Loading [Contrib]/a11y/accessibility-menu.js
Research article

On the Caginalp phase-field system based on the Cattaneo law with nonlinear coupling

  • Received: 02 April 2016 Accepted: 15 April 2016 Published: 27 April 2016
  • We focus in this paper on a Caginalp phase-field system based on the Cattaneo law with nonlinear coupling. We start our analysis by establishing existence, uniqueness and regularity based on Moser’s iterations. We finish with the study of the spatial behavior of the solutions in a semi-infinite cylinder, assuming the existence of such solutions.

    Citation: Armel Andami Ovono, Alain Miranville. On the Caginalp phase-field system based on the Cattaneo law with nonlinear coupling[J]. AIMS Mathematics, 2016, 1(1): 24-42. doi: 10.3934/Math.2016.1.24

    Related Papers:

    [1] Ancheng Deng, Xiaoqiang Sun . Dynamic gene regulatory network reconstruction and analysis based on clinical transcriptomic data of colorectal cancer. Mathematical Biosciences and Engineering, 2020, 17(4): 3224-3239. doi: 10.3934/mbe.2020183
    [2] Qian Li, Minawaer Hujiaaihemaiti, Jie Wang, Md. Nazim Uddin, Ming-Yuan Li, Alidan Aierken, Yun Wu . Identifying key transcription factors and miRNAs coregulatory networks associated with immune infiltrations and drug interactions in idiopathic pulmonary arterial hypertension. Mathematical Biosciences and Engineering, 2023, 20(2): 4153-4177. doi: 10.3934/mbe.2023194
    [3] Jiaxin Luo, Lin Wu, Dinghui Liu, Zhaojun Xiong, Linli Wang, Xiaoxian Qian, Xiaoqiang Sun . Gene regulatory network analysis identifies key genes and regulatory mechanisms involved in acute myocardial infarction using bulk and single cell RNA-seq data. Mathematical Biosciences and Engineering, 2021, 18(6): 7774-7789. doi: 10.3934/mbe.2021386
    [4] Youlong Lv, Jie Zhang . A genetic regulatory network based method for multi-objective sequencing problem in mixed-model assembly lines. Mathematical Biosciences and Engineering, 2019, 16(3): 1228-1243. doi: 10.3934/mbe.2019059
    [5] Changxiang Huan, Jiaxin Gao . Insight into the potential pathogenesis of human osteoarthritis via single-cell RNA sequencing data on osteoblasts. Mathematical Biosciences and Engineering, 2022, 19(6): 6344-6361. doi: 10.3934/mbe.2022297
    [6] Ming-Xi Zhu, Tian-Yang Zhao, Yan Li . Insight into the mechanism of DNA methylation and miRNA-mRNA regulatory network in ischemic stroke. Mathematical Biosciences and Engineering, 2023, 20(6): 10264-10283. doi: 10.3934/mbe.2023450
    [7] Cicely K. Macnamara, Mark A. J. Chaplain . Spatio-temporal models of synthetic genetic oscillators. Mathematical Biosciences and Engineering, 2017, 14(1): 249-262. doi: 10.3934/mbe.2017016
    [8] Ignacio Alvarez-Castro, Jarad Niemi . Fully Bayesian analysis of allele-specific RNA-seq data. Mathematical Biosciences and Engineering, 2019, 16(6): 7751-7770. doi: 10.3934/mbe.2019389
    [9] David Iron, Adeela Syed, Heidi Theisen, Tamas Lukacsovich, Mehrangiz Naghibi, Lawrence J. Marsh, Frederic Y. M. Wan, Qing Nie . The role of feedback in the formation of morphogen territories. Mathematical Biosciences and Engineering, 2008, 5(2): 277-298. doi: 10.3934/mbe.2008.5.277
    [10] Shengjue Xiao, Yufei Zhou, Ailin Liu, Qi Wu, Yue Hu, Jie Liu, Hong Zhu, Ting Yin, Defeng Pan . Uncovering potential novel biomarkers and immune infiltration characteristics in persistent atrial fibrillation using integrated bioinformatics analysis. Mathematical Biosciences and Engineering, 2021, 18(4): 4696-4712. doi: 10.3934/mbe.2021238
  • We focus in this paper on a Caginalp phase-field system based on the Cattaneo law with nonlinear coupling. We start our analysis by establishing existence, uniqueness and regularity based on Moser’s iterations. We finish with the study of the spatial behavior of the solutions in a semi-infinite cylinder, assuming the existence of such solutions.


    [1] Caginalp G (1986) An analysis of a phase field model of a free boundary. Arch Ration Mech Anal ,92: 205-245.
    [2] Aizicovici S, Feireisl E (2001) Long-time stabilization of solutions to a phase-field model with memory. J Evol Equ ,1: 69-84.
    [3] Aizicovici S, Feireisl E (2001) Long-time convergence of solutions to a phase-field system. Math Methods Appl Sci ,24: 277-287.
    [4] Brochet D, Chen X, Hilhorst D (1993) Finite dimensional exponential attractors for the phase-field model. Appl Anal ,49: 197-212.
    [5] M. Brokate, J. Sprekels, Hysteresis and Phase Transitions, Springer, New York, 1996.
    [6] Cherfils L, Miranville A (2007) Some results on the asymptotic behavior of the Caginalp system with singular potentials. Adv Math Sci Appl .
    [7] Cherfils L, Miranville A (2009) On the Caginalp system with dynamic boundary conditions and singular potentials. Appl Math ,54: 89-115.
    [8] Chill R, Fasangov E′a, J. Pr¨uss (2006) Convergence to steady states of solutions of the Cahn-Hilliard equation with dynamic boundary conditions. Math Nachr ,279: 1448-1462.
    [9] C.I. Christov, P.M. Jordan, Heat conduction paradox involving second-sound propagation in moving media, Phys. Rev. Lett., 94 (2005), 154-301.
    [10] J.N. Flavin, R.J. Knops, and L.E. Payne, Decay estimates for the constrained elastic cylinder of variable cross-section, Quart. Appl. Math., 47 (1989), 325-350.
    [11] Gatti S, Miranville A (2006) Asymptotic behavior of a phase-field system with dynamic boundary conditions, in: Di erential Equations: Inverse and Direct Problems (Proceedings of the workshop “Evolution Equations: Inverse and Direct Problems ”, Cortona, June 21-25, 2004), in A. Favini, A. Lorenzi (Eds), A Series of Lecture Notes in Pure and Applied Mathematics ,251: 149-170.
    [12] C. Giorgi, M. Grasselli, and V. Pata, Uniform attractors for a phase-field model with memory and quadratic nonlinearity, Indiana Univ. Math. J., 48 (1999), 1395-1446.
    [13] Grasseli M, Miranville A, Pata V, Zelik S (2007) Well-posedness and long time behavior of a parabolic-hyperbolic phase-field system with singular potentials. Math Nachr ,280: 1475-1509.
    [14] M. Grasselli, On the large time behavior of a phase-field system with memory, Asymptot. Anal., 56 (2008), 229-249.
    [15] M. Grasselli, V. Pata, Robust exponential attractors for a phase-field system with memory J. Evol. Equ., 5 (2005), 465-483.
    [16] M. Grasselli, H. Petzeltová, and G. Schimperna, Long time behavior of solutions to the Caginalp system with singular potentials, Z. Anal. Anwend., 25 (2006), 51-73.
    [17] M. Grasselli, H. Wu, and S. Zheng, Asymptotic behavior of a non-isothermal Ginzburg-Landau model, Quart. Appl. Math., 66 (2008), 743-770.
    [18] A.E. Green, P.M. Naghdi, A new thermoviscous theory for fluids, J. Non-Newtonian Fluid Mech., 56 (1995), 289-306.
    [19] A.E. Green, P.M. Naghdi, A re-examination of the basic postulates of thermomechanics, Proc. Roy. Soc. Lond. A., 432 (1991), 171-194.
    [20] A.E. Green, P.M. Naghdi, On undamped heat waves in an elastic solid, J. Thermal. Stresses, 15 (1992), 253-264.
    [21] J. Jiang, Convergence to equilibrium for a parabolic-hyperbolic phase-field model with Cattaneo heat flux law, J. Math. Anal. Appl., 341 (2008), 149-169.
    [22] J. Jiang, Convergence to equilibrium for a fully hyperbolic phase field model with Cattaneo heat flux law, Math. Methods Appl. Sci., 32 (2009), 1156-1182.
    [23] Ph. Laurençot, Long-time behaviour for a model of phase-field type, Proc. Roy. Soc. Edinburgh Sect. A, 126 (1996), 167-185.
    [24] A. Miranville, R. Quintanilla, Some generalizations of the Caginalp phase-field system, Appl. Anal., 88 (2009), 877-894.
    [25] A. Miranville, R. Quintanilla, A generalization of the Caginalp phase-field system based on the Cattaneo law, Nonlinear Anal. TMA., 71 (2009), 2278-2290
    [26] A. Miranville, R. Quintanilla, A Caginalp phase-field system with a nonlinear coupling. Nonlinear Anal.: Real World Applications, 11 (2010), 2849-2861.
    [27] A. Miranville, S. Zelik, Robust exponential attractors for singularly perturbed phase-field type equations, Electron. J. Diff. Equ., (2002), 1-28.
    [28] A. Miranville, S. Zelik, Attractors for dissipative partial differential equations in bounded and unbounded domains, in: C.M. Dafermos, M. Pokorny (Eds.) Handbook of Differential Equations, Evolutionary Partial Differential Equations. Elsevier, Amsterdam, 2008.
    [29] A. Novick-Cohen, A phase field system with memory: Global existence, J. Int. Equ. Appl. 14 (2002), 73-107.
    [30] R. Quintanilla, On existence in thermoelasticity without energy dissipation, J. Thermal. Stresses, 25 (2002), 195-202.
    [31] R. Quintanilla, End effects in thermoelasticity, Math. Methods Appl. Sci.. 24 (2001), 93-102.
    [32] R. Quintanilla, R. Racke, Stability in thermoelasticity of type Ⅲ, Discrete Contin. Dyn. Syst. B, 3 (2003), 383-400.
    [33] R. Quintanilla, Phragmén-Lindelöf alternative for linear equations of the anti-plane shear dynamic problem in viscoelasticity, Dynam. Contin. Discrete Impuls. Systems, 2 (1996), 423-435.
    [34] R. Temam, Infinite-dimensional Dynamical Systems in Mechanics and Physics, second edition, Applied Mathematical Sciences, vol. 68, Springer-Verlag, New York, 1997.
    [35] Z. Zhang, Asymptotic behavior of solutions to the phase-field equations with Neumann boundary conditions, Comm. Pure Appl. Anal., 4 (2005), 683-693.
  • This article has been cited by:

