In many theories and applications with uncertainty, using intervals to characterize uncertainty is simple and operable. It is crucial to choose a proper order for an interval method. In general, a total order is superior to a partial order for those applications in which we have to make a final decision. Motivated by this idea, we generalized interval-valued monotone comparative statics (MCS) with a partial order to interval-valued MCS with a total order, to be more precise, with an admissible order. The generalization was not trival. We obtained a necessary and sufficient condition for MCS by a series of new concepts such as an interval-valued quasi-super-modular function and an interval-valued single crossing property with an admissible order. The same condition was only sufficient in the existing literature. Furthermore, we illustrated the efficiency of the interval-valued MCS with the lexicographical orders and XY-order, which are well-known admissible orders. Finally, we applied our results in interval games with strategic complements to get the monotonity of the best response correspondence for player i.
Citation: Xiaojue Ma, Chang Zhou, Lifeng Li, Jianke Zhang. Admissible interval-valued monotone comparative statics methods applied in games with strategic complements[J]. AIMS Mathematics, 2025, 10(2): 3160-3179. doi: 10.3934/math.2025146
[1] | Meshari Alesemi . Innovative approaches of a time-fractional system of Boussinesq equations within a Mohand transform. AIMS Mathematics, 2024, 9(10): 29269-29295. doi: 10.3934/math.20241419 |
[2] | Azzh Saad Alshehry, Humaira Yasmin, Ali M. Mahnashi . Analyzing fractional PDE system with the Caputo operator and Mohand transform techniques. AIMS Mathematics, 2024, 9(11): 32157-32181. doi: 10.3934/math.20241544 |
[3] | Aisha Abdullah Alderremy, Rasool Shah, Nehad Ali Shah, Shaban Aly, Kamsing Nonlaopon . Comparison of two modified analytical approaches for the systems of time fractional partial differential equations. AIMS Mathematics, 2023, 8(3): 7142-7162. doi: 10.3934/math.2023360 |
[4] | Musawa Yahya Almusawa, Hassan Almusawa . Numerical analysis of the fractional nonlinear waves of fifth-order KdV and Kawahara equations under Caputo operator. AIMS Mathematics, 2024, 9(11): 31898-31925. doi: 10.3934/math.20241533 |
[5] | M. Mossa Al-Sawalha, Khalil Hadi Hakami, Mohammad Alqudah, Qasem M. Tawhari, Hussain Gissy . Novel Laplace-integrated least square methods for solving the fractional nonlinear damped Burgers' equation. AIMS Mathematics, 2025, 10(3): 7099-7126. doi: 10.3934/math.2025324 |
[6] | Aslı Alkan, Halil Anaç . The novel numerical solutions for time-fractional Fornberg-Whitham equation by using fractional natural transform decomposition method. AIMS Mathematics, 2024, 9(9): 25333-25359. doi: 10.3934/math.20241237 |
[7] | Reetika Chawla, Komal Deswal, Devendra Kumar, Dumitru Baleanu . A novel finite difference based numerical approach for Modified Atangana- Baleanu Caputo derivative. AIMS Mathematics, 2022, 7(9): 17252-17268. doi: 10.3934/math.2022950 |
[8] | Emad Salah, Ahmad Qazza, Rania Saadeh, Ahmad El-Ajou . A hybrid analytical technique for solving multi-dimensional time-fractional Navier-Stokes system. AIMS Mathematics, 2023, 8(1): 1713-1736. doi: 10.3934/math.2023088 |
[9] | Qasem M. Tawhari . Advanced analytical techniques for fractional Schrödinger and Korteweg-de Vries equations. AIMS Mathematics, 2025, 10(5): 11708-11731. doi: 10.3934/math.2025530 |
[10] | Ritu Agarwal, Mahaveer Prasad Yadav, Dumitru Baleanu, S. D. Purohit . Existence and uniqueness of miscible flow equation through porous media with a non singular fractional derivative. AIMS Mathematics, 2020, 5(2): 1062-1073. doi: 10.3934/math.2020074 |
In many theories and applications with uncertainty, using intervals to characterize uncertainty is simple and operable. It is crucial to choose a proper order for an interval method. In general, a total order is superior to a partial order for those applications in which we have to make a final decision. Motivated by this idea, we generalized interval-valued monotone comparative statics (MCS) with a partial order to interval-valued MCS with a total order, to be more precise, with an admissible order. The generalization was not trival. We obtained a necessary and sufficient condition for MCS by a series of new concepts such as an interval-valued quasi-super-modular function and an interval-valued single crossing property with an admissible order. The same condition was only sufficient in the existing literature. Furthermore, we illustrated the efficiency of the interval-valued MCS with the lexicographical orders and XY-order, which are well-known admissible orders. Finally, we applied our results in interval games with strategic complements to get the monotonity of the best response correspondence for player i.
The purpose of this paper is to study the global behavior of the following max-type system of difference equations of the second order with four variables and period-two parameters
{xn=max{An,zn−1yn−2},yn=max{Bn,wn−1xn−2},zn=max{Cn,xn−1wn−2},wn=max{Dn,yn−1zn−2}, n∈N0≡{0,1,2,⋯}, | (1.1) |
where An,Bn,Cn,Dn∈R+≡(0,+∞) are periodic sequences with period 2 and the initial values x−i,y−i,z−i,w−i∈R+ (1≤i≤2). To do this we will use some methods and ideas which stems from [1,2]. For a more complex variant of the method, see [3]. A solution {(xn,yn,zn,wn)}+∞n=−2 of (1.1) is called an eventually periodic solution with period T if there exists m∈N such that (xn,yn,zn,wn)=(xn+T,yn+T,zn+T,wn+T) holds for all n≥m.
When xn=yn and zn=wn and A0=A1=B0=B1=α and C0=C1=D0=D1=β, (1.1) reduces to following max-type system of difference equations
{xn=max{α,zn−1xn−2},zn=max{β,xn−1zn−2}, n∈N0. | (1.2) |
Fotiades and Papaschinopoulos in [4] investigated the global behavior of (1.2) and showed that every positive solution of (1.2) is eventually periodic.
When xn=zn and yn=wn and An=Cn and Bn=Dn, (1.1) reduces to following max-type system of difference equations
{xn=max{An,yn−1xn−2},yn=max{Bn,xn−1yn−2}, n∈N0. | (1.3) |
Su et al. in [5] investigated the periodicity of (1.3) and showed that every solution of (1.3) is eventually periodic.
In 2020, Su et al. [6] studied the global behavior of positive solutions of the following max-type system of difference equations
{xn=max{A,yn−txn−s},yn=max{B,xn−tyn−s}, n∈N0, |
where A,B∈R+.
In 2015, Yazlik et al. [7] studied the periodicity of positive solutions of the max-type system of difference equations
{xn=max{1xn−1,min{1,pyn−1}},yn=max{1yn−1,min{1,pxn−1}}, n∈N0, | (1.4) |
where p∈R+ and obtained in an elegant way the general solution of (1.4).
In 2016, Sun and Xi [8], inspired by the research in [5], studied the following more general system
{xn=max{1xn−m,min{1,pyn−r}},yn=max{1yn−m,min{1,qxn−t}}, n∈N0, | (1.5) |
where p,q∈R+, m,r,t∈N≡{1,2,⋯} and the initial conditions x−i,y−i∈R+ (1≤i≤s) with s=max{m,r,t} and showed that every positive solution of (1.5) is eventually periodic with period 2m.
In [9], Stević studied the boundedness character and global attractivity of the following symmetric max-type system of difference equations
{xn=max{B,ypn−1xpn−2},yn=max{B,xpn−1ypn−2}, n∈N0, |
where B,p∈R+ and the initial conditions x−i,y−i∈R+ (1≤i≤2).
In 2014, motivated by results in [9], Stević [10] further study the behavior of the following max-type system of difference equations
{xn=max{B,ypn−1zpn−2},yn=max{B,zpn−1xpn−2},zn=max{B,xpn−1ypn−2}. n∈N0, | (1.6) |
where B,p∈R+ and the initial conditions x−i,y−i,z−i∈R+ (1≤i≤2), and showed that system (1.6) is permanent when p∈(0,4).
For more many results for global behavior, eventual periodicity and the boundedness character of positive solutions of max-type difference equations and systems, please readers refer to [11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30] and the related references therein.
In this section, we study the global behavior of system (1.1). For any n≥−1, write
{x2n=A2nXn,y2n=B2nYn,z2n=C2nZn,w2n=D2nWn,x2n+1=A2n+1X′n,y2n+1=B2n+1Y′n,z2n+1=C2n+1Z′n,w2n+1=D2n+1W′n. |
Then, (1.1) reduces to the following system
{Xn=max{1,C2n−1Z′n−1A2nB2nYn−1},Yn=max{1,D2n−1W′n−1B2nA2nXn−1},Z′n=max{1,A2nXnC2n+1D2n+1W′n−1},W′n=max{1,B2nYnD2n+1C2n+1Z′n−1},Zn=max{1,A2n−1X′n−1C2nD2nWn−1},Wn=max{1,B2n−1Y′n−1D2nC2nZn−1},X′n=max{1,C2nZnA2n+1B2n+1Y′n−1},Y′n=max{1,D2nWnB2n+1A2n+1X′n−1}, n∈N0. | (2.1) |
From (2.1) we see that it suffices to consider the global behavior of positive solutions of the following system
{un=max{1,bvn−1aAUn−1},Un=max{1,BVn−1aAun−1},vn=max{1,aunbBVn−1},Vn=max{1,AUnbBvn−1}, n∈N0, | (2.2) |
where a,b,A,B∈R+, the initial conditions u−1,U−1,v−1,V−1∈R+. If (un,Un,vn,Vn,a,A,b,B)=(Xn,Yn,Z′n,W′n,A2n,B2n,C2n−1,D2n−1), then (2.2) is the first four equations of (2.1). If (un,Un,vn,Vn,a,A,b,B)=(Zn,Wn,X′n,Y′n,C2n,D2n,A2n−1,B2n−1), then (2.2) is the next four equations of (2.1). In the following without loss of generality we assume a≤A and b≤B. Let {(un,Un,vn,Vn)}∞n=−1 be a positive solution of (2.2).
Proposition 2.1. If ab<1, then there exists a solution {(un,Un,vn,Vn)}∞n=−1 of (2.2) such that un=vn=1 for any n≥−1 and limn⟶∞Un=limn⟶∞Vn=∞.
Proof. Let u−1=v−1=1 and U−1=V−1=max{baA,aAB,abB}+1. Then, from (2.2) we have
{u0=max{1,bv−1aAU−1}=1,U0=max{1,BV−1aAu−1}=BV−1aA,v0=max{1,au0bBV−1}=1,V0=max{1,AU0bBv−1}=V−1ab, |
and
{u1=max{1,bv0aAU0}=max{1,bBV−1}=1,U1=max{1,BV0aAu0}=max{1,BV−1aAab}=BV−1aAab,v1=max{1,au1bBV0}=max{1,aabbBV−1}=1,V1=max{1,AU1bBv0}=max{1,V−1(ab)2}=V−1(ab)2. |
Suppose that for some k∈N, we have
{uk=1,Uk=BV−1aA(ab)k,vk=1,Vk=V−1(ab)k+1. |
Then,
{uk+1=max{1,bvkaAUk}=max{1,b(ab)kBV−1}=1,Uk+1=max{1,BVkaAuk}=max{1,BV−1aA(ab)k+1}=BV−1aA(ab)k+1,vk+1=max{1,auk+1bBVk}=max{1,a(ab)k+1bBV−1}=1,Vk+1=max{1,AUk+1bBvk}=max{1,V−1(ab)k+2}=V−1(ab)k+2. |
By mathematical induction, we can obtain the conclusion of Proposition 2.1. The proof is complete.
Now, we assume that ab≥1. Then, from (2.2) it follows that
{un=max{1,bvn−1aAUn−1},Un=max{1,BVn−1aAun−1},vn=max{1,abBVn−1,vn−1ABUn−1Vn−1},Vn=max{1,AbBvn−1,Vn−1abun−1vn−1}, n∈N0. | (2.3) |
Lemma 2.1. The following statements hold:
(1) For any n∈N0,
un, Un, vn, Vn∈[1,+∞). | (2.4) |
(2) If ab≥1, then for any k∈N and n≥k+2,
{un=max{1,baAUn−1,bvkaA(AB)n−k−1Un−1Un−2Vn−2⋯UkVk},Un=max{1,BaAun−1,BVkaA(ab)n−k−1un−1un−2vn−2⋯ukvk},vn=max{1,abBVn−1,vk(AB)n−kUn−1Vn−1⋯UkVk},Vn=max{1,AbBvn−1,Vk(ab)n−kun−1vn−1⋯ukvk}. | (2.5) |
(3) If ab≥1, then for any k∈N and n≥k+4,
{1≤vn≤vn−2,1≤Vn≤AaVn−2,1≤un≤max{1,bBun−2,bvkaA(AB)n−k−1},1≤Un≤max{1,BbUn−2,BVkaA(ab)n−k−1}. | (2.6) |
Proof. (1) It follows from (2.2).
(2) Since AB≥ab≥1, it follows from (2.2) and (2.3) that for any k∈N and n≥k+2,
un=max{1,bvn−1aAUn−1}=max{1,baAUn−1max{1,abBVn−2,vn−2ABUn−2Vn−2}}=max{1,baAUn−1,bvn−2ABaAUn−1Un−2Vn−2}=max{1,baAUn−1,bABaAUn−1Un−2Vn−2max{1,abBVn−1,vn−3ABUn−3Vn−3}}=max{1,baAUn−1,bvn−3(AB)2aAUn−1Un−2Vn−2Un−3Vn−3}⋯=max{1,baAUn−1,bvkaA(AB)n−k−1Un−1Un−2Vn−2⋯UkVk}. |
In a similar way, also we can obtain the other three formulas.
(3) By (2.5) one has that for any k∈N and n≥k+2,
{un≥baAUn−1,Un≥BaAun−1,vn≥abBVn−1,Vn≥AbBvn−1, |
from which and (2.4) it follows that for any n≥k+4,
{1≤un≤max{1,bBun−2,bvkaA(AB)n−k−1},1≤Un≤max{1,BbUn−2,BVkaA(ab)n−k−1},1≤vn≤max{1,avn−2A,vn−2}=vn−2,1≤Vn≤max{1,AVn−2a,Vn−2}=AVn−2a. |
The proof is complete.
Proposition 2.2. If ab=AB=1, then {(un,Un,vn,Vn)}+∞n=−1 is eventually periodic with period 2.
Proof. By the assumption we see a=A and b=B. By (2.5) we see that for any k∈N and n≥k+2,
{un=max{1,b3Un−1,b3vkUn−1Un−2Vn−2⋯UkVk},Un=max{1,b3un−1,b3Vkun−1un−2vn−2⋯ukvk},vn=max{1,a3Vn−1,vkUn−1Vn−1⋯UkVk},Vn=max{1,a3vn−1,Vkun−1vn−1⋯ukvk}. | (2.7) |
(1) If a=b=1, then it follows from (2.7) and (2.4) that for any n≥k+4,
{un=max{1,vkUn−1Un−2Vn−2⋯UkVk}≤max{1,vkUn−2Un−3Vn−3⋯UkVk}=un−1,Un=max{1,Vkun−1un−2vn−2⋯ukvk}≤Un−1,vn=max{1,vkUn−1Vn−1⋯UkVk}≤vn−1,Vn=max{1,Vkun−1vn−1⋯ukvk}≤Vn−1. | (2.8) |
We claim that vn=1 for any n≥6 or Vn=1 for any n≥6. Indeed, if vn>1 for some n≥6 and Vm>1 for some m≥6, then
vn=v1Un−1Vn−1⋯U1V1>1, Vm=V1um−1vm−1⋯u1v1>1, |
which implies
1≥v1Un−1Vn−1⋯U1V1V1um−1vm−1⋯u1v1=Vmvn>1. |
A contradiction.
If vn=1 for any n≥6, then by (2.8) we see un=1 for any n≥10, which implies Un=Vn=V10.
If Vn=1 for any n≥6, then by (2.8) we see Un=1 for any n≥10, which implies vn=un=v10.
Then, {(un,Un,vn,Vn)}+∞n=−1 is eventually periodic with period 2.
(2) If a<1<b, then it follows from (2.7) that for any n≥k+4,
{un=max{1,b3Un−1,b3vkUn−1Un−2Vn−2⋯UkVk},Un=max{1,b3un−1,b3Vkun−1un−2vn−2⋯ukvk},vn=max{1,vkUn−1Vn−1⋯UkVk}≤vn−1,Vn=max{1,Vkun−1vn−1⋯ukvk}≤Vn−1. | (2.9) |
It is easy to verify vn=1 for any n≥6 or Vn=1 for any n≥6.
If Vn=vn=1 eventually, then by (2.9) we have
{1≥vkUn−1Vn−1⋯UkVk eventually,1≥Vkun−1vn−1⋯ukvk eventually. |
Since Un≥b3un−1 and un≥b3Un−1, we see
{un=max{1,b3Un−1,b3vkUn−1Un−2Vn−2⋯UkVk}=max{1,b3Un−1}≤un−2 eventually,Un=max{1,b3un−1,b3Vkun−1un−2vn−2⋯ukvk}=max{1,b3un−1}≤Un−2 eventually, |
which implies
{un−2≥un=max{1,b3Un−1}≥max{1,b3Un−3}=un−2 eventually,Un−2≥Un=max{1,b3un−1}≥max{1,b3un−3}=Un−2 eventually. |
If Vn>1=vn eventually, then by (2.9) we have
{1≥vkUn−1Vn−1⋯UkVk eventually,Vn=Vkun−1vn−1⋯ukvk>1 eventually. |
Thus,
{un=max{1,b3Un−1,b3vkUn−1Un−2Vn−2⋯UkVk}=max{1,b3Un−1}≤un−2 eventually,Un=max{1,b3un−1,b3Vkun−1un−2vn−2⋯ukvk}=max{1,b3Vkun−1un−2vn−2⋯ukvk}≤Un−2 eventually, |
which implies
{un−2≥un=max{1,b3Un−1}≥max{1,b3Un−3}=un−2 eventually,Un=1 eventually or b3Vk eventually. |
If Vn=1<vn eventually, then by (2.9) we have Un−2=Un eventually and un=un−1 eventually. By the above we see that {(un,Un,vn,Vn)}+∞n=−1 is eventually periodic with period 2.
(3) If b<1<a, then for any k∈N and n≥k+2,
{un=max{1,b3vkUn−1Un−2Vn−2⋯UkVk}≤un−1,Un=max{1,b3Vkun−1un−2vn−2⋯ukvk}≤Un−1,vn=max{1,a3Vn−1,vkUn−1Vn−1⋯UkVk},Vn=max{1,a3vn−1,Vkun−1vn−1⋯ukvk}. | (2.10) |
It is easy to verify un=1 for any n≥3 or Un=1 for any n≥3.
If un=Un=1 eventually, then
{1≥b3vkUn−1Un−2Vn−2⋯UkVk eventually,1≥b3Vkun−1un−2vn−2⋯ukvk eventually. |
Thus, by (2.6) we have
{vn−2≥vn=max{1,a3Vn−1,vkUn−1Vn−1⋯UkVk}=max{1,a3Vn−1}≥vn−2 eventually,Vn−2≥Vn=max{1,a3vn−1,Vkun−1vn−1⋯ukvk}=max{1,a3vn−1}≥Vn−2 eventually. |
If un=1<Un eventually, then
{1≥b3vkUn−1Un−2Vn−2⋯UkVk eventually,1<b3Vkun−1un−2vn−2⋯ukvk=Un eventually. |
Thus,
{vn−2≥vn=max{1,a3Vn−1,vkUn−1Vn−1⋯UkVk}=max{1,a3Vn−1}≥vn−2 eventually,Vn=max{1,a3vn−1,Vkun−1vn−1⋯ukvk}=max{1,Vkun−1vn−1⋯ukvk}=1 eventually or Vk eventually. |
If un>1=Un eventually, then we have Vn=Vn−2 eventually and vn=1 eventually or vn=vk eventually.
By the above we see that {(un,Un,vn,Vn)}+∞n=−1 is eventually periodic with period 2.
Proposition 2.3. If ab=1<AB, then {(un,Un,vn,Vn)}+∞n=−1 is eventually periodic with period 2.
Proof. Note that Un≥BaAun−1 and Vn≥AbBvn−1. By (2.5) we see that there exists N∈N such that for any n≥N,
{un=max{1,b2AUn−1}≤un−2,Un=max{1,BaAun−1,BVkaAun−1un−2vn−2⋯ukvk},vn=max{1,a2BVn−1}≤vn−2,Vn=max{1,AbBvn−1,Vkun−1vn−1⋯ukvk}. | (2.11) |
It is easy to verify that un=1 for any n≥N+1 or vn=1 for any n≥N+1.
If un=vn=1 eventually, then by (2.11) we see that Un=Un−1 eventually and Vn=Vn−1 eventually.
If uM+2n>1=vn eventually for some M∈N, then by (2.11) and (2.4) we see that
{uM+2n=b2AUM+2n−1>1 eventually,UM+2n+1=max{1,BbUM+2n−1,BVkaAuM+2nuM+2n−1vM+2n−1⋯ukvk}≥BbUM+2n−1 eventually,vn=max{1,a2BVn−1}=1 eventually,Vn=max{1,AbBvn−1,Vkun−1vn−1⋯ukvk}≤Vn−1 eventually. |
By (2.11) we see that Un is bounded, which implies B=b.
If UM+2n−1≤BVkaAuM+2nuM+2n−1vM+2n−1⋯ukvk eventually, then
UM+2n+1=BVkaAuM+2nuM+2n−1vM+2n−1⋯ukvk≤UM+2n−1 eventually. |
Thus, UM+2n+1=UM+2n−1 eventually and uM+2n=uM+2n−2 eventually. Otherwise, we have UM+2n+1=UM+2n−1 eventually and uM+2n=uM+2n−2 eventually. Thus, Vn=Vn−1=max{1,AbB} eventually since limn⟶∞Vkun−1vn−1⋯ukvk=0. By (2.2) it follows UM+2n=UM+2n−2 eventually and uM+2n+1=uM+2n−1 eventually.
If vM+2n>1=un eventually for some M∈N, then we may show that {(un,Un,vn,Vn)}+∞n=−1 is eventually periodic with period 2. The proof is complete.
Proposition 2.4. If ab>1, then {(un,Un,vn,Vn)}+∞n=−1 is eventually periodic with period 2.
Proof. By (2.5) we see that there exists N∈N such that for any n≥N,
{un=max{1,baAUn−1},Un=max{1,BaAun−1},vn=max{1,abBVn−1},Vn=max{1,AbBvn−1}. | (2.12) |
If a<A, then for n≥2k+N with k∈N,
vn=max{1,abBVn−1}≤max{1,aAvn−2}≤⋯≤max{1,(aA)kvn−2k}, |
which implies vn=1 eventually and Vn=max{1,AbB} eventually.
If a=A, then
{vn=max{1,abBVn−1}≤vn−2 eventually,Vn=max{1,AbBvn−1}≤Vn−2 eventually. |
Which implies
{vn−2≥vn=max{1,abBVn−1}≥max{1,abBVn−3}=vn−2 eventually,Vn−2≥Vn=max{1,AbBvn−1}≥max{1,AbBvn−3}=Vn−2 eventually. |
Thus, Vn,vn are eventually periodic with period 2. In a similar way, we also may show that Un,un are eventually periodic with period 2. The proof is complete.
From (2.1), (2.2), Proposition 2.1, Proposition 2.2, Proposition 2.3 and Proposition 2.4 one has the following theorem.
Theorem 2.1. (1) If min{A0C1,B0D1,A1C0,B1D0}<1, then system (1.1) has unbounded solutions.
(2) If min{A0C1,B0D1,A1C0,B1D0}≥1, then every solution of system (1.1) is eventually periodic with period 4.
In this paper, we study the eventual periodicity of max-type system of difference equations of the second order with four variables and period-two parameters (1.1) and obtain characteristic conditions of the coefficients under which every positive solution of (1.1) is eventually periodic or not. For further research, we plan to study the eventual periodicity of more general max-type system of difference equations by the proof methods used in this paper.
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
Project supported by NSF of Guangxi (2022GXNSFAA035552) and Guangxi First-class Discipline SCPF(2022SXZD01, 2022SXYB07) and Guangxi Key Laboratory BDFE(FED2204) and Guangxi University of Finance and Economics LSEICIC(2022YB12).
There are no conflict of interest in this article.
[1] |
T. M. Costa, Y. Chalco-Cano, R. Osuna-Gomez, W. A. Lodwich, Interval order relationships based on automorphisms and their application to interval optimization, Inform. Sciences, 615 (2022), 731-742. https://doi.org/10.1016/j.ins.2022.10.020 doi: 10.1016/j.ins.2022.10.020
![]() |
[2] |
T. S. Du, T. C. Zhou, On the fractional double integral inclusion relations having exponential kernels via interval-valued co-ordinated convex mappings, Chaos Soliton. Fract., 156 (2022), 111846. https://doi.org/10.1016/j.chaos.2022.111846 doi: 10.1016/j.chaos.2022.111846
![]() |
[3] |
Y. T. Liu, D. Y. Xue, Y. Yang, Two types of conformable fractional grey interval models and their applications in regional eletricity consumption prediction, Chaos Soliton. Fract., 153 (2021), 111628. https://doi.org/10.1016/j.chaos.2021.111628 doi: 10.1016/j.chaos.2021.111628
![]() |
[4] |
J. Ye, Y. Li, Z. Z. Ma, P. P. Xiong, Novel weight-adaptive fusion grey prediction model based on interval sequences and its applications, Appl. Math. Model., 115 (2023), 803-818. https://doi.org/10.1016/j.apm.2022.11.014 doi: 10.1016/j.apm.2022.11.014
![]() |
[5] |
L. F. Li, Q. J. Luo, Interval-valued quasisupermodular function and monotone comparativ statics, Fuzzy Set. Syst., 476 (2024), 108772. https://doi.org/10.1016/j.fss.2023.108772 doi: 10.1016/j.fss.2023.108772
![]() |
[6] |
Z. S. Xu, R. R. Yager, Some geometric aggregation operators based on intuitionistic fuzzy sets, Int. J. Gen. Syst., 35 (2006), 417-433. https://doi.org/10.1080/03081070600574353 doi: 10.1080/03081070600574353
![]() |
[7] |
H. Bustince, J. Fernandez, A. Kolesárová, R. Mesiar, Generation of linear orders for intervals by means of aggregation functions, Fuzzy Set. Syst., 220 (2013), 69-77. https://doi.org/10.1016/j.fss.2012.07.015 doi: 10.1016/j.fss.2012.07.015
![]() |
[8] |
H. Bustince, M. Galar, B. Bedregal, A. Kolesárová, R. Mesiar, A new approach to interval-valued Choquet integrals and the problem of ordering in interval-valued fuzzy set applications, IEEE T. Fuzzy Syst., 21 (2013), 1150-1162. https://doi.org/10.1109/TFUZZ.2013.2265090 doi: 10.1109/TFUZZ.2013.2265090
![]() |
[9] |
L. De Miguel, H. Bustince, J. Fernandez, E. Induráin, A. Kolesárová, R. Mesiar, Construction of admissible linear orders for interval-valued Atanassov intuitionistic fuzzy sets with an application to decision making, Inform. Fusion, 27 (2016), 189-197. https://doi.org/10.1016/j.inffus.2015.03.004 doi: 10.1016/j.inffus.2015.03.004
![]() |
[10] |
L. De Miguel, M. Sesma-Sara, M. Elkano, M. Asiain, H. Bustince, An algorithm for group decision making using n-dimensional fuzzy sets, admissible orders and OWA operators, Inform. Fusion, 37 (2017), 126-131. https://doi.org/10.1016/j.inffus.2017.01.007 doi: 10.1016/j.inffus.2017.01.007
![]() |
[11] |
F. Santana, B. Bedregal, P. Viana, H. Bustince, On admissible orders over closed subintervals of [0, 1], Fuzzy Set. Syst., 399 (2020), 44-54. https://doi.org/10.1016/j.fss.2020.02.009 doi: 10.1016/j.fss.2020.02.009
![]() |
[12] |
H. Bustince, C. Marco-Detchart, J. Fernandez, C. Wagner, J. M. Garibaldi, Z. Takácˇ, Similarity between interval-valued fuzzy sets taking into account the width of the intervals and admissible orders, Fuzzy Set. Syst., 390 (2020), 23-47. https://doi.org/10.1016/j.fss.2019.04.002 doi: 10.1016/j.fss.2019.04.002
![]() |
[13] |
J. V. Riera, S. Massanet, H. Bustince, J. Fernandez, On admissible orders on the set of discrete fuzzy numbers for application in decision making problems, Mathematics, 9 (2021), 95. https://doi.org/10.3390/math9010095 doi: 10.3390/math9010095
![]() |
[14] |
N. Zumelzu, B. Bedregal, E. Mansilla, H. Bustince, R. Díaz, Admissible orders on fuzzy numbers, IEEE T. Fuzzy Syst., 30 (2022), 4788-4799. https://doi.org/10.1109/TFUZZ.2022.3160326 doi: 10.1109/TFUZZ.2022.3160326
![]() |
[15] |
D. C. Li, Y. Leung, W. Z. Wu, Multiobjective interval linear programming in admissible-order vector space, Inform. Sciences, 486 (2019), 1-19. https://doi.org/10.1016/j.ins.2019.02.012 doi: 10.1016/j.ins.2019.02.012
![]() |
[16] |
L. F. Li, Optimality conditions for nonlinear optimization problems with interval-valued objective function in admissible orders, Fuzzy Optim. Decis. Making, 22 (2022), 247-265. https://doi.org/10.1007/s10700-022-09391-2 doi: 10.1007/s10700-022-09391-2
![]() |
[17] |
U. Bentkowska, H. Bustince, A. Jurio, M. Pagola, B. Pekala, Decision making with an interval-valued fuzzy preference relation and admissible orders, Appl. Soft Comput., 35 (2015), 792-801. https://doi.org/10.1016/j.asoc.2015.03.012 doi: 10.1016/j.asoc.2015.03.012
![]() |
[18] |
P. D. Liu, Y. Y. Li, P. Wang, Social trust-driven consensus reaching model for multiattribute group decision making: Exploring social trust network completeness, IEEE T. Fuzzy Syst., 31 (2023), 3040-3054. https://doi.org/10.1109/TFUZZ.2023.3241145 doi: 10.1109/TFUZZ.2023.3241145
![]() |
[19] |
P. D. Liu, Y. Li, X. H. Zhang, W. Pedrycz, A multiattribute group decision-making method with probabilistic linguistic information based on an adaptive consensus reaching model and evidential reasoning, IEEE T. Cybern., 53 (2023), 1905-1919. https://doi.org/10.1109/TCYB.2022.3165030 doi: 10.1109/TCYB.2022.3165030
![]() |
[20] |
J. Derrac, F. Chiclana, S. García, F. Herrera, Evolutionary fuzzy k-nearest neighbors algorithm using interval-valued fuzzy sets, Inform. Sciences, 329 (2016), 144-163. https://doi.org/10.1016/j.ins.2015.09.007 doi: 10.1016/j.ins.2015.09.007
![]() |
[21] |
S. Zeraatkar, F. Afsari, Interval-valued fuzzy and intuitionistic fuzzy-KNN for imbalanced data classification, Expert Syst. Appl., 184 (2021), 115510. https://doi.org/10.1016/j.eswa.2021.115510 doi: 10.1016/j.eswa.2021.115510
![]() |
[22] |
T. da Cruz Asmus, J. A. Sanz, G. P. Dimuro, B. Bedregal, J. Fernández, H. Bustince, N-dimensional admissibly ordered interval-valued overlap functions and its influence in interval-valued fuzzy-rule-based classification systems, IEEE T. Fuzzy Syst., 30 (2022), 1060-1072. https://doi.org/10.1109/TFUZZ.2021.3052342 doi: 10.1109/TFUZZ.2021.3052342
![]() |
[23] |
X. X. Wu, H. Tang, Z. Y. Zhu, L. T. Liu, G. R. Chen, M. S. Yang, Nonlinear strict distance and similarity measures for intuitionistic fuzzy sets with applications to pattern classification and medical diagnosis, Sci. Rep., 13 (2023), 13918. https://doi.org/10.1038/s41598-023-40817-y doi: 10.1038/s41598-023-40817-y
![]() |
[24] | M. Pagola, A. Jurio, E. Barrenechea, J. Fernández, H. Bustince, Interval-valued fuzzy clustering, In: Proceedings of the 2015 Conference of the International Fuzzy Systems Association and the European Society for Fuzzy Logic and Technology, 2015, 1288-1294. https://doi.org/10.2991/ifsa-eusflat-15.2015.182 |
[25] | P. Sussner, L. C. Carazas, An approach towards image edge detection based on interval-valued fuzzy mathematical morphology and admissible orders, In: Proceedings of the 11th Conference of the European, Society for Fuzzy Logic and Technology, 2019,690-697. https://doi.org/10.2991/eusflat-19.2019.96 |
[26] | P. Milgrom, C. Shannon, Monotone comparative statics, Econometrica, 62 (1994), 157-180. |
[27] |
D. M. Topkis, Minimizing a submodular function on a lattice, Oper. Res., 26 (1978), 209-376. https://doi.org/10.1287/opre.26.2.305 doi: 10.1287/opre.26.2.305
![]() |
[28] |
V. Xavier, Nash equilibrium with strategic complementarities, J. Math. Econ., 19 (1990), 305-321. https://doi.org/10.1016/0304-4068(90)90005-T doi: 10.1016/0304-4068(90)90005-T
![]() |
[29] | P. Milgrom, J. Roberts, The economics of modern manufacturing: Technology, strategy, and organization, Am. Econ. Rev., 80 (1990), 511-528. |
[30] | P. Milgrom, J. Roberts, Rationalizability, learning and equilibrium in games with strategic complementarities, Econometrica, 58 (1990), 1255-1277. |
[31] | P. Milgrom, J. Roberts, Comparing equilibria, Am. Econ. Rev., 84 (1994), 441-459. |
[32] |
S. Athey, Monotone comparative statics under uncertainty, Q. J. Econ., 117 (2002), 187-223. https://doi.org/10.1162/003355302753399481 doi: 10.1162/003355302753399481
![]() |
[33] |
B. H. Strulovici, T. A. Weber, Monotone comparative statics: Geometric approach, J. Optim. Theory Appl., 137 (2008), 641-673. https://doi.org/10.1007/s10957-007-9339-1 doi: 10.1007/s10957-007-9339-1
![]() |
[34] |
A. C. Barthel, T. Sabarwal, Directional monotone comparative statics, Econ. Theory, 66 (2018), 557-591. https://doi.org/10.1007/s00199-017-1079-3 doi: 10.1007/s00199-017-1079-3
![]() |
[35] | T. Sabarwal, A unified approach to games with strategic complements and substitutes, In: Monotone games, Chan: Palgrave Pivot, 2021. |
[36] | D. M. Topkis, Supermodularity and complementarity, Princeton: Princeton University Press, 1998. |
[37] |
E. P. Klement, R. Mesiar, E. Pap, Archimax copulas and invariance under transformations, C. R. Math. Acad. Sci. Paris Math., 340 (2005), 755-758. https://doi.org/10.1016/j.crma.2005.04.012 doi: 10.1016/j.crma.2005.04.012
![]() |
[38] |
J. J. Arias-Garcia, B. De Baets, On the lattice structure of the set of supermodular quasi-copulas, Fuzzy Set. Syst., 354 (2019), 74-83. https://doi.org/10.1016/j.fss.2018.03.013 doi: 10.1016/j.fss.2018.03.013
![]() |
[39] |
C. L. Luo, X. Y. Zhou, B. Lev, Core Shapley value, nucleolus and Nash bargaining solution: A survey of recent developments and applications in operations management, Omega, 110 (2022), 102638. https://doi.org/10.1016/j.omega.2022.102638 doi: 10.1016/j.omega.2022.102638
![]() |
[40] | R. Branzei, D. Dimitrov, S. Tijs, Shapely-like values for interval bankruptcy games, Econ. Bull., 3 (2002), 1-8. |
[41] |
A. Chakeri, F. Sheikholeslam, Fuzzy Nash equilibriums in crisp and fuzzy games, IEEE T. Fuzzy Syst., 21 (2013), 171-176. https://doi.org/10.1109/TFUZZ.2012.2203308 doi: 10.1109/TFUZZ.2012.2203308
![]() |
[42] |
J. C. Fígueroa-Garcia, A. Mehra, S. Chandra, Optimal solutions for group matrix games involving interval-valued fuzzy numbers, Fuzzy Sets Syst., 362 (2019), 55-70. https://doi.org/10.1016/j.fss.2018.07.001 doi: 10.1016/j.fss.2018.07.001
![]() |
[43] |
K. R. Liang, D. F. Li, K. W. Li, J. C. Liu, An interval noncooperative-cooperative biform game model based on weighted equal contribution division values, Inform. Sciences, 619 (2023), 172-192. https://doi.org/10.1016/j.ins.2022.11.016 doi: 10.1016/j.ins.2022.11.016
![]() |
[44] |
X. Wang, K. L. Teo, Generalized Nash equilibrium problem over a fuzzy strategy set, Fuzzy Set. Syst., 434 (2022), 172-184. https://doi.org/10.1016/j.fss.2021.06.006 doi: 10.1016/j.fss.2021.06.006
![]() |
[45] |
Q. C. X. Zhang, L. Shu, B. C. Jiang, Moran process in evolutionary game dynamics with interval payoffs and its application, Appl. Math. Comput., 446 (2023), 127875. https://doi.org/10.1016/j.amc.2023.127875 doi: 10.1016/j.amc.2023.127875
![]() |
[46] |
R. Branzei, S. Z. A. Gok, O. Branzei, Cooperative games under interval uncertainty: On the convexity of the interval undominated cores, Cent. Eur. J. Oper. Res., 19 (2011), 523-532. https://doi.org/10.1007/s10100-010-0141-z doi: 10.1007/s10100-010-0141-z
![]() |
[47] | B. A. Davey, H. A. Priestley, Introduction to lattices and order, Cambridge: Cambridge University Press, 2002. |
[48] |
M. Boczek, L. S. Jin, M. Kaluszka, Interval-valued seminormed fuzzy operators based on admissible orders, Inform. Sciences, 574 (2021), 96-110. https://doi.org/10.1016/j.ins.2021.05.065 doi: 10.1016/j.ins.2021.05.065
![]() |
[49] |
P. Sussner, L. C. Carazas, Construction of Kα-orders including admissible ones on classes of discrete intervals, Fuzzy Set. Syst., 480 (2024), 108857. https://doi.org/10.1016/j.fss.2024.108857 doi: 10.1016/j.fss.2024.108857
![]() |
[50] |
L. Stefanini, A generalization of Hukuhara difference and division for interval and fuzzy arithmetic, Fuzzy Set. Syst., 161 (2010), 1564-1584. https://doi.org/10.1016/j.fss.2009.06.009 doi: 10.1016/j.fss.2009.06.009
![]() |
[51] | M. Hukuhara, Intégration des applications measurables dont la valeur est un compact convexe, Funkcialaj Ekvacioj, 10 (1967), 205-223. |
[52] | L. Stefanini, On the generalized LU-fuzzy derivative and fuzzy differential equations, In: Proceedings of the 2007 IEEE International Conference on Fuzzy Systems, 2007,710-715. https://doi.org/10.1109/FUZZY.2007.4295453 |
[53] |
Y. Chalco-Cano, A. Rufian-Lizana, H. Roman-Flores, M. D. Jiménez-Gamero, Calculus for interval-valued functions using generalized Hukuhara derivative and applications, Fuzzy Set. Syst., 219 (2013), 49-67. https://doi.org/10.1016/j.fss.2012.12.004 doi: 10.1016/j.fss.2012.12.004
![]() |
[54] |
L. Stefanini, M. Arana-Jiménez, Karush-Kuhn-Tucker conditions for interval and fuzzy optimization in several variables under total and directional generalized differentiability, Fuzzy Set. Syst., 362 (2019), 1-34. https://doi.org/10.1016/j.fss.2018.04.009 doi: 10.1016/j.fss.2018.04.009
![]() |
[55] |
R. Osuna-Gómez, T. M. Costa, Y. Chalco-Cano, B. Hernández-Jiménez, Quasilinear approximation for interval-valued functions via generalized Hukuhara differentiability, Comp. Appl. Math., 41 (2022), 149. https://doi.org/10.1007/s40314-021-01746-6 doi: 10.1007/s40314-021-01746-6
![]() |
[56] |
D. Qiu, Y. Yu, Some notes on the switching points for the generalized Hukuhara differentiability of interval-valued functions, Fuzzy Set. Syst., 453 (2023), 115-129. https://doi.org/10.1016/j.fss.2022.04.004 doi: 10.1016/j.fss.2022.04.004
![]() |
[57] |
P. Roy, G. Panda, D. Qiu, Gradient-based descent linesearch to solve interval-valued optimization problems under gH-differentiability with application to finance, J. Comput. Appl. Math., 436 (2024), 115402. https://doi.org/10.1016/j.cam.2023.115402 doi: 10.1016/j.cam.2023.115402
![]() |
[58] |
A. F. Veinott, Representation of general and polyhedral subsemilattices and sublattices of product spaces, Linear Algebra Appl., 114-115 (1989), 681-704. https://doi.org/10.1016/0024-3795(89)90488-6 doi: 10.1016/0024-3795(89)90488-6
![]() |
[59] |
L. Bruttel, M. Bulutay, C. Cornand, F. Heinemann, A. Zylbersztejn, Measuring strategic-uncertainty attitudes, Exp. Econ., 26 (2023), 522-549. https://doi.org/10.1007/s10683-022-09779-2 doi: 10.1007/s10683-022-09779-2
![]() |
[60] |
F. Alvarez, F. Lippi, P. Souganidis, Price setting with strategic complementarities as a mean field game, Econometrica, 91 (2023), 2005-2039. https://doi.org/10.3982/ECTA20797 doi: 10.3982/ECTA20797
![]() |
[61] |
Q. Li, B. Pi, M. Y. Feng, J. Kurths, Open data in the digital economy: An evolutionary game theory perspective, IEEE T. Comput. Soc. Sys., 11 (2024), 3780-3791. https://doi.org/10.1109/TCSS.2023.3324087 doi: 10.1109/TCSS.2023.3324087
![]() |
[62] |
M. Y. Feng, B. Pi, L. J. Deng, J. Kurths, An evolutionary game with the game transitions based on the Markov process, IEEE T. Sys. Man Cy-S., 54 (2024), 609-621. https://doi.org/10.1109/TSMC.2023.3315963 doi: 10.1109/TSMC.2023.3315963
![]() |