In this paper, we analyze and characterize the set $ \mathcal{A}_T $ which consists of all possible profiles at a fixed time of the entropy solution of the elementary wave interaction problem in a bounded domain for a convex scalar conservation law. The elementary wave interaction problem is the initial and boundary value problem for a scalar conservation law, where the flux is a strictly convex function, and the initial and boundary data are constant functions. In the first main result of the article, we state and prove that $ \mathcal{A}_T $ is a subset of the set of piecewise functions that are constant on each subdomain, or there is a subdomain where the function is strictly increasing. We prove the result by applying the method of characteristics in three steps: the Riemann problem solution, the entropy solution of the interaction of two Riemann problems, and restriction of the entropy solution to the spatial bounded domain. Moreover, we characterize the strictly increasing part of the solution's profile regarding the flux function. In the second result, which is stated as an application of the first result, we introduce the conditions for ill-posedness and local flux identification from the knowledge of the entropy solution's profile.
Citation: Aníbal Coronel, Alex Tello, Fernando Huancas. A characterization of the reachable profiles of entropy solutions for the elementary wave interaction problem of convex scalar conservation laws[J]. AIMS Mathematics, 2025, 10(2): 3124-3159. doi: 10.3934/math.2025145
In this paper, we analyze and characterize the set $ \mathcal{A}_T $ which consists of all possible profiles at a fixed time of the entropy solution of the elementary wave interaction problem in a bounded domain for a convex scalar conservation law. The elementary wave interaction problem is the initial and boundary value problem for a scalar conservation law, where the flux is a strictly convex function, and the initial and boundary data are constant functions. In the first main result of the article, we state and prove that $ \mathcal{A}_T $ is a subset of the set of piecewise functions that are constant on each subdomain, or there is a subdomain where the function is strictly increasing. We prove the result by applying the method of characteristics in three steps: the Riemann problem solution, the entropy solution of the interaction of two Riemann problems, and restriction of the entropy solution to the spatial bounded domain. Moreover, we characterize the strictly increasing part of the solution's profile regarding the flux function. In the second result, which is stated as an application of the first result, we introduce the conditions for ill-posedness and local flux identification from the knowledge of the entropy solution's profile.
| [1] | D. Serre, Systems of conservation laws: A challenge for the XXIst century, In: Mathematics unlimited–2001 and beyond, Berlin, Heidelberg: Springer, 2001, 1061–1080. https://doi.org/10.1007/978-3-642-56478-9_54 |
| [2] |
A. Aw, M. Rascle, Resurrection of "second order" models of traffic flow, SIAM J. Appl. Math., 60 (2000), 916–938. https://doi.org/10.1137/S0036139997332099 doi: 10.1137/S0036139997332099
|
| [3] |
T. Seo, A. M. Bayen, T. Kusakabe, Y. Asakura, Traffic state estimation on highway: A comprehensive survey, Annu. Rev. Control, 43 (2017), 128–151. https://doi.org/10.1016/j.arcontrol.2017.03.005 doi: 10.1016/j.arcontrol.2017.03.005
|
| [4] |
B. L. Keyfitz, H. C. Kranzer, A System of non-strictly hyperbolic conservation laws arising in elasticity theory, Arch. Rational Mech. Anal., 72 (1980), 219–241. https://doi.org/10.1007/BF00281590 doi: 10.1007/BF00281590
|
| [5] |
Y. Wang, C. Y. Kao, Central schemes for the modified Buckley–Leverett equation, J. Comput. Sci., 4 (2013), 12–23. https://doi.org/10.1016/j.jocs.2012.02.001 doi: 10.1016/j.jocs.2012.02.001
|
| [6] | G. B. Whitham, Linear and nonlinear waves, New York: Wiley, 1999. http://doi.org/10.1002/9781118032954 |
| [7] | B. Perthame, Transport equations in biology, Basel: Birkhäuser, 2007. https://doi.org/10.1007/978-3-7643-7842-4 |
| [8] |
A. Friedman, Conservation laws in mathematical biology, Discrete Cont. Dyn., 32 (2012), 3081–3097. https://doi.org/10.3934/dcds.2012.32.3081 doi: 10.3934/dcds.2012.32.3081
|
| [9] |
B. Andreianov, C. Donadello, M. D. Rosini, Crowd dynamics and conservation laws with nonlocal constraints and capacity drop, Math. Mod. Meth. Appl. S., 24 (2014), 2685–2722. https://doi.org/10.1142/S0218202514500341 doi: 10.1142/S0218202514500341
|
| [10] | A. Bayen, M. L. D. Monache, M. Garavello, P. Goatin, B. Piccoli, Control problems for conservation laws with traffic applications: modeling, analysis, and numerical methods, Cham: Birkhäuser, 2002. https://doi.org/10.1007/978-3-030-93015-8 |
| [11] |
C. Prieur, Control of systems of conservation laws with boundary errors, Netw. Heterog. Media, 4 (2009), 393–407. https://doi.org/10.3934/nhm.2009.4.393 doi: 10.3934/nhm.2009.4.393
|
| [12] |
V. Rasvan, Control of conservation laws-an application, Tatra Mountains Mathematical Publications, 71 (2018), 155–174. https://doi.org/10.2478/tmmp-2018-0014 doi: 10.2478/tmmp-2018-0014
|
| [13] |
G. Chavent, Identification of distributed parameters: about the ouput least square method, its implementation, and identiafibility, IFAC Proceedings Volumes, 12 (1979), 85–97. https://doi.org/10.1016/S1474-6670(17)65413-2 doi: 10.1016/S1474-6670(17)65413-2
|
| [14] | S. Ulbrich, On the existence and approximation of solutions for the optimal control of nonlinear hyperbolic conservation laws, In: Optimal control of partial differential equations, Basel: Birkhäuser, 1999,287–299. https://doi.org/10.1007/978-3-0348-8691-8_25 |
| [15] |
F. Ancona, M. T. Chiri, Attainable profiles for conservation laws with flux function spatially discontinuous at a single point, ESAIM: Control, Optimisation and Calculus of Variations, 26 (2020), 124. https://doi.org/10.1051/cocv/2020044 doi: 10.1051/cocv/2020044
|
| [16] |
N. D. Nitti, E. Zuazua, On the controllability of entropy solutions of scalar conservation laws at a junction via Lyapunov methods, Vietnam J. Math., 51 (2023), 71–88. https://doi.org/10.1007/s10013-022-00598-9 doi: 10.1007/s10013-022-00598-9
|
| [17] | N. D. Nitti, Analysis, control, and singular limits for hyperbolic conservation laws, PhD Thesis, Friedrich-Alexander-Universitaet Erlangen-Nuernberg, Erlangen-Nuernberg, Germany, 2023. |
| [18] |
F. James, M. Sepúlveda, Convergence results for the flux identification in a scalar conservation law, SIAM J. Control Optim., 37 (1999), 869–891. https://doi.org/10.1137/S0363012996272722 doi: 10.1137/S0363012996272722
|
| [19] |
A. Coronel, F. James, M. Sepúlveda, Numerical identification of parameters for a model of sedimentation processes, Inverse Probl., 19 (2003), 951–972. https://doi.org/10.1088/0266-5611/19/4/311 doi: 10.1088/0266-5611/19/4/311
|
| [20] |
S. Berres, R. Bürger, A. Coronel, M. Sepúlveda, Numerical identification of parameters for a strongly degenerate convection-diffusion problem modelling centrifugation of flocculated suspensions, Appl. Numer. Math., 52 (2005), 311–337. https://doi.org/10.1016/j.apnum.2004.08.002 doi: 10.1016/j.apnum.2004.08.002
|
| [21] |
R. Bürger, A. Coronel, M. Sepúlveda, On an upwind difference scheme for strongly degenerate parabolic equations modelling the settling of suspensions in centrifuges and non-cylindrical vessels, Appl. Numer. Math., 56 (2006), 1397–1417. https://doi.org/10.1016/j.apnum.2006.03.021 doi: 10.1016/j.apnum.2006.03.021
|
| [22] | R. Bürger, A. Coronel, M. Sepúlveda, A numerical descent method for an inverse problem of a scalar conservation law modelling sedimentation, In: Numerical mathematics and advanced applications, Berlin, Heidelberg: Springer, 2008,225–232. https://doi.org/10.1007/978-3-540-69777-0_26 |
| [23] | R. Bürger, A. Coronel, M. Sepúlveda, Numerical solution of an inverse problem for a scalar conservation law modelling sedimentation, In: Hyperbolic problems: theory, numerics and applications, Providence: American Mathematical Society, 2009,445–454. http://doi.org/10.1090/psapm/067.2/2605240 |
| [24] |
H. X. Liu, T. Pan, Interaction of elementary waves for scalar conservation laws on a bounded domain, Math. Method. Appl. Sci., 26 (2003), 619–632. https://doi.org/10.1002/mma.370 doi: 10.1002/mma.370
|
| [25] |
C. Bardos, A. Y. Leroux, J. C. Nédélec, First order quasilinear equations with boundary conditions, Commun. Part. Diff. Eq., 4 (1979), 1017–1034. https://doi.org/10.1080/03605307908820117 doi: 10.1080/03605307908820117
|
| [26] |
S. N. Kru$\check{ z }$kov, First order quasilinear equations in several independent variables, Mathematics of the USSR-Sbornik, 10 (1970), 217–143. https://doi.org/10.1070/SM1970v010n02ABEH002156 doi: 10.1070/SM1970v010n02ABEH002156
|
| [27] |
F. Ancona, A. Marson, On the attainable set for scalar nonlinear conservation laws with boundary control, SIAM J. Control Optim., 36 (1998), 290–312. https://doi.org/10.1137/S0363012996304407 doi: 10.1137/S0363012996304407
|
| [28] |
M. Corghi, A. Marson, On the attainable set for scalar balance laws with distributed control, ESAIM: Control, Optimisation and Calculus of Variations, 22 (2016), 236–266. https://doi.org/10.1051/cocv/2015009 doi: 10.1051/cocv/2015009
|
| [29] |
B. P. Andreianov, C. Donadello, A. Marson, On the attainable set for a scalar nonconvex conservation law, SIAM J. Control Optim., 55 (2017), 2235–2270. https://doi.org/10.1137/16M1085966 doi: 10.1137/16M1085966
|
| [30] |
M. Herty, A. Kurganov, D. Kurochkin, Numerical method for optimal control problems governed by nonlinear hyperbolic systems of PDEs, Commun. Math. Sci., 13 (2015), 15–48. http://doi.org/10.4310/CMS.2015.v13.n1.a2 doi: 10.4310/CMS.2015.v13.n1.a2
|
| [31] |
C. Castro, E. Zuazua, Flux identification for 1-d scalar conservation laws in the presence of shocks, Math. Comput., 80 (2011), 2025–2070. http://doi.org/10.1090/S0025-5718-2011-02465-8 doi: 10.1090/S0025-5718-2011-02465-8
|
| [32] |
Q. Li, J. H. Geng, S. Evje, Identification of the flux function of nonlinear conservation laws with variable parameters, Physica D, 451 (2023), 133773. https://doi.org/10.1016/j.physd.2023.133773 doi: 10.1016/j.physd.2023.133773
|
| [33] |
B. J. Lucier, A moving mesh numerical method for hyperbolic conservation laws, Math. Comp., 46 (1986), 59–69. https://doi.org/10.2307/2008214 doi: 10.2307/2008214
|
| [34] | R. J. LeVeque, Numerical methods for conservation laws, 2 Eds., Basel: Birkhäuser, 1992. https://doi.org/10.1007/978-3-0348-8629-1 |
| [35] | C. M. Dafermos, Hyperbolic conservation laws in continuum physics, 3 Eds., Berlin: Springer, 2010. https://doi.org/10.1007/3-540-29089-3 |
| [36] |
S. E. Buckley, M. C. Leverett, Mechanism of fluid displacement in sands, Transactions of the AIME, 146 (1942), 107–116. http://doi.org/10.2118/942107-G doi: 10.2118/942107-G
|
| [37] | J. Bear, Dynamics of fluids in porous media, Amsterdam: American Elsevier, 1972. |
| [38] |
C. J. van Duijn, L. A. Peletier, I. S. Pop, A new class of entropy solutions of the Buckley–Leverett equation, SIAM J. Math. Anal., 39 (2007), 507–536. https://doi.org/10.1137/05064518X doi: 10.1137/05064518X
|
| [39] |
Adimurthi, S. S. Ghoshal, G. D. Veerappa, Finer regularity of an entropy solution for 1-d scalar conservation laws with non uniform convex flux, Rend. Sem. Mat. Univ. Padova, 132 (2014), 1–24. https://doi.org/10.4171/RSMUP/132-1 doi: 10.4171/RSMUP/132-1
|
| [40] |
S. S. Ghoshal, S. Junca, A. Parmar, Higher regularity for entropy solutions of conservation laws with geometrically constrained discontinuous flux, SIAM J. Math. Anal., 56 (2014), 6121–6136. https://doi.org/10.1137/23M1604199 doi: 10.1137/23M1604199
|
| [41] |
B. Guelmame, S. Junca, D. Clamond, Regularizing effect for conservation laws with a Lipschitz convex flux, Commun. Math. Sci., 17 (2019), 2223–2238 https://doi.org/10.4310/CMS.2019.v17.n8.a6 doi: 10.4310/CMS.2019.v17.n8.a6
|
| [42] |
S. S. Ghoshal, S. Junca, A. Parmar, Fractional regularity for conservation laws with discontinuous flux, Nonlinear Anal.-Real, 75 (2014), 103960. https://doi.org/10.1016/j.nonrwa.2023.103960 doi: 10.1016/j.nonrwa.2023.103960
|
| [43] |
C. Caginalp, Minimization solutions to conservation laws with non-smooth and non-strictly convex flux, AIMS Mathematics, 3 (2018), 96–130. https://doi.org/10.3934/Math.2018.1.96 doi: 10.3934/Math.2018.1.96
|
| [44] |
C. Caginalp, A minimization approach to conservation laws with random initial conditions and non-smooth, non-strictly convex flux, AIMS Mathematics, 3 (2018), 148–182. https://doi.org/10.3934/Math.2018.1.148 doi: 10.3934/Math.2018.1.148
|
| [45] | E. Godlewski, P. A. Raviart, Hyperbolic systems of conservation laws, Paris: Ellipses, 1991. |
| [46] | E. F. Toro, Riemann solvers and numerical methods for fluid dynamics: a practical introduction, 3 Eds., Berlin, Heidelberg: Springer Science, 2009. https://doi.org/10.1007/b79761 |