullen, Simpson, midpoint and trapezoid type, Acta Univ. Apulensis Math. Inform., 73 (2023), 33–52.
    [18] B. Y. Xi, F. Qi, Some integral inequalities of Hermite-Hadamard type for convex functions with applications to means, J. Funct. Spaces, 2012 (2012), 980438. https://doi.org/10.1155/2012/980438 doi: 10.1155/2012/980438
    [19] W. Saleh, A. Lakhdari, T. Abdeljawad, B. Meftah, On fractional biparameterized Newton-type inequalities, J. Inequal. Appl., 2023 (2023), 122. https://doi.org/10.1186/s13660-023-03033-w doi: 10.1186/s13660-023-03033-w
    [20] X. R. Hai, S. H. Wang, Simpson type inequalities for convex function based on the generalized fractional integrals, Turkish J. Ineq., 5 (2021), 1–15.
    [21] H. Budak, K. Özcelik, On Hermite-Hadamard type inequalities for Riemann-Liouville fractional integrals, Miskolc Math. Notes, 21 (2020), 91–99. https://doi.org/10.18514/MMN.2020.3129 doi: 10.18514/MMN.2020.3129
    [22] F. Hezenci, H. Budak, H. Kara, A study on conformable fractional version of Bullen-type inequalities, Turkish J. Math., 47 (2023), 1306–1317. https://doi.org/10.55730/1300-0098.3429 doi: 10.55730/1300-0098.3429
    [23] H. Budak, F. Ertuğral, M. Z. Sarikaya, New generalization of Hermite-Hadamard type inequalities via generalized fractional integrals, An. Univ. Craiova Ser. Mat. Inform., 47 (2020), 369–386. https://doi.org/10.52846/ami.v47i2.1309 doi: 10.52846/ami.v47i2.1309
    [24] N. Azzouza, B. Meftah, Some weighted integral inequalities for differentiable $beta$-convex functions, J. Interdiscip. Math., 25 (2021), 373–393. https://doi.org/10.1080/09720502.2021.1932858 doi: 10.1080/09720502.2021.1932858
    [25] A. Kashuri, B. Meftah, P. O. Mohammed, Some weighted Simpson type inequalities for differentiable $s$-convex functions and their applications, J. Fract. Calc. Nonlin. Syst., 1 (2020), 75–94. https://doi.org/10.48185/jfcns.v1i1.150 doi: 10.48185/jfcns.v1i1.150
    [26] H. Kavurmaci, M. Avci, M. E. Özdemir, New inequalities of Hermite-Hadamard type for convex functions with applications, J. Inequal. Appl., 2011 (2011), 86. https://doi.org/10.1186/1029-242X-2011-86 doi: 10.1186/1029-242X-2011-86
    [27] U. S. Kirmaci, Inequalities for differentiable mappings and applications to special means of real numbers and to midpoint formula, Appl. Math. Comput., 147 (2004), 137–146. https://doi.org/10.1016/S0096-3003(02)00657-4 doi: 10.1016/S0096-3003(02)00657-4
    [28] S. Hamida, B. Meftah, Fractional Bullen type inequalities for differentiable preinvex functions, ROMAI J., 16 (2020), 63–74.
    [29] H. R. Hwang, K. L. Tseng, K. C. Hsu, New inequalities for fractional integrals and their applications, Turkish J. Math., 40 (2016), 471–486. https://doi.org/10.3906/mat-1411-61 doi: 10.3906/mat-1411-61
    [30] M. Z. Sarikaya, E. Set, M. E. Özdemir, On new inequalities of Simpson's type for convex functions, Comput. Math. Appl., 60 (2010), 2191–2199. https://doi.org/10.1016/j.camwa.2010.07.033 doi: 10.1016/j.camwa.2010.07.033
    [31] S. S. Dragomir, R. P. Agarwal, Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula, Appl. Math. Lett., 11 (1998), 91–95. https://doi.org/10.1016/S0893-9659(98)00086-X doi: 10.1016/S0893-9659(98)00086-X
    [32] T. Zhang, A. Chen, Some new estimates of Hermite-Hadamard inequality with application, Axioms, 12 (2023), 688. https://doi.org/10.3390/axioms12070688 doi: 10.3390/axioms12070688
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(656) PDF downloads(49) Cited by(0)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog