Loading [MathJax]/jax/output/SVG/jax.js
Research article

Novel Laplace-integrated least square methods for solving the fractional nonlinear damped Burgers' equation

  • Received: 03 February 2025 Revised: 14 March 2025 Accepted: 21 March 2025 Published: 27 March 2025
  • MSC : 34A08, 35A15, 35A23

  • In this paper, we investigate the fractional damped Burgers' equation using two efficient analytical approaches: the Laplace least squares residual power series method and the Laplace least squares variational iteration method. These techniques integrate the Laplace transform with the least squares residual power series and least squares variational iteration methods, providing highly accurate solutions for nonlinear fractional differential equations. The fractional derivatives are considered in the sense of the Caputo operator, allowing for a more realistic description of physical phenomena with memory effects. Comparative studies with exact and numerical solutions demonstrate the reliability and accuracy of the results. The proposed methodologies provide a powerful framework for solving nonlinear fractional models in fluid dynamics, shock wave theory, and applied sciences.

    Citation: M. Mossa Al-Sawalha, Khalil Hadi Hakami, Mohammad Alqudah, Qasem M. Tawhari, Hussain Gissy. Novel Laplace-integrated least square methods for solving the fractional nonlinear damped Burgers' equation[J]. AIMS Mathematics, 2025, 10(3): 7099-7126. doi: 10.3934/math.2025324

    Related Papers:

    [1] Adel Lachouri, Mohammed S. Abdo, Abdelouaheb Ardjouni, Bahaaeldin Abdalla, Thabet Abdeljawad . On a class of differential inclusions in the frame of generalized Hilfer fractional derivative. AIMS Mathematics, 2022, 7(3): 3477-3493. doi: 10.3934/math.2022193
    [2] Bashir Ahmad, Manal Alnahdi, Sotiris K. Ntouyas, Ahmed Alsaedi . On a mixed nonlinear boundary value problem with the right Caputo fractional derivative and multipoint closed boundary conditions. AIMS Mathematics, 2023, 8(5): 11709-11726. doi: 10.3934/math.2023593
    [3] Weichun Bu, Tianqing An, Guoju Ye, Yating Guo . Nonlocal fractional p()-Kirchhoff systems with variable-order: Two and three solutions. AIMS Mathematics, 2021, 6(12): 13797-13823. doi: 10.3934/math.2021801
    [4] Rabah Khaldi, Assia Guezane-Lakoud . On a generalized Lyapunov inequality for a mixed fractional boundary value problem. AIMS Mathematics, 2019, 4(3): 506-515. doi: 10.3934/math.2019.3.506
    [5] Zhoujin Cui . Primary resonance and feedback control of the fractional Duffing-van der Pol oscillator with quintic nonlinear-restoring force. AIMS Mathematics, 2023, 8(10): 24929-24946. doi: 10.3934/math.20231271
    [6] Fátima Cruz, Ricardo Almeida, Natália Martins . A Pontryagin maximum principle for optimal control problems involving generalized distributional-order derivatives. AIMS Mathematics, 2025, 10(5): 11939-11956. doi: 10.3934/math.2025539
    [7] Subramanian Muthaiah, Dumitru Baleanu, Nandha Gopal Thangaraj . Existence and Hyers-Ulam type stability results for nonlinear coupled system of Caputo-Hadamard type fractional differential equations. AIMS Mathematics, 2021, 6(1): 168-194. doi: 10.3934/math.2021012
    [8] Kishor D. Kucche, Sagar T. Sutar, Kottakkaran Sooppy Nisar . Analysis of nonlinear implicit fractional differential equations with the Atangana-Baleanu derivative via measure of non-compactness. AIMS Mathematics, 2024, 9(10): 27058-27079. doi: 10.3934/math.20241316
    [9] Teng-Fei Shen, Jian-Gen Liu, Xiao-Hui Shen . Existence of solutions for Hadamard fractional nonlocal boundary value problems with mean curvature operator at resonance. AIMS Mathematics, 2024, 9(10): 28895-28905. doi: 10.3934/math.20241402
    [10] Lakhlifa Sadek, Tania A Lazǎr . On Hilfer cotangent fractional derivative and a particular class of fractional problems. AIMS Mathematics, 2023, 8(12): 28334-28352. doi: 10.3934/math.20231450
  • In this paper, we investigate the fractional damped Burgers' equation using two efficient analytical approaches: the Laplace least squares residual power series method and the Laplace least squares variational iteration method. These techniques integrate the Laplace transform with the least squares residual power series and least squares variational iteration methods, providing highly accurate solutions for nonlinear fractional differential equations. The fractional derivatives are considered in the sense of the Caputo operator, allowing for a more realistic description of physical phenomena with memory effects. Comparative studies with exact and numerical solutions demonstrate the reliability and accuracy of the results. The proposed methodologies provide a powerful framework for solving nonlinear fractional models in fluid dynamics, shock wave theory, and applied sciences.



    The linear complexity and the k-error linear complexity are important cryptographic characteristics of stream cipher sequences. The linear complexity of an N-periodic sequence s={su}u=0, denoted by LC(s), is defined as the length of the shortest linear feedback shift register (LFSR) that generates it [1]. With the Berlekamp-Massey (B-M) algorithm [2], if LC(s)N/2, then s is regarded as a good sequence with respect to its linear complexity. For an integer k0, the k-error linear complexity LCk(s) is the smallest linear complexity that can be obtained by changing at most k terms of s in the first period and periodically continued [3]. The cryptographic background of the k-error linear complexity is that some key streams with large linear complexity can be approximated by some sequences with much lower linear complexity [2]. For a sequence to be cryptographically strong, its linear complexity should be large enough, and its k-error linear complexity should be close to the linear complexity.

    The relationship between the linear complexity and the DFT of the sequence was given by Blahut in [4]. Let m be the order of 2 modulo an odd number N. For a primitive N-th root βF2m of unity, the DFT of s is defined by

    ρi=N1u=0suβiu0iN1. (1.1)

    Then

    LC(s)=WH(ρ0,ρ1,,ρN1), (1.2)

    where WH(A) is the hamming weight of the sequence A. The polynomial

    G(X)=N1i=0ρiXiF2m[X] (1.3)

    is called the Mattson-Solomon polynomial (M-S polynomial) of s [5]. It can be deduced from Eqs (1.2)and (1.3) that the linear complexity of s is equal to the number of the nonzero terms of G(X), namely

    LC(s)=|G(X)|. (1.4)

    By the inverse DFT,

    su=N1i=0ρiβiu=G(βu)0uN1. (1.5)

    There are many studies about two-prime generators. In 1997–1998, Ding calculated the linear complexity and the autocorrelation values of binary Whiteman generalized cyclotomic sequences of order two [6,7]. In 2013, Li defined a new generalized cyclotomic sequence of order two of length pq, which is based on Whiteman generalized cyclotomic classes, and calculated its linear complexity [8]. In 2015, Wei determined the k-error linear complexity of Legendre sequences for k=1,2 [9]. In 2018, Hofer and Winterhof studied the 2-adic complexity of the two-prime generator of period pq [10]. Alecu and Sălăgean transformed the optimisation problem of finding the k-error linear complexity of a sequence into an optimisation problem in the DFT domain, by using Blahut's theorem in the same year [11]. In 2019, in terms of the DFT, Chen and Wu discussed the k-error linear complexity for Legendre, Ding-Helleseth-Lam, and Hall's sextic residue sequences of odd prime period p [12]. In 2020, Zhou and Liu presented a type of binary sequences based on a general two-prime generalized cyclotomy, and derived their minimal polynomial and linear complexity [13]. In 2021, the autocorrelation distribution and the 2-adic complexity of generalized cyclotomic binary sequences of order 2 with period pq were determined by Jing [14].

    This paper is organized as follows. Firstly, we present some preliminaries about Whiteman generalized cyclotomic classes and the linear complexity in Section 2. In Section 3, we give main results about the linear complexity of Whiteman generalized cyclotomic sequences of order two. In Section 4, we give the 1-error linear complexity of these sequences. At last, we conclude this paper in Section 5.

    Let p and q be two distinct odd primes with gcd(p1,q1)=2, and N=pq, e=(p1)(q1)/2. By the Chinese Remainder Theorem, there is a fixed common primitive root g of both p and q such that ordN(g)=e. Let x be an integer satisfying

    x=g(modp)x=1(modq).

    Then the set

    Di={gsximodN:s=0,1,,e1}

    for i=0,1 is called a Whiteman generalized cyclotomic class of order two [15].

    As pointed out in [14], the unit group of the ring ZN is

    ZN={a(mod N):gcd(a,N)=1}={ip+jq(mod N):1iq11jp1}.

    Let P={p,2p,,(q1)p}, Q={q,2q,,(p1)q} and R={0}. Then ZN=ZNPQR. The sequence s(a,b,c)={su}u=0 over F2 is defined by

    su={c,if u=0,a,if uP,b,if uQ,12(1(up)(uq)),if uZN,

    where () denotes the Legendre symbol and a,b,cF2 [14].

    Lemma 2.1. [7] 1D1, if |pq|/2 is odd; and 1D0, if |pq|/2 is even.

    Lemma 2.2. [6]

    (1)Ifp±1(mod8),q±1(mod8)orp±3(mod8),q±3(mod8),then2D0.(2)Ifp±1(mod8),q±3(mod8)orp±3(mod8),q±1(mod8),then2D1.

    Lemma 2.3. [6] (1) If aP, then aP=P and aQ=R.

    (2) If aQ, then aP=R and aQ=Q.

    (3) If aDi, then aP=P, aQ=Q, and aDj=D(i+j)mod2, where i,j=0,1.

    It was shown in [6] that, for a primitive N-th root βF2m of unity, we have

    iPβi=1,iQβi=1,

    and

    iD0βi+iD1βi+iPβi+iQβi=1. (2.1)

    Lemma 2.4. [6]

    uDjβiu={p12(mod2),ifiP,q12(mod2),ifiQ.

    Actually, if p1(mod8) or p3(mod8), then (p1)/2=1; if p1(mod8) or p3(mod8), then (p1)/2=0. By symmetry, if q1(mod8) or q3(mod8), then (q1)/2=1; if q1(mod8) or q3(mod8), then (q1)/2=0.

    Lemma 2.5. Define

    Di(X)=uDiXuF2[X],i=0,1.

    Then for β, we have D0(β)=0 and D1(β)=1 if 2D0; D0(β)=ω and D1(β)=1+ω if 2D1, where ωF4F2.

    Proof. (1) If 2D0, by Lemma 2.3 we have

    [Di(β)]2=Di(β2)=2uDiβ2u=Di(β)F2.

    (2) If 2D1, by Lemma 2.3 we have

    [Di(β)]2=Di(β2)=2uDi+1β2u=Di+1(β),[Di(β)]4=[Di(β)2]2=[Di+1(β)]2=Di+1(β2)=2uDiβ2u=Di(β).

    Hence Di(β)F4F2.

    And by Eq (2.1), we have D0(β)D1(β) and D0(β)+D1(β)=1. Assume that D0(β)=0, D1(β)=1 for 2D0, and D0(β)=ω, D1(β)=1+ω for 2D1, where ωF4F2.

    Let LC(s(a,b,c)) be the linear complexity of s(a,b,c), and the other symbols be the same as before.

    Theorem 3.1. Let pv(mod8) and qw(mod8), where v,w=±1,±3. Then the linear complexity of s(a,b,c) respect to different values of p and q is as shown as Table 1.

    Table 1.  The linear complexity of s(a,b,c).
    s(0,0,0) s(0,0,1) s(0,1,0) s(0,1,1) s(1,0,0) s(1,0,1) s(1,1,0)) s(1,1,1)
    (1,3) or (3,1) pqp pqq+1 pq1 pqpq+2 pqpq+1 pq pqq pqp+1
    (1,3) or (3,1) pq1 pqpq+2 pqp pqq+1 pqq pqp+1 pqpq+1 pq
    (1,1) or (3,3) pqp+q12 pq+pq+12 pq+p+q32 pqpq+32 pqpq+12 pq+p+q12 pq+pq12 pqp+q+12
    (1,1) or (3,3) pq+p+q32 pqpq+32 pqp+q12 pq+pq+12 pq+pq12 pqp+q+12 pqpq+12 pq+p+q12
    (3,1) or (1,3) pqq pqp+1 pqpq+1 pq pq1 pqpq+2 pqp pqq+1
    (1,1) or (3,3) pq+pq12 pqp+q+12 pqpq+12 pq+p+q12 pq+p+q32 pqpq+32 pqp+q12 pq+pq+12

     | Show Table
    DownLoad: CSV

    Proof. We provide the process of calculating LC(s(0,0,0)) when v=1 and w=3, and can prove other cases in a similar way.

    By Lemmas 2.1–2.3 and Eq (1.1), we have 1D1, 2D1, then

    ρi=N1u=0suβiu=uD1βiu=uD0βiu,

    and ρ0=0. By Eq (1.3), we have

    G(X)=N1i=0ρiXi=iD0ρiXi+iD1ρiXi+iPρiXi+iQρiXi+ρ0=iD0uD0βiuXi+iD1uD0βiuXi+iPuD0βiuXi+iQuD0βiuXi.

    Let t=iu. Then by Lemmas 2.3–2.5, we have

    G(X)=iD0tD0βtXi+iD1tD1βtXi+iPp12Xi+iQq12Xi=D0(β)D0(X)+D1(β)D1(X)+iPXi=ωD0(X)+(1+ω)D1(X)+iPXi.

    By Eq (1.4) we can get the linear complexity of s(0,0,0) as

    LC(s(0,0,0))=|G(X)|=pqp.

    Actually, the linear complexity of s(1,0,0) was studied by Ding in [6] with its minimal polynomial.