    1. William Chad Young, Ka Yee Yeung, Adrian E Raftery, Identifying dynamical time series model parameters from equilibrium samples, with application to gene regulatory networks, 2019, 19, 1471-082X, 444, 10.1177/1471082X18776577
    2. Feng Liu, Qicheng Mei, Fenglan Sun, Xinmei Wang, Hua O Wang, 2018, Stability and Neimark-Sacker Bifurcation Analysis for Single Gene Discrete System with Delay, 978-988-15639-5-8, 961, 10.23919/ChiCC.2018.8483728
    3. Xiao Liang, William Chad Young, Ling-Hong Hung, Adrian E. Raftery, Ka Yee Yeung, Integration of Multiple Data Sources for Gene Network Inference Using Genetic Perturbation Data, 2019, 26, 1557-8666, 1113, 10.1089/cmb.2019.0036
    4. Xiao Liang, William Chad Young, Ling-Hong Hung, Adrian E. Raftery, Ka Yee Yeung, 2018, Integration of Multiple Data Sources for Gene Network Inference using Genetic Perturbation Data, 9781450357944, 601, 10.1145/3233547.3233692
    5. Sanrong Liu, Haifeng Wang, 2019, Chapter 15, 978-981-15-0120-3, 186, 10.1007/978-981-15-0121-0_15
    6. Bei Yang, Yaohui Xu, Andrew Maxwell, Wonryull Koh, Ping Gong, Chaoyang Zhang, MICRAT: a novel algorithm for inferring gene regulatory networks using time series gene expression data, 2018, 12, 1752-0509, 10.1186/s12918-018-0635-1
    7. William Chad Young, Adrian E. Raftery, Ka Yee Yeung, Model-based clustering with data correction for removing artifacts in gene expression data, 2017, 11, 1932-6157, 10.1214/17-AOAS1051
    8. Nimrita Koul, Sunilkumar S Manvi, 2020, A Perturbation based Algorithm for Inference of Gene Regulatory Networks for Multiple Myeloma, 978-1-7281-4108-4, 862, 10.1109/ICESC48915.2020.9155886
    9. Clémence Réda, Emilie Kaufmann, Andrée Delahaye-Duriez, Machine learning applications in drug development, 2020, 18, 20010370, 241, 10.1016/j.csbj.2019.12.006
    10. Chengye Zou, Xiaopeng Wei, Qiang Zhang, Changjun Zhou, Passivity of Reaction–Diffusion Genetic Regulatory Networks with Time-Varying Delays, 2018, 47, 1370-4621, 1115, 10.1007/s11063-017-9682-7
    11. Wenxia Zhou, Xuejun Li, Lu Han, Shengjun Fan, 2021, Chapter 2, 978-981-16-0752-3, 35, 10.1007/978-981-16-0753-0_2
  • Reader Comments
  • © 2016 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(5488) PDF downloads(1564) Cited by(2)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog