Citation: Carey Caginalp. Minimization solutions to conservation laws with non-smooth and non-strictly convex flux[J]. AIMS Mathematics, 2018, 3(1): 96-130. doi: 10.3934/Math.2018.1.96
[1] | D. Applebaum, Levy Processes and Stochastic Calculus, Cambridge Studies in Advanced Mathematics, 2 Eds, Cambridge: Cambridge University Press, 2009. |
[2] | J. Bertoin, Levy Processes, Cambridge: Cambridge University Press, 1996. |
[3] | Y. Brienier and E. Grenier, Sticky particles and scalar conservation laws, SIAM J. Numer. Anal., 35 (1998), 2317-2328. |
[4] | M. Chabanol and J. Duchon, Markovian solutions of inviscid Burgers equation, J. Stat. Phys., 114 (2004), 525-534. |
[5] | M. Crandall, L. Evans and P. Lions, Some properties of viscosity solutions of Hamilton-Jacobi equations, Trans. Amer. Math. Soc., 282 (1984), 487-502. |
[6] | C. Dafermos, Polygonal Approximations of Solutions of the Initial Value Problem for a Conservation Law, J. Math. Anal. Appl., 38 (1972), 33-41. |
[7] | C. Dafermos, Hyberbolic Conservation Laws in Continuum Physics, 3 Eds, New York: Springer, 2010. |
[8] | E.Weinan, G. Rykov and G. Sinai, Generalized variational principles, global weak solutions and behavior with random initial data for systems of conservation laws arising in adhesion particle dynamics, Commun. Math. Phys., 177 (1996), 349-380. |
[9] | C. Evans, Partial Differential Equations, 2 Eds, New York: Springer, 2010. |
[10] | L. Frachebourg and P. Martin, Exact statistical properties of the Burgers equation, J. Fluid. Mech., 417 (2000), 323-349. |
[11] | D. G. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, New York: Springer, 1977. |
[12] | P. Groeneboom, Brownian motion with a parabolic drift and Airy functions, Probab. Theory Rel., 81 (1989), 79-109. |
[13] | H. Holden and N. Risebro, Front Tracking for Hyperbolic Conservation Laws, New York: Springer, 2015. |
[14] | E. Hopf, The partial differential equation u_{t} + uu_{x} = μu_{xx}, Comm. Pure Appl. Math., 3 (1950), 201-230. |
[15] | D. Kaspar and F. Rezakhanlou, Scalar conservation laws with monotone pure-jump Markov initial conditions, Probab. Theory Rel., 165 (2016), 867-899. |
[16] | K. Karlsen and N. Risebro, A note on front tracking and equivalence between viscosity solutions of Hamilton-Jacobi equations and entropy solutions of scalar conservation law, J. Nonlin. Anal., 50 (2002), 455-469. |
[17] | P. Lax, Hyperbolic systems of conservation laws Ⅱ, Comm. Pure Appl. Math., 10 (1957), 537-566. |
[18] | P. Lax, Hyperbolic systems of conservation laws and the mathematical theory of shock waves, CBMS-NSF Regional Conference Series in Applied Mathematics, 1973. |
[19] | G. Menon, Complete integrability of shock clustering and Burgers turbulence, Arch. Ration. Mech. An., 203 (2012), 853-882. |
[20] | G. Menon and R. Pego, Universality classes in Burgers turbulence, Commun. Math. Phys., 273 (2007), 177-202. |
[21] | G. Menon and R. Srinivasan, Kinetic theory and Lax equations for shock clustering and Burgers turbulence, J. Stat. Phys., 140 (2010), 1195-1223. |
[22] | H. L. Royden and P. Fitzpatrick, Real Analysis, 4 Eds, Boston: Prentice Hall, 2010. |
[23] | W. Rudin, Real and Complex Analysis, 3 Eds, Boston: McGraw-Hill, 1987. |
[24] | Z. Schuss, Theory and Applications of Stochastic Processes, New York: Springer, 2010. |
[25] | A. Vol'pert, Spaces BV and quasilinear equations, Mat. Sb. (N.S.), 73 (1967), 255-302. |