    Let LCk(s(a,b,c)) be the k-error linear complexity of s(a,b,c), ˜s={˜su}u=0 be the new sequence obtained by changing at most k terms of s, that ˜s=s+e, where e={eu}u=0 is an error sequence of period N. Ding has provided in [2] that, the k-error linear complexity of a sequence can be expressed as

    LCk(s)=minWH(e)k{LC(s+e)}. (4.1)

    It is clearly that LC0(s)=LC(s) and

    NLC0(s)LC1(s)LCl(s)=0,

    where l=WH(s).

    Let G(X), Gk(X) and ˜G(X) be the M-S polynomials of s, e and ˜s respectively. Note that

    G(X)=N1i=0ρiXi, Gk(X)=N1i=0ηiXi, ˜G(X)=N1i=0ξiXi, (4.2)

    where ρi, ηi and ξi are the DFTs of s, e and ˜s respectively. By Eqs (1.5), (4.1) and (4.2), we have ˜G(X)=G(X)+Gk(X), then

    ξi=ρi+ηi. (4.3)

    Assume that eu0=1 for 0u0N1 and eu=0 for uu0 in the first period of e. Then the DFT of e is

    ηi=N1u=0euβiu=βiu00iN1.

    Specially, if u0=0, then ηi=1 for all 0iN1; otherwise, η0=1 and the order of ηi is N for 1iN1.

    Theorem 4.1. Let pv(mod8) and qw(mod8), where v,w=±1,±3, and the other symbols be the same as before. Then the 1-error linear complexity of s(a,b,c) is as shown as Table 2.

    Table 2.  The 1-error linear complexity of s(a,b,c).
    s(0,0,0) and s(0,0,1) s(0,1,0) and s(0,1,1) s(1,0,0) and s(1,0,1) s(1,1,0)) and s(1,1,1)
    (1,3) or (3,1) (1) pqp, if p>q;
    (2) pqq+1, if p<q.
    pqpq+2 pqpq+1 (1) pqp+1, if p>q;
    (2) pqq, if p<q.
    (1,3) or (3,1) pqpq+2 (1) pqp, if p>q;
    (2) pqq+1, if p<q.
    (1) pqp+1, if p>q;
    (2) pqq, if p<q.
    pqpq+1
    (1,1) or (3,3) (1) pqp+q12, if p>q;
    (2) pq+pq+12, if p<q.
    pqpq+32 pqpq+12 (1) pqp+q+12, if p>q;
    (2) pq+pq12, if p<q.
    (1,1) or (3,3) pqpq+32 (1) pqp+q12, if p>q;
    (2) pq+pq+12, if p<q.
    (1) pqp+q+12, if p>q;
    (2) pq+pq12, if p<q.
    pqpq+12
    (3,1) or (1,3) (1) pqp+1, if p>q;
    (2) pqq, if p<q.
    pqpq+1 pqpq+2 (1) pqp, if p>q;
    (2) pqq+1, if p<q.
    (1,1) or (3,3) (1) pqp+q+12, if p>q;
    (2) pq+pq12, if p<q.
    pqpq+12 pqpq+32 (1) pqp+q12, if p>q;
    (2) pq+pq+12, if p<q.

     | Show Table
    DownLoad: CSV

    Proof. We consider the case v=1,w=3 for LC1(s(0,0,0)). By Lemmas 2.1–2.5 and Eq (1.1), we have 1D1, 2D1 and

    ξi=ρi+ηi=uD0βiu+βiu0={ω+βiu0,if iD0,1+ω+βiu0,if iD1,1+βiu0,if iP,βiu0,if iQ,1,if i=0.

    Then by Eq (4.2), we can get

    ˜G(X)=N1i=0ξiXi=iD0(ω+βiu0)Xi+iD1(1+ω+βiu0)Xi+iP(1+βiu0)Xi+iQβiu0Xi+1.

    According to Lemma 2.3, we can get the following results.

    (1) If u0=0, then

    ˜G(X)=iD0(ω+1)Xi+iD1ωXi+iQXi+1,|˜G(X)|=pqq+1.

    (2) If u0Q, then

    ˜G(X)=iD0(ω+βiu0)Xi+iD1(1+ω+βiu0)Xi+iQβiu0Xi+1,|˜G(X)|=pqq+1.

    (3) If u0D0 or u0D1 or u0P, then

    ˜G(X)=iD0(ω+βiu0)Xi+iD1(1+ω+βiu0)Xi+iP(1+βiu0)Xi+iQβiu0Xi+1,|˜G(X)|=pq.

    Compare the results of Cases (1)–(3) with LC(s(0,0,0))=pqp. If p>q, then pqp<pqq+1<pq; if p<q, then pqq+1<pqp<pq. Hence

    LC1(s(0,0,0))={pqp,if p>q,pqq+1,if p<q.

    Similarly we can prove the other cases for LC1(s(a,b,c)).

