This work focuses on the canonical scenario and examines the oscillatory and asymptotic features of fourth-order differential equations with numerous delays and mixed neutral terms. The Riccati methodology is employed as a useful mathematical tool to simplify the theoretical analysis and derive stringent conditions that rule out the existence of positive solutions satisfying the examined equation. By systematically combining these conditions, precise criteria ensuring the oscillation of all solutions are obtained. These findings contribute qualitatively to the scientific literature by advancing the theoretical understanding of the oscillatory behavior of such equations. Furthermore, to highlight the practical importance of the established results, two applied examples are provided to demonstrate the effectiveness of the derived criteria in handling relevant mathematical models.
Citation: Salma Aljawi, Fahd Masood, Omar Bazighifan. On the oscillation of fourth-order neutral differential equations with multiple delays[J]. AIMS Mathematics, 2025, 10(5): 11880-11898. doi: 10.3934/math.2025536
[1] | Mohammed Ahmed Alomair, Ali Muhib . On the oscillation of fourth-order canonical differential equation with several delays. AIMS Mathematics, 2024, 9(8): 19997-20013. doi: 10.3934/math.2024975 |
[2] | Clemente Cesarano, Osama Moaaz, Belgees Qaraad, Ali Muhib . Oscillatory and asymptotic properties of higher-order quasilinear neutral differential equations. AIMS Mathematics, 2021, 6(10): 11124-11138. doi: 10.3934/math.2021646 |
[3] | A. A. El-Gaber, M. M. A. El-Sheikh, M. Zakarya, Amirah Ayidh I Al-Thaqfan, H. M. Rezk . On the oscillation of solutions of third-order differential equations with non-positive neutral coefficients. AIMS Mathematics, 2024, 9(11): 32257-32271. doi: 10.3934/math.20241548 |
[4] | Osama Moaaz, Wedad Albalawi . Differential equations of the neutral delay type: More efficient conditions for oscillation. AIMS Mathematics, 2023, 8(6): 12729-12750. doi: 10.3934/math.2023641 |
[5] | Osama Moaaz, Asma Al-Jaser . Functional differential equations of the neutral type: Oscillatory features of solutions. AIMS Mathematics, 2024, 9(6): 16544-16563. doi: 10.3934/math.2024802 |
[6] | H. Salah, M. Anis, C. Cesarano, S. S. Askar, A. M. Alshamrani, E. M. Elabbasy . Fourth-order differential equations with neutral delay: Investigation of monotonic and oscillatory features. AIMS Mathematics, 2024, 9(12): 34224-34247. doi: 10.3934/math.20241630 |
[7] | M. Sathish Kumar, V. Ganesan . Asymptotic behavior of solutions of third-order neutral differential equations with discrete and distributed delay. AIMS Mathematics, 2020, 5(4): 3851-3874. doi: 10.3934/math.2020250 |
[8] | Elmetwally M. Elabbasy, Amany Nabih, Taher A. Nofal, Wedad R. Alharbi, Osama Moaaz . Neutral differential equations with noncanonical operator: Oscillation behavior of solutions. AIMS Mathematics, 2021, 6(4): 3272-3287. doi: 10.3934/math.2021196 |
[9] | Yibing Sun, Yige Zhao . Oscillatory and asymptotic behavior of third-order neutral delay differential equations with distributed deviating arguments. AIMS Mathematics, 2020, 5(5): 5076-5093. doi: 10.3934/math.2020326 |
[10] | Abdelkader Moumen, Amin Benaissa Cherif, Fatima Zohra Ladrani, Keltoum Bouhali, Mohamed Bouye . Fourth-order neutral dynamic equations oscillate on timescales with different arguments. AIMS Mathematics, 2024, 9(9): 24576-24589. doi: 10.3934/math.20241197 |
This work focuses on the canonical scenario and examines the oscillatory and asymptotic features of fourth-order differential equations with numerous delays and mixed neutral terms. The Riccati methodology is employed as a useful mathematical tool to simplify the theoretical analysis and derive stringent conditions that rule out the existence of positive solutions satisfying the examined equation. By systematically combining these conditions, precise criteria ensuring the oscillation of all solutions are obtained. These findings contribute qualitatively to the scientific literature by advancing the theoretical understanding of the oscillatory behavior of such equations. Furthermore, to highlight the practical importance of the established results, two applied examples are provided to demonstrate the effectiveness of the derived criteria in handling relevant mathematical models.
A key area of mathematics, differential equations (DEs) define the relationships between variables and the rates at which they change. As such, they are a vital tool for comprehending intricate biological, engineering, and physical models. Equations with complex nonlinear characteristics and higher orders are exciting in applied sciences and mathematical analysis. Due to their capacity to characterize intricate oscillatory behavior, fourth-order differential equations are especially significant in a wide range of scientific and engineering applications. Because they offer a comprehensive theoretical foundation for comprehending and managing intricate dynamic events, this class of equations continues to draw researchers (see [1,2]).
Neutral differential equations (NDEs) play an important role in the mathematical modeling of systems that depend on the values of present, past, or future variables. These equations are characterized by the existence of the highest-order derivative of the unknown function at the present time s and also at a later or future time s−τ. In addition to their theoretical importance, these equations have wide applications, such as the analysis of networks with lossless transmission lines, which are used in high-speed computers to connect switching circuits [3,4]. Therefore, the study of these equations is essential in many engineering and physical fields.
This paper examines fourth-order NDEs, which are denoted by the following form:
(r(s)[G′′′(s)]α)′+m∑i=1κi(s)χβ(σi(s))=0, s≥s0, | (1.1) |
where
G(s):=χ(s)+a1(s)χγ(ς(s))−a2(s)χδ(ς(s)). | (1.2) |
This study operates under the following hypotheses:
(A1) α, β, γ, and δ are quotients of positive odd integers, with γ<1 and δ>1;
(A2) a1,a2,κi∈C([s0,∞),[0,∞)), i=1,2,...,m;
(A3) ς,σi∈C1([s0,∞),R) satisfies σi(s)≤s, ς(s)≤s, σ′i(s)>0 and lims→∞ς(s)=lims→∞σi(s)=∞, i=1,2,...,m;
(A4) r∈C1([s0,∞),(0,∞)) satisfies
∫ss01r1/α(ℏ)dℏ→∞ as s→∞. | (1.3) |
A function χ∈C([sχ,∞),R), sχ⩾s0, is said to be a solution of (1.1) which has the property r(s)[G′′′(s)]α∈C1[sχ,∞), and it satisfies the Eq (1.1) for all s∈[sχ,∞). We consider only those solutions χ of (1.1) that exist on some half-line [sχ,∞) and satisfy the condition
sup{|χ(s)|:s⩾S}>0, for all S≥sχ. |
A solution of (1.1) is called oscillatory if it is neither eventually positive nor eventually negative. Otherwise, it is said to be nonoscillatory. Equation (1.1) is said to be oscillatory if all of its solutions are oscillatory.
The area of studying oscillatory processes in differential equations has a long history and is well-established, thanks to the work of early pioneers like Alexander Lyapunov and Henri Poincaré. A particular family of differential equations has attracted the interest of several scholars due to its oscillating nature (see [5,6,7]).
Numerous scholars have devoted their attention to comprehending the oscillatory nature of neutral differential equations in various orders. In the second order, using sophisticated methods for examining nonlinear neutral effects, Baculíková and Džurina [8], and Aldiaij et al. [9] presented significant results on the oscillation of delay equations. For the oscillation of equations with infinite neutral coefficients, Chatzarakis et al. [10] gave exact conditions at the third order. Using novel methodologies, Grace et al. [11] demonstrated sophisticated findings on the oscillation of delay equations at the fourth order. Graef et al. [12], Xing et al. [13], Alnafisah et al. [14], and Alqahtan et al. [15] expanded on the knowledge of the oscillation of delay neutral equations for higher orders.
Special instances of these equations have been the subject of the majority of research. The most well-known researchers in this area are Jadlowska et al. [16], who examined the linear delay equations
χ′′′(s)+κ(s)χ(σ(s))=0. |
Using methods to enhance the special qualities of non-oscillatory solutions, they were able to offer accurate oscillation criteria for a linear differential equation with a delay.
Zhang et al. [17] studied the oscillatory properties of the quasi-linear delay differential equation
(r(s)[χ′′′(s)]α)′+κ(s)χα(σ(s))=0, |
Their analyses focused on developing precise oscillation criteria through rigorous analytical and comparison techniques. These studies contributed significantly to the theory by clarifying how the delay and nonlinear structure affect the qualitative properties of solutions.
Subsequently, Kusano et al. [18] and Kamo et al. [19] considered a more general nonlinear form, namely
(r(s)[χ′′′(s)]α)′+κ(s)χβ(σ(s))=0, |
allowing for distinct exponents in the delayed term. Their work provided broader oscillation criteria under more flexible structural assumptions, relying on refined comparison techniques and inequalities to ensure that all solutions oscillate under specific parameter regimes.
Bazighifan and Cesarano [20] and Alatwi et al. [21] created specific criteria to assure oscillation in neutral nonlinear equations of the following form:
(r(s)[(χ(s)+a1(s)χ(ς(s)))′′′]α)′+κ(s)χβ(σ(s))=0. |
Masood et al. [22] studied nonlinear differential equations with a sublinear neutral term, given by the following form:
(r(s)[(χ(s)+a1(s)χγ(ς(s)))′′′]α)′+κ(s)χβ(σ(s))=0. |
Based on prior research, the current study broadens the scope to include fourth-order neutral differential equations with mixed neutral terms, concentrating on the oscillatory behavior of all solutions. This inclusion of mixed neutral terms represents a significant extension of previous models. The complexity introduced by the higher-order nature of the equations, combined with neutral terms and multiple delays, reflects real-world dynamics found in applications such as engineering, biological systems, and control theory. Therefore, studying such equations is not only of theoretical interest but also of practical relevance. This research improves our present understanding and allows for the incorporation of new criteria that ensure the oscillations of these equations under various conditions.
Initially, we offer numerous helpful lemmas about the monotonic characteristics of the non-oscillatory solutions to the examined equations. In what follows, we let
σ(s):=min{σi(s):i=1,2,...,m}, |
κ(s):=cβm∑i=1κi(s), |
g1(s):=(1−γ)γγ1−γa11−γ1(s)aγγ−1(s), |
and
g2(s):=(δ−1)δδ1−δa11−δ2(s)aδδ−1(s). |
Definition 2.1. [23] A function χ(s) is said to be eventually positive (or eventually negative) if there exist s2≥s1≥s0 such that χ(s) is a solution on the interval [s2,∞), and satisfies χ(s)>0 (or χ(s)<0) for all s≥s2.
Lemma 2.1. [24] Suppose that y∈Cn([s0,∞),R+), y(n)(s) is of fixed sign and not identically zero on [s0,∞) and that there exists s1≥s0 such that y(n−1)(s)y(n)(s)≤0 for all s1≥s0. If lims→∞y(s)≠0, then, for every δ∈(0,1), there exists sϵ∈[s1,∞) such that
y(s)≥ϵ(n−1)!sn−1|y(n−1)(s)|, |
for s∈[sϵ,∞).
Lemma 2.2. [25] If A and B are nonnegative, then
Aλ+(λ−1)Bλ−λABλ−1≥0 for λ>1, | (2.1) |
Aλ−(1−λ)Bλ−λABλ−1≤0 for 0<λ<1, | (2.2) |
where the equality holds if and only if A=B.
Lemma 2.3. [26] Let α be a ratio of two odd positive integers; A and B are constants. Then
Bu−Au(α+1)/α≤αα(α+1)α+1Bα+1Aα,A>0. | (2.3) |
Lemma 2.4. [27] Let y∈Cn([s0,∞),(0,∞)), y(i)(s)>0 for i=1,2,...,n, and y(n+1)(s)≤0, eventually. Then, eventually,
y(s)y′(s)≥ϵsn, |
for every ϵ∈(0,1).
Lemma 2.5. [22] Assume that χ(s) is an eventually positive solution of (1.1). Then, for sufficiently large s, G(s) satisfies one of the following cases:
(C1):G(s)>0,G′(s)>0,G′′(s)>0,G′′′(s)>0,(r(s)(G′′′(s))α)′<0,(C2):G(s)>0,G′(s)>0,G′′(s)<0,G′′′(s)>0, |
for s⩾s1⩾s0.
Lemma 2.6. Let χ be an eventually positive solution of (1.1), and assume a∈C([s0,∞),(0,∞)) such that a2(s)≠0 is bounded and
lims→∞[g1(s)+g2(s)]=0. | (2.4) |
Then:
(ⅰ) χ(s)≥cG(s) for some c∈(0,1);
(ⅱ) (r(s)[G′′′(s)]α)′+κ(s)Gβ(σ(s))≤0,
for sufficiently large s
Proof. From the definition of G, it is obvious that
G(s)=χ(s)+[a(s)χ(ς(s))−a2(s)χδ(ς(s))]+[a1(s)χγ(ς(s))−a(s)χ(ς(s))], |
or
χ(s)=G(s)−[a(s)χ(ς(s))−a2(s)χδ(ς(s))]−[a1(s)χγ(ς(s))−a(s)χ(ς(s))]. | (2.5) |
If we apply the inequality (2.1) with λ=δ>1, A=a1/δ2(s)χ(ς(s)), and B=(1δa(s)a−1/δ2(s))1δ−1, we get
a(s)χ(ς(s))−a2(s)χδ(ς(s))≤(δ−1)δδ1−δa11−δ2(s)aδδ−1(s)=g2(s). | (2.6) |
Similarly, if we apply (2.2) with λ=γ<1, A=a1/γ1(s)χ(ς(s)), and B=(1γa(s)a−1/γ1(s))1γ−1, we get
a1(s)χγ(ς(s))−a(s)χ(ς(s))≤(1−γ)γγ1−γa11−γ1(s)aγγ−1(s)=g1(s). | (2.7) |
By substituting (2.6) and (2.7) into (2.5), we obtain
χ(s)≥G(s)−g1(s)−g2(s)=(1−g1(s)+g2(s)G(s))G(s). | (2.8) |
Since G′(s)>0, we find G(s)≥c0 for some c0>0. Therefore, (2.8) leads to
χ(s)≥(1−g1(s)+g2(s)c0)G(s). |
In light of (2.4), we can identify a constant c∈(0,1) such that
χ(s)≥cG(s). | (2.9) |
By substituting (2.9) into (1.1), we obtain
(r(s)[G′′′(s)]α)′=−m∑i=1κi(s)χβ(σi(s))≤−cβm∑i=1κi(s)Gβ(σi(s)). |
Since G′(s)>0, and σ(s)≤σi(s) for all i=1,2,...,m, then
(r(s)[G′′′(s)]α)′≤−cβGβ(σ(s))m∑i=1κi(s)=−κ(s)Gβ(σ(s)). |
This completes the proof.
This section introduces additional conditions that ensure the oscillatory behavior of solutions to Eq (1.1) using the Riccati technique with varied substitutions. These requirements are based on a rigorous study that takes into consideration the equation's unique structure, eventually focusing on positive solutions. We assume that the functional inequalities hold for all large enough s, which simplifies the proof without losing generality.
This subsection discusses the criteria that exclude the existence of positive solutions to Eq (1.1) within (C1).
Lemma 3.1. Let β≥α. If there is a nondecreasing function μ∈C1([s0,∞),(0,∞)) such that
limsups→∞∫ss0(Lμ(ℏ)κ(ℏ)(σ(ℏ)ℏ)3β/ϵ−2α(α+1)α+1r(ℏ)(μ′(ℏ))α+1(ϵ1ℏ2μ(ℏ))α)dℏ=∞, | (3.1) |
holds for every ϵ,ϵ1∈(0,1), L>0, then C1=∅.
Proof. Let χ∈C1. Then, there exists a s1≥s0, such that χ(s)>0, χ(ς(s))>0, and χ(σi(s))>0 for s≥s1≥s0 and i=1,2,...,m. Let us now definet
w(s):=μ(s)r(s)(G′′′(s))αGα(s)>0. | (3.2) |
So
w′(s)=μ′(s)r(s)(G′′′(s))αGα(s)+μ(s)(r(s)(G′′′(s))α)′Gα(s)−αμ(s)r(s)(G′′′(s))αG′(s)Gα+1(s). | (3.3) |
Using Lemma 2.6 (ⅱ), (3.2), and (3.3), we deduce that
w′(s)≤−μ(s)κ(s)Gβ(σ(s))Gα(s)+μ′(s)μ(s)w(s)−αG′(s)G(s)w(s). | (3.4) |
From Lemma 2.4, we have that
G(s)≥ϵ3sG′(s), |
and hence,
G(σ(s))G(s)≥(σ(s)s)3/ϵ. | (3.5) |
It follows from Lemma 2.1 that
G′(s)≥ϵ12s2G′′′(s), | (3.6) |
for all ϵ1∈(0,1) and every sufficiently large s. Thus, by (3.4)-(3.6), we have
w′(s)≤−μ(s)κ(s)Gβ(σ(s))Gα(s)+μ′(s)μ(s)w(s)−ϵ1α2s2G′′′(s)G(s)w(s)=−μ(s)κ(s)Gβ−α(s)Gβ(σ(s))Gβ(s)+μ′(s)μ(s)w(s)−ϵ1αs22(r(s)μ(s))1/αμ1/α(s)r1/α(s)G′′′(s)G(s)w(s). |
By using (3.2) and (3.5), we obtain
w′(s)≤−μ(s)κ(s)Gβ−α(s)(σ(s)s)3β/ϵ+μ′(s)μ(s)w(s)−ϵ1αs22(r(s)μ(s))1/αw(1+α)/α(s). | (3.7) |
Since G′(s)>0, and β≥α, then there exist a s1≥s0 and a constant L>0 such that
Gβ−α(s)>L. | (3.8) |
Thus, the inequality (3.7) gives
w′(s)≤−Lμ(s)κ(s)(σ(s)s)3β/ϵ+μ′(s)μ(s)w(s)−ϵ1αs22(r(s)μ(s))1/αw(1+α)/α(s). | (3.9) |
Using Lemma 2.3, where we define B=μ′(s)/μ(s), A=ϵ1αs2/2(r(s)μ(s))1/α, and u(s)=w(s), we derive
w′(s)≤−Lμ(s)κ(s)(σ(s)s)3β/ϵ+2α(α+1)α+1r(s)(μ′(s))α+1(ϵ1s2μ(s))α. | (3.10) |
Integrating (3.10) from s2≥s1 to s, one arrives at
∫ss2(Lμ(ℏ)κ(ℏ)(σ(ℏ)ℏ)3β/ϵ−2α(α+1)α+1r(ℏ)(μ′(ℏ))α+1(ϵ1ℏ2μ(ℏ))α)dℏ≤w(s2), |
this contradicts (3.11) as s→∞. This completes the proof.
Lemma 3.2. Let β≥α. If there is a nondecreasing functions μ1∈C1([s0,∞),(0,∞)) such that
limsups→∞∫ss0(μ1(ℏ)κ(ℏ)−2α(α+1)α+1r(σ(ℏ))[μ′1(ℏ)]α+1(L1ϵ1σ2(ℏ)σ′(ℏ)μ1(ℏ))α)dℏ=∞, | (3.11) |
holds for every ϵ1∈(0,1), L1>0, then C1=∅.
Proof. Let χ(s)∈C1. Then there exists a s1≥s0, such that χ(s)>0, χ(ς(s))>0, and χ(σi(s))>0 for s≥s1≥s0 and i=1,2,...,m. Now, define a function w1(s) by
w1(s):=μ1(s)r(s)(G′′′(s))αGβ(σ(s))>0, s≥s1. | (3.12) |
Thus
w′1(s)=μ′1(s)r(s)(G′′′(s))αGβ(σ(s))+μ1(s)(r(s)(G′′′(s))α)′Gβ(σ(s))−βμ1(s)σ′(s)r(s)(G′′′(s))αG′(σ(s))Gβ+1(σ(s)). | (3.13) |
We see from Lemma 2.6 (ⅱ), (3.12), and (3.13) that
w′1(s)≤μ′1(s)μ1(s)w1(s)−μ1(s)κ(s)−βσ′(s)G′(σ(s))G(σ(s))w1(s). | (3.14) |
Using (3.6), we obtain
G′(σ(s))≥ϵ12σ2(s)G′′′(σ(s)), | (3.15) |
for any ϵ1∈(0,1) and sufficiently large s. When we replace (3.15) with (3.14), we see that
w′1(s)≤μ′1(s)μ1(s)w1(s)−μ1(s)κ(s)−ϵ12βσ2(s)σ′(s)G′′′(σ(s))G(σ(s))w1(s)=−μ1(s)κ(s)+μ′1(s)μ1(s)w1(s)−ϵ12βσ2(s)σ′(s)r1/α(σ(s))r1/α(σ(s))G′′′(σ(s))G(σ(s))w1(s). |
Since (r(s)(G′′′(s))α)′<0, then
r1/α(s)G′′′(s)≤r1/α(σ(s))G′′′(σ(s)). |
Then
w′1(s)≤−μ1(s)κ(s)+μ′1(s)μ1(s)w1(s)−ϵ1β2σ2(s)σ′(s)r1/α(σ(s))r1/α(s)G′′′(s)G(σ(s))w1(s)=−μ1(s)κ(s)+μ′1(s)μ1(s)w1(s)−ϵ1β2σ2(s)σ′(s)[μ1(s)r(σ(s))]1/α[G(σ(s))]β−ααwα+1α1(s). | (3.16) |
Since β≥α and G′>0, there are constants L1>0 and s2≥s1 such that
Gβ−αα(σ(s))≥L1, s≥s2. | (3.17) |
Thus, the inequality (3.16) gives
w′1(s)≤−μ1(s)κ(s)+μ′1(s)μ1(s)w1(s)−ϵ1αL12σ2(s)σ′(s)[μ1(s)r(σ(s))]1/αwα+1α1(s). | (3.18) |
Using Lemma 2.3, where we define B=μ′1(s)/μ1(s), A=ϵ1αL1σ2(s)σ′(s)/2[μ1(s)r(σ(s))]1/α, and u(s)=w1(s), we derive
w′1(s)≤−μ1(s)κ(s)+2α(α+1)α+1r(σ(s))[μ′1(s)]α+1(L1ϵ1σ2(s)σ′(s)μ1(s))α. | (3.19) |
Integrating (3.19) from s3≥s2 to s, one arrives at
∫ss3(μ1(ℏ)κ(ℏ)−2α(α+1)α+1r(σ(ℏ))[μ′1(ℏ)]α+1(L1ϵ1σ2(ℏ)σ′(ℏ)μ1(ℏ))α)dℏ≤w1(s3), |
this contradicts (3.11) as s→∞.
Thus, the proof is finished.
Lemma 3.3. Let 0<β<α. If there is a nondecreasing function μ1∈C1([s0,∞),(0,∞)) such that
limsups→∞∫ss0(μ1(ℏ)κ(ℏ)−2β(β+1)β+1r(ℏ)[μ′1(ℏ)]β+1(L2ϵ1μ1(ℏ)σ2(ℏ)σ′(ℏ))β)dℏ=∞, | (3.20) |
holds for every ϵ1∈(0,1), L2>0, then C1=∅.
Proof. Let χ(s)∈C1. Then there exists a s1≥s0, such that χ(s)>0, χ(ς(s))>0, and χ(σi(s))>0 for s≥s1≥s0 and i=1,2,...,m. As in the proof of (3.11) in Lemma 3.2. The function w1(s) is defined in (3.12), then (3.13) holds. By using Lemma 2.6 (ⅱ), (3.12), and (3.13), we conclude that
w′1(s)≤−μ1(s)κ(s)+μ′1(s)μ1(s)w1(s)−βσ′(s)G′(σ(s))G(σ(s))w1(s). |
By using (3.15), we see that
w′1(s)≤−μ1(s)κ(s)+μ′1(s)μ1(s)w1(s)−ϵ1β2σ2(s)σ′(s)[G′′′(s)]β−αβ[G′′′(s)]α/βG(σ(s))w1(s)=−μ1(s)κ(s)+μ′1(s)μ1(s)w1(s)−ϵ1β2σ2(s)σ′(s)(μ1(s)r(s))1/β[G′′′(s)]β−αβwβ+1β1(s). | (3.21) |
Note that 0<β<α and (C1) hold. Since r′(s)≥0, we deduce that G(4)(s)≤0; this readily infers that G′′′(s) is nonincreasing. Then there are L2>0 and s2≥s1 such that
[G′′′(s)]β−αβ≥L2, s≥s2. | (3.22) |
From (3.21) and (3.22), it follows that
w′1(s)≤−μ1(s)κ(s)+μ′1(s)μ1(s)w1(s)−ϵ1βL22σ2(s)σ′(s)(μ1(s)r(s))1/βwβ+1β1(s). | (3.23) |
By applying Lemma 2.3, where B=μ′1(s)/μ1(s), r=ϵ1βL2σ2(s)σ′(s)/2[μ1(s)r(s)]1/β, and u(s)=w1(s), we drive
w′1(s)≤−μ1(s)κ(s)+2β(β+1)β+1r(s)[μ′1(s)]β+1(L2ϵ1μ1(s)σ2(s)σ′(s))β. | (3.24) |
Integrating (3.24) throughout the interval [s3,s] allows us to conclude
∫ss2(μ1(ℏ)κ(ℏ)−2β(β+1)β+1r(ℏ)[μ′1(ℏ)]β+1(L2ϵ1μ1(ℏ)σ2(ℏ)σ′(ℏ))β)dℏ≤w1(s2), |
This contradicts (3.20) when s→∞.
Thus, the proof is finished.
This subsection discusses the criteria that exclude the existence of positive solutions to Eq (1.1) within (C2).
Lemma 3.4. Let β≥α. If there is a nondecreasing function μ2∈C1([s0,∞),(0,∞)) such that
limsups→∞∫ss0(Lβ−αα3μ2(v)∫∞v(1r(u)∫∞uκ(ℏ)(σ(ℏ)ℏ)β/ϵ2dℏ)1/αdu−[μ′2(v)]24μ2(v))dv=∞, | (3.25) |
holds for every ϵ2∈(0,1), L3>0, then C2=∅.
Proof. Let χ(s)∈C2. Then, there exists a s1≥s0, such that χ(s)>0, χ(ς(s))>0, and χ(σi(s))>0 for s≥s1≥s0 and i=1,2,...,m. Integrating (ⅱ) from s to ∞ and applying the fact that (r(G′′′)α)′≤0, we deduce
r(s)[G′′′(s)]α≥∫∞sκ(ℏ)Gβ(σ(ℏ))dℏ. | (3.26) |
As G(s)>0, G′(s)>0, and G′′(s)<0, Lemma 2.4 implies that
G(s)≥ϵ2sG′(s), forall ϵ2∈(0,1). | (3.27) |
Integrating (3.27) from σ(s) to s, we obtain
G(σ(s))G(s)≥(σ(s)s)1/ϵ2. |
Therefore, (3.26) becomes
r(s)[G′′′(s)]α≥∫∞sκ(ℏ)(σ(ℏ)ℏ)β/ϵ2Gβ(ℏ)dℏ. |
Since G′(s)>0, then
r(s)[G′′′(s)]α≥Gβ(s)∫∞sκ(ℏ)(σ(ℏ)ℏ)β/ϵ2dℏ, |
or equivalently
G′′′(s)≥Gβ/α(s)(1r(s)∫∞sκ(ℏ)(σ(ℏ)ℏ)β/ϵ2dℏ)1/α. |
Integrating this inequality from s to ∞, we have
G′′(s)≤−Gβ/α(s)∫∞s(1r(u)∫∞uκ(ℏ)(σ(ℏ)ℏ)β/ϵ2dℏ)1/αdu. | (3.28) |
Now, define
F(s):=μ2(s)G′(s)G(s). | (3.29) |
Then, F(s)≥0 for s≥s1≥s0 and
F′(s)=μ′2(s)G′(s)G(s)+μ2(s)G′′(s)G(s)−μ2(s)(G′(s))2G2(s)=μ2(s)G′′(s)G(s)+μ′2(s)μ2(s)F(s)−1μ2(s)F2(s). |
Hence, by (3.28), we obtain
F′(s)≤−μ2(s)Gβ/α−1(s)∫∞s(1r(u)∫∞uκ(ℏ)(σ(ℏ)ℏ)β/ϵ2dℏ)1/αdu+μ′2(s)μ2(s)F(s)−1μ2(s)F2(s). | (3.30) |
Because G′(s)>0 and β≥α, there are constants L3>0 and s2≥s1 such that
Gβ/α−1(s)≥Lβ/α−13 (If α=β, then L3=1). | (3.31) |
Substituting (3.31) into (3.30), we have
F′(s)≤−Lβ/α−13μ2(s)∫∞s(1r(u)∫∞uκ(ℏ)(σ(ℏ)ℏ)β/ϵ2dℏ)1/αdu+μ′2(s)μ2(s)F(s)−1μ2(s)F2(s). | (3.32) |
Using Lemma 2.3 with B=μ′2(s)/μ2(s), A=1/μ2(s), and u(s)=F(s), we obtain
μ′2(s)μ2(s)F(s)−1μ2(s)F2(s)≤[μ′2(s)]24μ2(s). |
Consequently, (3.32) leads to
F′(s)≤−Lβ/α−13μ2(s)∫∞s(1r(u)∫∞uκ(ℏ)(σ(ℏ)ℏ)β/ϵ2dℏ)1/αdu+μ22(s)4μ2(s). |
When we integrate this inequality between s2 to s, we obtain
∫ss2(Lβ/α−13μ2(v)∫∞v(1r(u)∫∞uκ(ℏ)(σ(ℏ)ℏ)β/ϵ2dℏ)1/αdu−[μ′2(v)]24μ2(v))dv≤F(s2), |
which contradicts (3.25) as s→∞. This completes the proof.
The following corollary is obtained by setting μ2(s)=1 in Lemma 3.4.
Corollary 3.1. Let β≥α. If
limsups→∞∫ss0∫∞v(1r(u)∫∞uκ(ℏ)(σ(ℏ)ℏ)β/ϵ2dℏ)1/αdudv=∞, | (3.33) |
holds for every ϵ2∈(0,1), then C2=∅.
Lemma 3.5. Let 0<β<α. If there are nondecreasing functions μ2∈C1([s0,∞),(0,∞)) such thatand
limsups→∞∫ss0[Lβ−αα4μ2(v)(v−s0)β−αα∫∞v(1r(u)∫∞uκ(ℏ)(σ(ℏ)ℏ)β/ϵ2dℏ)1/αdu+(μ′2(v))24μ2(v)]dv=∞, | (3.34) |
holds for every ϵ2∈(0,1), L4>0, then C2=∅.
Proof. Let χ(s)∈C2. Then there exists a s1≥s0, such that χ(s)>0, χ(ς(s))>0, and χ(σi(s))>0 for s≥s1≥s0 and i=1,2,...,m. As demonstrated in the proof of (3.25) in Lemma 3.4. The function F(s) is defined in (3.29), and so (3.30) holds, which can be written as follows:
F′(s)≤−μ2(s)Gβ/α−1(s)∫∞s(1r(u)∫∞uκ(ℏ)(σ(ℏ)ℏ)β/ϵ2dℏ)1/αdu+μ′2(s)μ2(s)F(s)−1μ2(s)F2(s). | (3.35) |
Since G′′<0, it follows that G′ is decreasing. Consequently, we have
G(s)=∫ss1G′(ℏ)dℏ≤G′(s1)(s−s1)=L4(s−s1), L4:=G′(s1)>0. | (3.36) |
Since 0<β<α, we obtain 0<β/α<1, which, together with (3.36), leads to
Gβ/α−1(s)≥Lβ/α−14(s−s1)β/α−1. | (3.37) |
Hence, the inequality (3.35) becomes
F′(s)≤−Lβ/α−14μ2(s)(s−s1)β/α−1∫∞s(1r(u)∫∞uκ(ℏ)(σ(ℏ)ℏ)β/ϵ2dℏ)1/αdu+μ′2(s)μ2(s)F(s)−1μ2(s)F2(s). | (3.38) |
Using Lemma 2.3 with B=μ′2(s)/μ2(s), A=1/μ2(s), and u(s)=F(s), we can deduce that
μ′2(s)μ2(s)F(s)−1μ2(s)F2(s)≤(μ′2(s))24μ2(s). |
Consequently, (3.38) leads to
F′(s)≤−Lβ−αα4μ2(s)(s−s1)β−αα∫∞s(1r(u)∫∞uκ(ℏ)(σ(ℏ)ℏ)β/ϵ2dℏ)1/αdu+(μ′2(s))24μ2(s). |
When we integrate this inequality between s2 to s, we obtain
∫ss2[Lβ−αα4μ2(v)(v−s1)β−αα∫∞v(1r(u)∫∞uκ(ℏ)(σ(ℏ)ℏ)β/ϵ2dℏ)1/αdu+(μ′2(v))24μ2(v)]dv≤F(s2), |
which contradicts (3.34) as s→∞. Thus, we have completed the proof.
The following corollary is obtained by setting μ2(s)=1 in Lemma 3.5.
Corollary 3.2. Let 0<β<α. If
limsups→∞∫ss0(v−s0)β−αα∫∞v(1r(u)∫∞uκ(ℏ)(σ(ℏ)ℏ)β/ϵ2dℏ)1/αdudv=∞, | (3.39) |
hold for some ϵ2∈(0,1). Then (1.1) is oscillatory.
In this part, we develop oscillatory criteria for the studied equation by combining the findings from the preceding sections.
Theorem 4.1. If condition (2.4) is satisfied, then Eq (1.1) will exhibit oscillatory behavior provided that at least one of the following conditions is met:
(1) Both conditions (3.1) and (3.25);
(2) Both conditions (3.11) and (3.25);
(3) Both conditions (3.1) and (3.33);
(4) Both conditions (3.11) and (3.33);
(5) Both conditions (3.20) and (3.34);
(6) Both conditions (3.20) and (3.39).
Proof. We prove the first case (1) and apply the same method to the rest of the cases. Let us assume that χ is eventually a positive solution to the Eq (1.1). According to Lemma 2.5, there are two possible cases of behavior: (C1) and (C2). Using Lemmas 3.1 and 3.2, we find that the conditions (3.1) and (3.25) exclude the existence of solutions that satisfy both of the mentioned cases, which leads to a contradiction with the initial assumption, and therefore, the solutions cannot be positive eventually, which proves the oscillation. This approach can be generalized to the other cases by the same method. Thus, the proof is complete.
Example 4.1. Consider the NDE given by:
(s−1(χ(s)+1sχ1/5(12s)−χ5(12s))′′′)′+κ0s5(χ(12s)+χ(13s)+χ(14s))=0, | (4.1) |
for s≥1 and κ0>0. Here we have
α=β=1, γ=15, δ=5, m=3, ς(s)=12s, σ(s)=14s, r(s)=s, a(s)=a1(s)=1s, and a2(s)=1. |
Now, we calculate
∫∞s01r1/α(ℏ)dℏ=∫∞1ℏdℏ=∞, |
κ(s)=cβm∑i=1κi(s)=c3∑i=1κ0s5=3cκ0s5, |
\begin{equation*} g_{1}\left( \mathrm{s}\right) : = \left( 1-\gamma \right) \gamma ^{\frac{ \gamma }{1-\gamma }}\mathfrak{a}_{1}^{^{\frac{1}{1-\gamma }}}\left( \mathrm{s }\right) \mathfrak{a}^{\frac{\gamma }{\gamma -1}}\left( \mathrm{s}\right) = \frac{4}{5^{5/4}}\frac{1}{\mathrm{s}}. \end{equation*} |
and
\begin{equation*} g_{2}\left( \mathrm{s}\right) : = \left( \delta -1\right) \delta ^{\frac{ \delta }{1-\delta }}\mathfrak{a}_{2}^{^{\frac{1}{1-\delta }}}\left( \mathrm{s }\right) \mathfrak{a}^{\frac{\delta }{\delta -1}}\left( \mathrm{s}\right) = \frac{4}{5^{5/4}}\frac{1}{\mathrm{s}^{5/4}}. \end{equation*} |
Therefore
\begin{equation*} \lim\limits_{\mathrm{s}\rightarrow \infty }\left[ g_{1}\left( \mathrm{s}\right) +g_{2}\left( \mathrm{s}\right) \right] = \lim\limits_{\mathrm{s}\rightarrow \infty } \left[ \frac{4}{5^{5/4}}\frac{1}{\mathrm{s}}+\frac{4}{5^{5/4}}\frac{1}{ \mathrm{s}^{5/4}}\right] = 0, \end{equation*} |
which means that condition (2.4) is satisfied.
Now, consider the test function \mu \left(\mathrm{s}\right) = \mathrm{s} ^{4}. Applying condition (3.1), we obtain:
\begin{eqnarray*} &&\underset{\mathrm{s}\rightarrow \infty }{\lim \sup }\int_{1}^{\mathrm{s} }\left( \hslash ^{4}\frac{3c\kappa _{0}}{\hslash ^{5}}\left( \frac{\frac{1}{4 }\hslash }{\hslash }\right) ^{3/\epsilon }-\frac{2}{2^{2}}\frac{\hslash ^{-1}\left( 4\hslash ^{3}\right) ^{2}}{\epsilon _{1}\hslash ^{2}\hslash ^{4}} \right) \mathrm{d}\hslash \\ & = &\underset{\mathrm{s}\rightarrow \infty }{\lim \sup }\int_{1}^{\mathrm{s} }\left( 3c\kappa _{0}\left( \frac{1}{4}\right) ^{3/\epsilon }-\frac{8}{ \epsilon _{1}}\right) \frac{1}{\hslash }\mathrm{d}\hslash \\ & = &\left( 3c\kappa _{0}\left( \frac{1}{4}\right) ^{3/\epsilon }-\frac{8}{ \epsilon _{1}}\right) \underset{\mathrm{s}\rightarrow \infty }{\lim \sup } \ln \mathrm{s} = \infty , \end{eqnarray*} |
which is satisfied provided that
\begin{equation} \kappa _{0} > \frac{8}{3c\epsilon _{1}\left( 2\right) ^{6/\epsilon }}. \end{equation} | (4.2) |
Similarly, consider the test function \mu _{1}\left(\mathrm{s}\right) = \mathrm{s}^{4}. Applying condition (3.11), we derive:
\begin{eqnarray*} \underset{\mathrm{s}\rightarrow \infty }{\lim \sup }\int_{1}^{\mathrm{s} }\left( \hslash ^{4}\frac{3c\kappa _{0}}{\hslash ^{5}}-\frac{2}{2^{2}}\frac{ 4\hslash ^{-1}\left[ 4\hslash ^{3}\right] ^{2}}{L_{1}\epsilon _{1}\frac{1}{16 }\hslash ^{2}\frac{1}{4}\hslash ^{4}}\right) \mathrm{d}\hslash & = &\underset{ \mathrm{s}\rightarrow \infty }{\lim \sup }\int_{1}^{\mathrm{s}}\left( 3c\kappa _{0}-\frac{2^{11}}{L_{1}\epsilon _{1}}\right) \frac{1}{\hslash } \mathrm{d}\hslash \\ & = &\left( 3c\kappa _{0}-\frac{2^{11}}{L_{1}\epsilon _{1}}\right) \underset{ \mathrm{s}\rightarrow \infty }{\lim \sup }\ln \mathrm{s} = \infty , \end{eqnarray*} |
which holds provided that
\begin{equation} \kappa _{0} > \frac{2^{11}}{3cL_{1}\epsilon _{1}}. \end{equation} | (4.3) |
Now, let us consider the test function \mu _{2}\left(\mathrm{s}\right) = \mathrm{s}. Applying condition (3.25), we obtain:
\begin{eqnarray*} &&\underset{\mathrm{s}\rightarrow \infty }{\lim \sup }\int_{1}^{\mathrm{s} }\left( v\int_{v}^{\infty }\left( u\int_{u}^{\infty }\frac{3c\kappa _{0}}{ \hslash ^{5}}\left( \frac{\hslash }{4\hslash }\right) ^{1/\epsilon _{2}} \mathrm{d}\hslash \right) \mathrm{d}u-\frac{1}{4v}\right) \mathrm{d}v \\ & = &\underset{\mathrm{s}\rightarrow \infty }{\lim \sup }\int_{1}^{\mathrm{s} }\left( v\int_{v}^{\infty }\frac{3c\kappa _{0}}{2^{2/\epsilon _{2}}}\frac{1}{ 4u^{3}}\mathrm{d}u-\frac{1}{4v}\right) \mathrm{d}v \\ & = &\underset{\mathrm{s}\rightarrow \infty }{\lim \sup }\int_{1}^{\mathrm{s} }\left( \frac{3c\kappa _{0}}{2^{2/\epsilon _{2}}}\frac{1}{8}-\frac{1}{4} \right) \frac{1}{v}\mathrm{d}v \\ & = &\left( \frac{3c\kappa _{0}}{2^{2/\epsilon _{2}}}\frac{1}{8}-\frac{1}{4} \right) \underset{\mathrm{s}\rightarrow \infty }{\lim \sup }\ln \mathrm{s} = \infty , \end{eqnarray*} |
which holds if
\begin{equation} \kappa _{0} > \frac{2^{1+2/\epsilon _{2}}}{3c}. \end{equation} | (4.4) |
Hence, in accordance with conditions \left(\mathrm{1}\right) -\left(\mathrm{4}\right) of Theorem 4.1, the satisfaction of (4.2)–(4.4) ensures that Eq (4.1) exhibits oscillatory behavior.
Example 4.2. Consider the NDE given by
\begin{equation} \left( \mathrm{s}^{-1/3}\left( \left( \chi \left( \mathrm{s}\right) +\frac{1 }{\mathrm{s}}\chi ^{1/3}\left( 0.5\mathrm{s}\right) -\chi ^{3}\left( 0.5 \mathrm{s}\right) \right) ^{\prime \prime \prime }\right) ^{1/3}\right) ^{\prime }+\sum\limits_{i = 1}^{m}\frac{\kappa _{0}}{\mathrm{s}^{7/3}}\chi ^{1/3}\left( \sigma _{i}\mathrm{s}\right) = 0,\text{ }\mathrm{s}\geq 1, \end{equation} | (4.5) |
for \mathrm{s}\geq 1, \kappa _{0} > 0 and , \sigma _{i}\in \left(0, 1\right), i = 1, 2, ..., m. Clearly, \alpha = \beta = 1/3, \gamma = \frac{1 }{3}, \delta = 3, \varsigma \left(\mathrm{s}\right) = 0.5\mathrm{s}, \sigma \left(\mathrm{s}\right) = \sigma \mathrm{s, } where \sigma = \min \left \{ \sigma _{i}\mathrm{, }\text{ }i = 1, 2, ..., m\right \}. Additionally, r\left(\mathrm{s}\right) = \mathrm{s}^{-1/3}, \mathfrak{a}\left(\mathrm{s} \right) = \mathfrak{a}_{1}\left(\mathrm{s}\right) = 1/\mathrm{s}, and \mathfrak{a}_{2}\left(\mathrm{s}\right) = 1. We first evaluate the integral:
\begin{equation*} \int_{\mathrm{s}_{0}}^{\infty }\frac{1}{r^{1/\alpha }\left( \hslash \right) } \mathrm{d}\hslash = \int_{1}^{\infty }\frac{1}{\left( \hslash ^{-1/3}\right) ^{3}}\mathrm{d}\hslash = \int_{1}^{\infty }\hslash \mathrm{d}\hslash = \infty , \end{equation*} |
and
\begin{equation*} \kappa (\mathrm{s}) = c^{\beta }\sum\limits_{i = 1}^{m}\kappa _{i}(\mathrm{s} ) = c^{1/3}\sum\limits_{i = 1}^{m}\frac{\kappa _{0}}{\mathrm{s}^{7/3}} = \frac{ mc^{1/3}k_{0}}{\mathrm{s}^{7/3}}. \end{equation*} |
Moreover,
\begin{equation*} g_{1}\left( \mathrm{s}\right) = \frac{2}{3^{3/2}}\frac{1}{\mathrm{s}}\text{ and }g_{2}\left( \mathrm{s}\right) = \frac{2}{3^{3/2}}\frac{1}{\mathrm{s} ^{3/2}}. \end{equation*} |
Hence,
\begin{equation*} \lim\limits_{\mathrm{s}\rightarrow \infty }\left[ g_{1}\left( \mathrm{s}\right) +g_{2}\left( \mathrm{s}\right) \right] = \lim\limits_{\mathrm{s}\rightarrow \infty } \left[ \frac{2}{3^{3/2}}\frac{1}{\mathrm{s}}+\frac{2}{3^{3/2}}\frac{1}{ \mathrm{s}^{3/2}}\right] = 0, \end{equation*} |
which implies that condition (2.4) is satisfied.
Now, consider the test function \mu \left(\mathrm{s}\right) = \mathrm{s} ^{4/3}. Applying condition (3.1), we obtain:
\begin{eqnarray*} &&\underset{\mathrm{s}\rightarrow \infty }{\lim \sup }\int_{1}^{\mathrm{s} }\left( L\hslash ^{4/3}\frac{mc^{1/3}k_{0}}{\hslash ^{7/3}}\left( \frac{ \sigma \hslash }{\hslash }\right) ^{1/\epsilon }-\frac{2^{1/3}}{\left( \frac{ 4}{3}\right) ^{4/3}}\frac{\hslash ^{-1/3}\left( \frac{4}{3}\hslash ^{1/3}\right) ^{4/3}}{\left( \epsilon _{1}\hslash ^{2}\hslash ^{4/3}\right) ^{1/3}}\right) \mathrm{d}\hslash \\ & = &\underset{\mathrm{s}\rightarrow \infty }{\lim \sup }\int_{1}^{\mathrm{s} }\left( Lmc^{1/3}k_{0}\sigma ^{1/\epsilon }-\frac{2^{1/3}}{\epsilon _{1}^{1/3}}\right) \frac{1}{\hslash }\mathrm{d}\hslash \\ & = &\left( Lmc^{1/3}k_{0}\sigma ^{1/\epsilon }-\frac{2^{1/3}}{\epsilon _{1}^{1/3}}\right) \underset{\mathrm{s}\rightarrow \infty }{\lim \sup }\ln \mathrm{s} = \infty , \end{eqnarray*} |
which holds provided that
\begin{equation} k_{0} > \frac{1}{Lm\sigma ^{1/\epsilon }}\left( \frac{2}{\epsilon _{1}c} \right) ^{1/3}. \end{equation} | (4.6) |
Similarly, consider the test function \mu _{1}\left(\mathrm{s}\right) = \mathrm{s}^{4/3}. Applying condition (3.11), we derive:
\begin{eqnarray*} &&\underset{\mathrm{s}\rightarrow \infty }{\lim \sup }\int_{1}^{\mathrm{s} }\left( \hslash ^{4l3}\frac{mc^{1/3}k_{0}}{\hslash ^{7/3}}-\frac{2^{1/3}}{ \left( \frac{4}{3}\right) ^{4/3}}\frac{\sigma ^{-1/3}\hslash ^{-1/3}\left[ \frac{4}{3}\hslash ^{1/3}\right] ^{4/3}}{\left( L_{1}\epsilon _{1}\sigma ^{2}\hslash ^{2}\sigma ^{\prime }\hslash ^{4/3}\right) ^{1/3}}\right) \mathrm{d}\hslash \\ & = &\underset{\mathrm{s}\rightarrow \infty }{\lim \sup }\int_{\mathrm{s} _{0}}^{\mathrm{s}}\left( mc^{1/3}k_{0}-\frac{2^{1/3}}{\left( L_{1}\epsilon _{1}\sigma ^{4}\right) ^{1/3}}\right) \frac{1}{h}\mathrm{d}\hslash \\ & = &\left( mc^{1/3}k_{0}-\frac{2^{1/3}}{\left( L_{1}\epsilon _{1}\sigma ^{4}\right) ^{1/3}}\right) \underset{\mathrm{s}\rightarrow \infty }{\lim \sup }\ln \mathrm{s} = \infty , \end{eqnarray*} |
which holds if
\begin{equation} k_{0} > \frac{1}{m}\left( \frac{2}{L_{1}c\epsilon _{1}\sigma ^{4}}\right) ^{1/3}. \end{equation} | (4.7) |
Now, take \mu _{2}\left(\mathrm{s}\right) = \mathrm{s}. Applying condition (3.25), we obtain:
\begin{eqnarray*} &&\underset{\mathrm{s}\rightarrow \infty }{\lim \sup }\int_{1}^{\mathrm{s} }\left( v\int_{v}^{\infty }\left( u^{1/3}\int_{u}^{\infty }\frac{ mc^{1/3}k_{0}}{\hslash ^{7/3}}\left( \frac{\sigma \hslash }{\hslash }\right) ^{1/3\epsilon _{2}}\mathrm{d}\hslash \right) ^{3}\mathrm{d}u-\frac{1}{4v} \right) \mathrm{d}v \\ & = &\underset{\mathrm{s}\rightarrow \infty }{\lim \sup }\int_{1}^{\mathrm{s} }\left( v\int_{v}^{\infty }\left( u^{1/3}\frac{3mc^{1/3}k_{0}\sigma ^{1/3\epsilon _{2}}}{4}\frac{1}{u^{4/3}}\right) ^{3}\mathrm{d}u-\frac{1}{4v} \right) \mathrm{d}v \\ & = &\underset{\mathrm{s}\rightarrow \infty }{\lim \sup }\int_{1}^{\mathrm{s} }\left( v\int_{v}^{\infty }\left( \frac{3mc^{1/3}k_{0}\sigma ^{1/3\epsilon _{2}}}{4}\right) ^{3}\frac{1}{u^{3}}\mathrm{d}u-\frac{1}{4v}\right) \mathrm{d }v \\ & = &\underset{\mathrm{s}\rightarrow \infty }{\lim \sup }\int_{1}^{\mathrm{s} }\left( \frac{1}{2}\left( \frac{3mc^{1/3}k_{0}\sigma ^{1/3\epsilon _{2}}}{4} \right) ^{3}-\frac{1}{4}\right) \frac{1}{v}\mathrm{d}v \\ & = &\left( \frac{1}{2}\left( \frac{3mc^{1/3}k_{0}\sigma ^{1/3\epsilon _{2}}}{4 }\right) ^{3}-\frac{1}{4}\right) \underset{\mathrm{s}\rightarrow \infty }{ \lim \sup }\ln \mathrm{s} = \infty , \end{eqnarray*} |
which is satisfied provided that
\begin{equation} k_{0} > \frac{2^{5/3}}{3}\frac{1}{mc^{1/3}\sigma ^{1/3\epsilon _{2}}}. \end{equation} | (4.8) |
Therefore, in accordance with conditions \left(\mathrm{1}\right) and \left(\mathrm{2}\right) of Theorem 4.1, if inequalities (4.6)–(4.8) are satisfied, then Eq (4.1) exhibits oscillatory behavior.
This study constitutes a pivotal step in exploring the oscillatory behavior of solutions associated with fourth-order differential equations, which contain mixed neutral terms and multiple delays. Using the Riccati methodology, we were able to derive precise criteria that guarantee the oscillation of solutions for this class of equations. Our results are not only a natural extension of previous research but also contribute to laying new foundations for a deeper and more comprehensive understanding. The research horizon opened by this study goes beyond the fourth order, as the results can be generalized in the future to include differential equations of higher order, where n\geq 4 , adding a new mathematical dimension to the study. Moreover, applying the proposed methodology to the study of uncanonical cases provides a promising framework for expanding the theoretical understanding of these equations. Another interesting aspect is the exploration of equations containing the matching function of the form \mathcal{G}\left(\mathrm{s}\right) = \chi \left(\mathrm{s}\right) + \mathfrak{a}_{1}\left(\mathrm{s}\right) \chi ^{\gamma }\left(\varsigma _{1}\left(\mathrm{s}\right) \right) +\mathfrak{a}_{2}\left(\mathrm{s} \right) \chi ^{\delta }\left(\varsigma _{2}\left(\mathrm{s}\right) \right) , as this approach opens up new horizons for research creativity and application development. Thus, this study paves the way for more in-depth analyses aimed at enhancing theoretical understanding while laying the foundations for expanding practical applications in different fields.
S.A., F.M., and O.B.: Methodology, investigation. S.A. and F.M.: Writing—original draft preparation. S.A., F.M., and O.B.: Writing—review and editing. O.B.: Supervision. All authors have read and agreed to the published version of the manuscript.
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
The authors would like to acknowledge the support received from Princess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP2025R514), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.
All authors declare no conflicts of interest in this paper.
[1] | J. K. Hale, Theory of functional differential equations, New York: Springer, 1977. http://doi.org/10.1007/978-1-4612-9892-2 |
[2] | M. Braun, Qualitative theory of differential Equations, In: Differential equations and their applications, New York, NY: Springer, 1978,348–445. https://doi.org/10.1007/978-1-4684-9360-3_4 |
[3] | W. Snow, Existence, uniqueness and stability for nonlinear differential-difference equations in the neutral case, New York: Courant Institute of Mathematical Sciences, New York University, 1965. |
[4] |
R. K. Brayton, R. A. Willoughby, On the numerical integration of a symmetric system of difference-differential equations of neutral type, J. Math. Anal. Appl., 18 (1967), 182–189. https://doi.org/10.1016/0022-247X(67)90191-6 doi: 10.1016/0022-247X(67)90191-6
![]() |
[5] | I. Gyori, G. Ladas, Oscillation theory of delay differential equations with applications, Oxford: Clarendon Press, 1991. https://doi.org/10.1093/oso/9780198535829.001.0001 |
[6] |
B. Almarri, F. Masood, O. Moaaz, A. Muhib, Amended criteria for testing the asymptotic and oscillatory behavior of solutions of higher-order functional differential equations, Axioms, 11 (2022), 718. https://doi.org/10.3390/axioms11120718 doi: 10.3390/axioms11120718
![]() |
[7] |
F. Masood, S. Aljawi, O. Bazighifan, Novel iterative criteria for oscillatory behavior in nonlinear neutral differential equations, AIMS Mathematics, 10 (2025), 6981–7000. https://doi.org/10.3934/math.2025319 doi: 10.3934/math.2025319
![]() |
[8] |
B. Baculíková, J. Džurina, Oscillation theorems for second order neutral differential equations, Comput. Math. Appl., 62 (2011), 4472–4478. https://doi.org/10.1016/j.camwa.2011.10.024 doi: 10.1016/j.camwa.2011.10.024
![]() |
[9] |
M. Aldiaiji, B. Qaraad, L. F. Iambor, E. M. Elabbasy, New oscillation theorems for second-order superlinear neutral differential equations with variable damping terms, Symmetry, 15 (2023), 1630. https://doi.org/10.3390/sym15091630 doi: 10.3390/sym15091630
![]() |
[10] |
G. E. Chatzarakis, S. R. Grace, I. Jadlovská, T. Li, E. Tunç, Oscillation criteria for third-order Emden-Fowler differential equations with unbounded neutral coefficients, Complexity, 2019 (2019), 5691758. https://doi.org/10.1155/2019/5691758 doi: 10.1155/2019/5691758
![]() |
[11] |
S. R. Grace, J. Dzurina, I. Jadlovska, T. Li, On the oscillation of fourth-order delay differential equations, Adv. Differ. Equ., 2019 (2019), 118. https://doi.org/10.1186/s13662-019-2060-1 doi: 10.1186/s13662-019-2060-1
![]() |
[12] |
J. R. Graef, S. R. Grace, E. Tunç, Oscillatory behavior of even-order nonlinear differential equations with a sublinear neutral term, Opuscula math., 39 (2019), 39–47. https://doi.org/10.7494/OpMath.2019.39.1.39 doi: 10.7494/OpMath.2019.39.1.39
![]() |
[13] |
G. Xing, T. Li, C. Zhang, Oscillation of higher-order quasi-linear neutral differential equations, Adv. Differ. Equ., 2011 (2011), 45. https://doi.org/10.1186/1687-1847-2011-45 doi: 10.1186/1687-1847-2011-45
![]() |
[14] |
Y. Alnafisah, F. Masood, A. Muhib, O. Moaaz, Improved oscillation theorems for even-order quasi-linear neutral differential equations, Symmetry, 15 (2023), 1128. https://doi.org/10.3390/sym15051128 doi: 10.3390/sym15051128
![]() |
[15] |
Z. Alqahtani, B. Qaraad, A. Almuneef, H. Ramos, Asymptotic and oscillatory analysis of second-order differential equations with distributed deviating arguments, Mathematics, 12 (2024), 3542. https://doi.org/10.3390/math12223542 doi: 10.3390/math12223542
![]() |
[16] |
I. Jadlovská, J. Džurina, J. R. Graef, S. R. Grace, Sharp oscillation theorem for fourth-order linear delay differential equations, J. Inequal. Appl., 2022 (2022), 122. https://doi.org/10.1186/s13660-022-02859-0 doi: 10.1186/s13660-022-02859-0
![]() |
[17] | C. Zhang, T. Li, S. H. Saker, Oscillation of fourth-order delay differential equations, J. Math. Sci., 201 (2014), 296–309. |
[18] | T. Kusano, J. Manojlovic, T. Tanigawa, Sharp oscillation criteria for a class of fourth order nonlinear differential equations, Rocky Mt. J. Math., 41 (2011), 249–274. |
[19] |
K. Kamo, H. Usami, Nonlinear oscillations of fourth order quasilinear ordinary differential equations, Acta Math. Hung., 132 (2011), 207–222. https://doi.org/10.1007/s10474-011-0127-x doi: 10.1007/s10474-011-0127-x
![]() |
[20] |
O. Bazighifan, C. Cesarano, A Philos-type oscillation criteria for fourth-order neutral differential equations, Symmetry, 12 (2020), 379. https://doi.org/10.3390/sym12030379 doi: 10.3390/sym12030379
![]() |
[21] |
M. Alatwi, O. Moaaz, W. Albalawi, F. Masood, H. El-Metwally, Asymptotic and oscillatory analysis of fourth-order nonlinear differential equations with p-Laplacian-like operators and neutral delay arguments, Mathematics, 12 (2024), 470. https://doi.org/10.3390/math12030470 doi: 10.3390/math12030470
![]() |
[22] |
F. Masood, W. Albalawi, O. Moaaz, H. El-Metwally, Oscillatory features of fourth-order Emden–Fowler differential equations with sublinear neutral terms, Symmetry, 16 (2024), 933. https://doi.org/10.3390/sym16070933 doi: 10.3390/sym16070933
![]() |
[23] | L. Erbe, Oscillation theory for functional differential equations, New York: Routledge, 2017. https://doi.org/10.1201/9780203744727 |
[24] | R. P. Agarwal, S. R. Grace, D. O'Regan, Oscillation theory for difference and functional differential equations, Springer Dordrecht, 2000. https://doi.org/10.1007/978-94-015-9401-1 |
[25] | G. H. Hardy, J. E. Littlewood, G. Pólya, Inequalities (Cambridge mathematical library), Cambridge university press, 1934. |
[26] |
C. Zhang, R. P. Agarwal, M. Bohner, T. Li, New results for oscillatory behavior of even-order half-linear delay differential equations, Appl. Math. Lett., 16 (2013), 179–183. https://doi.org/10.1016/j.aml.2012.08.004 doi: 10.1016/j.aml.2012.08.004
![]() |
[27] | I. T. Kiguradze, T. A. Chanturiya, Asymptotic properties of solutions of nonautonomous ordinary differential equations, Springer Dordrecht, 1993. https://doi.org/10.1007/978-94-011-1808-8 |