    All results of LC(s(a,b,c)) and LC1(s(a,b,c)) in Sections 3 and 4 have been tested by MAGMA program.

    The purpose of this paper is to determine the linear complexity and the 1-error linear complexity of s(a,b,c). In most of the cases, s(a,b,c) possesses high linear complexity, namely LC(s(a,b,c))>N/2, consequently has decent stability against 1-bit error. Notice that the linear complexity of some of the sequences above is close to N/2. Then the sequences can be selected to construct cyclic codes by their minimal generating polynomials with the method introduced by Ding [16].

    This work was supported by Fundamental Research Funds for the Central Universities (No. 20CX05012A), the Major Scientific and Technological Projects of CNPC under Grant (No. ZD2019-183-008), the National Natural Science Foundation of China (Nos. 61902429, 11775306) and Shandong Provincial Natural Science Foundation of China (ZR2019MF070).

    The authors declare that they have no conflicts of interest.



    [1] C. Ionescu, A. Lopes, D. Copot, J. A. T. Machado, J. H. T. Bates, The role of fractional calculus in modeling biological phenomena: A review, Commun. Nonlinear Sci. Numer. Simul., 51 (2017), 141–159. https://doi.org/10.1016/j.cnsns.2017.04.001 doi: 10.1016/j.cnsns.2017.04.001
    [2] M. Sinan, K. Shah, P. Kumam, I. Mahariq, K. J. Ansari, Z. Ahmad, et al., Fractional order mathematical modeling of typhoid fever disease, Results Phys., 32 (2022), 105044. https://doi.org/10.1016/j.rinp.2021.105044 doi: 10.1016/j.rinp.2021.105044
    [3] S. L. Wu, M. Al-Khaleel, Convergence analysis of the Neumann-Neumann waveform relaxation method for time-fractional RC circuits, Simul. Model. Pract. Theory, 64 (2016), 43–56. https://doi.org/10.1016/j.simpat.2016.01.002 doi: 10.1016/j.simpat.2016.01.002
    [4] Y. Sun, J. Lu, M. Zhu, A. A. Alsolami, Numerical analysis of fractional nonlinear vibrations of a restrained cantilever beam with an intermediate lumped mass, J. Low Freq. Noise, Vibrat. Active Control, 44 (2024), 178–189. https://doi.org/10.1177/14613484241285502 doi: 10.1177/14613484241285502
    [5] S. L. Wu, M. Al-Khaleel, Parameter optimization in waveform relaxation for fractional-order RC circuits, IEEE Trans. Circuits Syst. I: Regular Papers, 64 (2017), 1781–1790. https://doi.org/10.1109/TCSI.2017.2682119 doi: 10.1109/TCSI.2017.2682119
    [6] J. Wang, X. Jiang, X. Yang, H. Zhang, A compact difference scheme for mixed-type time-fractional black-Scholes equation in European option pricing, Math. Meth. Appl. Sci., 48 (2025), 6818–6829. https://doi.org/10.1002/mma.10717 doi: 10.1002/mma.10717
    [7] T. Liu, H. Zhang, X. Yang, The ADI compact difference scheme for three-dimensional integro-partial differential equation with three weakly singular kernels, J. Appl. Math. Comput., 2025. https://doi.org/10.1007/s12190-025-02386-3
    [8] K. Liu, Z. He, H. Zhang, X. Yang, A Crank-Nicolson ADI compact difference scheme for the three-dimensional nonlocal evolution problem with a weakly singular kernel, Comp. Appl. Math., 44 (2025), 164. https://doi.org/10.1007/s40314-025-03125-x doi: 10.1007/s40314-025-03125-x
    [9] Z. Chen, H. Zhang, H. Chen, ADI compact difference scheme for the two-dimensional integro-differential equation with two fractional Riemann-Liouville integral kernels, Fractal Fract., 8 (2024), 707. https://doi.org/10.3390/fractalfract8120707 doi: 10.3390/fractalfract8120707
    [10] X. Yang, W. Wang, Z. Zhou, H. Zhang, An efficient compact difference method for the fourth-order nonlocal subdiffusion problem, Taiwanese J. Math., 29 (2025), 35–66. https://doi.org/10.11650/tjm/240906 doi: 10.11650/tjm/240906
    [11] D. Baleanu, Z. B. Guvenc, J. T. Machado, New trends in nanotechnology and fractional calculus applications, New York: Springer, 2010.
    [12] N. H. Sweilam, M. M. Abou Hasan, D. Baleanu, New studies for general fractional financial models of awareness and trial advertising decisions, Chaos Solit. Fract., 104 (2017), 772–784. https://doi.org/10.1016/j.chaos.2017.09.013 doi: 10.1016/j.chaos.2017.09.013
    [13] D. Baleanu, G. C. Wu, S. D. Zeng, Chaos analysis and asymptotic stability of generalized Caputo fractional differential equations, Chaos Solit. Fract., 102 (2017), 99–105. https://doi.org/10.1016/j.chaos.2017.02.007 doi: 10.1016/j.chaos.2017.02.007
    [14] P. Veeresha, D. G. Prakasha, H. Mehmet Baskonus, New numerical surfaces to the mathematical model of cancer chemotherapy effect in Caputo fractional derivatives, Chaos: Interdiscipl. J. Nonlinear Sci., 29 (2019), 013119. https://doi.org/10.1063/1.5074099 doi: 10.1063/1.5074099
    [15] S. Noor, H. A. Alyousef, A. Shafee, R. Shah, S. A. El-Tantawy, A novel analytical technique for analyzing the (3+ 1)-dimensional fractional calogero-bogoyavlenskii-schiff equation: investigating solitary/shock waves and many others physical phenomena, Phys, Scr., 99 (2024), 065257. https://doi.org/10.1088/1402-4896/ad49d9 doi: 10.1088/1402-4896/ad49d9
    [16] E. F. D. Goufo, Application of the Caputo-Fabrizio fractional derivative without singular kernel to Korteweg-de Vries-Burgers's equation, Math. Model. Anal., 21 (2016), 188–198. https://doi.org/10.3846/13926292.2016.1145607 doi: 10.3846/13926292.2016.1145607
    [17] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Amsterdam: Elsevier, 2006.
    [18] X. Yang, Z. Zhang, Superconvergence analysis of a robust orthogonal Gauss collocation method for 2D fourth-order subdiffusion equations, J. Sci. Comput., 100 (2024), 62. https://doi.org/10.1007/s10915-024-02616-z doi: 10.1007/s10915-024-02616-z
    [19] X. Shen, X. Yang, H. Zhang, The high-order ADI difference method and extrapolation method for solving the two-dimensional nonlinear parabolic evolution equations, Mathematics, 12 (2024), 3469. https://doi.org/10.3390/math12223469 doi: 10.3390/math12223469
    [20] Y. Shi, X. Yang, Z. Zhang, Construction of a new time-space two-grid method and its solution for the generalized Burgers' equation, Appl. Math. Lett., 158 (2024), 109244. https://doi.org/10.1016/j.aml.2024.109244 doi: 10.1016/j.aml.2024.109244
    [21] X. Yang, Z. Zhang, Analysis of a new NFV scheme preserving DMP for two-dimensional sub-diffusion equation on distorted meshes, J. Sci. Comput., 99 (2024), 80. https://doi.org/10.1007/s10915-024-02511-7 doi: 10.1007/s10915-024-02511-7
    [22] X. Yang, Z. Zhang, On conservative, positivity preserving, nonlinear FV scheme on distorted meshes for the multi-term nonlocal Nagumo-type equations, Appl. Math. Lett., 150 (2024), 108972. https://doi.org/10.1016/j.aml.2023.108972 doi: 10.1016/j.aml.2023.108972
    [23] Q. Wang, Homotopy perturbation method for fractional KdV-Burgers's equation, Chaos Solit. Fract., 35 (2008), 843850. https://doi.org/10.1016/j.chaos.2006.05.074 doi: 10.1016/j.chaos.2006.05.074
    [24] S. Anil Sezer, A. Yildırım, S. Tauseef Mohyud-Din, He's homotopy perturbation method for solving the fractional KdV-Burgers's-Kuramoto equation, Int. J. Numer. Meth. Heat Fluid Flow, 21 (2011), 448–458.
    [25] G. C. Wu, D. Baleanu, Variational iteration method for the Burgers's' flow with fractional derivatives-new Lagrange multipliers, Appl. Math. Model., 37 (2013), 6183–6190. https://doi.org/10.1016/j.apm.2012.12.018 doi: 10.1016/j.apm.2012.12.018
    [26] M. Inc, The approximate and exact solutions of the space-and time-fractional Burgers's equations with initial conditions by variational iteration method, J. Math. Anal. Appl., 345 (2008), 476–484. https://doi.org/10.1016/j.jmaa.2008.04.007 doi: 10.1016/j.jmaa.2008.04.007
    [27] A. Esen, N. M. Yagmurlu, O. Tasbozan, Approximate analytical solution to time-fractional damped Burgers' and Cahn-Allen equations, Appl. Math. Inf. Sci., 7 (2013), 1951–1956. http://doi.org/10.12785/amis/070533 doi: 10.12785/amis/070533
    [28] H. Jafari, V. Daftardar-Gejji, Solving linear and nonlinear fractional diffusion and wave equations by Adomian decomposition, Appl. Math. Comput., 180 (2006), 488–497. https://doi.org/10.1016/j.amc.2005.12.031 doi: 10.1016/j.amc.2005.12.031
    [29] J. Lu, Y. Sun, Numerical approaches to time fractional boussinesq-burgers equations, Fractals, 29 (2021), 2150244. https://doi.org/10.1142/S0218348X21502443 doi: 10.1142/S0218348X21502443
    [30] J. Singh, D. Kumar, M. A. Qurashi, Baleanu, Analysis of a new fractional model for damped Bergers' equation, Open Phys., 15 (2017), 35–41. https://doi.org/10.1515/phys-2017-0005 doi: 10.1515/phys-2017-0005
    [31] B. M. Vaganan, M. S. Kumaran, Kummer function solutions of damped Burgers's equations with time-dependent viscosity by exact linearization, Nonlinear Anal.: Real World Appl., 9 (2008), 2222–2233. https://doi.org/10.1016/j.nonrwa.2007.08.001 doi: 10.1016/j.nonrwa.2007.08.001
    [32] W. Malfliet, Approximate solution of the damped Burgers's equation, J. Phys. A: Math. Gen., 26 (1993), L723. https://doi.org/10.1088/0305-4470/26/16/003 doi: 10.1088/0305-4470/26/16/003
    [33] F. Yilmaz, B. Karasozen, Solving optimal control problems for the unsteady Burgers's equation in COMSOL Multiphysics, J. Comput. Appl. Math., 235 (2011), 4839–4850. https://doi.org/10.1016/j.cam.2011.01.002 doi: 10.1016/j.cam.2011.01.002
    [34] P. Rosenau, J. M. Hyman, Compactons: solitons with finite wavelength, Phys. Rev. Lett., 70 (1993), 564. https://doi.org/10.1103/PhysRevLett.70.564 doi: 10.1103/PhysRevLett.70.564
    [35] B. Mihaila, A. Cardenas, F. Cooper, A. Saxena, Stability and dynamical properties of Rosenau-Hyman compactons using Pade approximants, Phys. Rev. E-Stat. Nonlinear Soft Matter Phys., 81 (2010), 056708. https://doi.org/10.1103/PhysRevE.81.056708 doi: 10.1103/PhysRevE.81.056708
    [36] F. Rus, F. R. Villatoro, Self-similar radiation from numerical Rosenau-Hyman compactons, J. Comput. Phys., 227 (2007), 440–454. https://doi.org/10.1016/j.jcp.2007.07.024 doi: 10.1016/j.jcp.2007.07.024
    [37] F. Rus, F. R. Villatoro, Numerical methods based on modified equations for nonlinear evolution equations with compactons, Appl. Math. Comput., 204 (2008), 416–422. https://doi.org/10.1016/j.amc.2008.06.056 doi: 10.1016/j.amc.2008.06.056
    [38] O. S. Iyiola, G. O. Ojo, O. Mmaduabuchi, The fractional Rosenau-Hyman model and its approximate solution, Alex. Eng. J., 55 (2016), 1655–1659. https://doi.org/10.1016/j.aej.2016.02.014 doi: 10.1016/j.aej.2016.02.014
    [39] J. Singh, D. Kumar, R. Swroop, S. Kumar, An efficient computational approach for time-fractional Rosenau-Hyman equation, Neural Comput. Applic., 30 (2018), 3063–3070. https://doi.org/10.1007/s00521-017-2909-8 doi: 10.1007/s00521-017-2909-8
    [40] R. Yulita Molliq, M. S. M. Noorani, Solving the fractional Rosenau-Hyman equation via variational iteration method and homotopy perturbation method, Int. J. Differ. Equ., 2012 (2012), 472030. https://doi.org/10.1155/2012/472030 doi: 10.1155/2012/472030
    [41] M. Senol, O. Tasbozan, A. Kurt, Comparison of two reliable methods to solve fractional Rosenau-Hyman equation, Math. Meth. Appl. Sci., 44 (2021), 7904–7914. https://doi.org/10.1002/mma.5497 doi: 10.1002/mma.5497
    [42] M. Cinar, A. Secer, M. Bayram, An application of Genocchi wavelets for solving the fractional Rosenau-Hyman equation, Alex. Eng. J., 60 (2021), 5331–5340. https://doi.org/10.1016/j.aej.2021.04.037 doi: 10.1016/j.aej.2021.04.037
    [43] S. O. Ajibola, A. S. Oke, W. N. Mutuku, LHAM approach to fractional order Rosenau-Hyman and Burgers' equations, Asian Res. J. Math., 16 (2020), 1–14. https://doi.org/10.9734/ARJOM/2020/v16i630192 doi: 10.9734/ARJOM/2020/v16i630192
    [44] M. Alaroud, Application of Laplace residual power series method for approximate solutions of fractional IVP's, Alex. Eng. J., 61 (2022), 1585–1595. https://doi.org/10.1016/j.aej.2021.06.065 doi: 10.1016/j.aej.2021.06.065
    [45] M. Alquran, M. Ali, M. Alsukhour, I. Jaradat, Promoted residual power series technique with Laplace transform to solve some time-fractional problems arising in physics, Results Phys., 19 (2020), 103667. https://doi.org/10.1016/j.rinp.2020.103667 doi: 10.1016/j.rinp.2020.103667
    [46] H. Aljarrah, M. Alaroud, A. Ishak, M. Darus, Approximate solution of nonlinear time-fractional PDEs by Laplace residual power series method, Mathematics, 10 (2022), 1980. https://doi.org/10.3390/math10121980 doi: 10.3390/math10121980
    [47] A. Shafee, Y. Alkhezi, R. Shah, Efficient solution of fractional system partial differential equations using Laplace residual power series method, Fractal Fract., 7 (2023), 429. https://doi.org/10.3390/fractalfract7060429 doi: 10.3390/fractalfract7060429
    [48] M. N. Oqielat, T. Eriqat, O. Ogilat, A. El-Ajou, S. E. Alhazmi, S. Al-Omari, Laplace-residual power series method for solving time-fractional reaction-diffusion model, Fractal Fract., 7 (2023), 309. https://doi.org/10.3390/fractalfract7040309 doi: 10.3390/fractalfract7040309
    [49] N. Anjum, J. H. He, Laplace transform: making the variational iteration method easier, Appl. Math. Lett., 92 (2019), 134–138. https://doi.org/10.1016/j.aml.2019.01.016 doi: 10.1016/j.aml.2019.01.016
    [50] N. Bildik, A. Konuralp, The use of variational iteration method, differential transform method and Adomian decomposition method for solving different types of nonlinear partial differential equations, Int. J. Nonlinear Sci. Numer. Simul., 7 (2006), 65–70. https://doi.org/10.1515/IJNSNS.2006.7.1.65 doi: 10.1515/IJNSNS.2006.7.1.65
    [51] N. A. Shah, I. Dassios, E. R. El-Zahar, J. D. Chung, S. Taherifar, The variational iteration transform method for solving the time-fractional Fornberg-Whitham equation and comparison with decomposition transform method, Mathematics, 9 (2021), 141. https://doi.org/10.3390/math9020141 doi: 10.3390/math9020141
    [52] S. M. Kenneth, B. Ross, An introduction to the fractional calculus and fractional differential equations, Hoboken: Wiley, 1993.
    [53] R. Almeida, D. F. Torres, Calculus of variations with fractional derivatives and fractional integrals, Appl. Math. Lett., 22 (2009), 1816–1820. https://doi.org/10.1016/j.aml.2009.07.002 doi: 10.1016/j.aml.2009.07.002
    [54] R. Almeida, D. F. Torres, Necessary and sufficient conditions for the fractional calculus of variations with Caputo derivatives, Commun. Nonlinear Sci. Numer. Simul., 16 (2011), 1490–1500. https://doi.org/10.1016/j.cnsns.2010.07.016 doi: 10.1016/j.cnsns.2010.07.016
    [55] O. Agrawal, Fractional variational calculus in terms of Riesz fractional derivatives, J. Phys. A: Math. Theor., 40 (2007), 6287. https://doi.org/10.1088/1751-8113/40/24/003 doi: 10.1088/1751-8113/40/24/003
    [56] R. Kumar, R. Koundal, Generalized least square homotopy perturbations for system of fractional partial differential equations, preprint paper, 2018. https://doi.org/10.48550/arXiv.1805.06650
    [57] A. El-Ajou, Adapting the Laplace transform to create solitary solutions for the nonlinear time-fractional dispersive PDEs via a new approach, Eur. Phys. J. Plus, 136 (2021), 229. https://doi.org/10.1140/epjp/s13360-020-01061-9 doi: 10.1140/epjp/s13360-020-01061-9
    [58] Z. Korpinar, M. Inc, E. Hınçal, D. Baleanu, Residual power series algorithm for fractional cancer tumor models, Alex. Eng. J., 59 (2020), 1405–1412. https://doi.org/10.1016/j.aej.2020.03.044 doi: 10.1016/j.aej.2020.03.044
    [59] J. Zhang, Z. Wei, L. Li, C. Zhou, Least-squares residual power series method for the time-fractional differential equations, Complexity, 2019 (2019), 6159024. https://doi.org/10.1155/2019/6159024 doi: 10.1155/2019/6159024
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(342) PDF downloads(28) Cited by(0)

Figures and Tables

Figures(9)  /  Tables(4)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog