This study delved into the analytical investigation of two significant nonlinear partial differential equations, namely the fractional Kawahara equation and fifth-order Korteweg-De Vries (KdV) equations, utilizing advanced analytical techniques: the Aboodh residual power series method and the Aboodh transform iterative method. Both equations were paramount in various fields of applied mathematics and physics due to their ability to describe diverse nonlinear wave phenomena. Here, we explored using the Aboodh methods to efficiently solve these equations under the framework of the Caputo operator. Through rigorous analysis and computational simulations, we demonstrated the efficacy of the proposed methods in providing accurate and insightful solutions to the time fractional Kawahara equation and fifth-order KdV equations. Our study advanced the understanding of nonlinear wave dynamics governed by fractional calculus, offering valuable insights and analytical tools for tackling complex mathematical models in diverse scientific and engineering applications.
Citation: Musawa Yahya Almusawa, Hassan Almusawa. Numerical analysis of the fractional nonlinear waves of fifth-order KdV and Kawahara equations under Caputo operator[J]. AIMS Mathematics, 2024, 9(11): 31898-31925. doi: 10.3934/math.20241533
Related Papers:
[1]
Nader Al-Rashidi .
Innovative approaches to fractional modeling: Aboodh transform for the Keller-Segel equation. AIMS Mathematics, 2024, 9(6): 14949-14981.
doi: 10.3934/math.2024724
[2]
Humaira Yasmin, Aljawhara H. Almuqrin .
Analytical study of time-fractional heat, diffusion, and Burger's equations using Aboodh residual power series and transform iterative methodologies. AIMS Mathematics, 2024, 9(6): 16721-16752.
doi: 10.3934/math.2024811
[3]
Muhammad Imran Liaqat, Sina Etemad, Shahram Rezapour, Choonkil Park .
A novel analytical Aboodh residual power series method for solving linear and nonlinear time-fractional partial differential equations with variable coefficients. AIMS Mathematics, 2022, 7(9): 16917-16948.
doi: 10.3934/math.2022929
[4]
Yousef Jawarneh, Humaira Yasmin, Abdul Hamid Ganie, M. Mossa Al-Sawalha, Amjid Ali .
Unification of Adomian decomposition method and ZZ transformation for exploring the dynamics of fractional Kersten-Krasil'shchik coupled KdV-mKdV systems. AIMS Mathematics, 2024, 9(1): 371-390.
doi: 10.3934/math.2024021
[5]
Mariam Sultana, Muhammad Waqar, Ali Hasan Ali, Alina Alb Lupaş, F. Ghanim, Zaid Ameen Abduljabbar .
Numerical investigation of systems of fractional partial differential equations by new transform iterative technique. AIMS Mathematics, 2024, 9(10): 26649-26670.
doi: 10.3934/math.20241296
[6]
Humaira Yasmin, Aljawhara H. Almuqrin .
Efficient solutions for time fractional Sawada-Kotera, Ito, and Kaup-Kupershmidt equations using an analytical technique. AIMS Mathematics, 2024, 9(8): 20441-20466.
doi: 10.3934/math.2024994
[7]
Aslı Alkan, Halil Anaç .
The novel numerical solutions for time-fractional Fornberg-Whitham equation by using fractional natural transform decomposition method. AIMS Mathematics, 2024, 9(9): 25333-25359.
doi: 10.3934/math.20241237
[8]
M. Mossa Al-Sawalha, Khalil Hadi Hakami, Mohammad Alqudah, Qasem M. Tawhari, Hussain Gissy .
Novel Laplace-integrated least square methods for solving the fractional nonlinear damped Burgers' equation. AIMS Mathematics, 2025, 10(3): 7099-7126.
doi: 10.3934/math.2025324
[9]
Asif Khan, Tayyaba Akram, Arshad Khan, Shabir Ahmad, Kamsing Nonlaopon .
Investigation of time fractional nonlinear KdV-Burgers equation under fractional operators with nonsingular kernels. AIMS Mathematics, 2023, 8(1): 1251-1268.
doi: 10.3934/math.2023063
[10]
Hayman Thabet, Subhash Kendre, James Peters .
Travelling wave solutions for fractional Korteweg-de Vries equations via an approximate-analytical method. AIMS Mathematics, 2019, 4(4): 1203-1222.
doi: 10.3934/math.2019.4.1203
Abstract
This study delved into the analytical investigation of two significant nonlinear partial differential equations, namely the fractional Kawahara equation and fifth-order Korteweg-De Vries (KdV) equations, utilizing advanced analytical techniques: the Aboodh residual power series method and the Aboodh transform iterative method. Both equations were paramount in various fields of applied mathematics and physics due to their ability to describe diverse nonlinear wave phenomena. Here, we explored using the Aboodh methods to efficiently solve these equations under the framework of the Caputo operator. Through rigorous analysis and computational simulations, we demonstrated the efficacy of the proposed methods in providing accurate and insightful solutions to the time fractional Kawahara equation and fifth-order KdV equations. Our study advanced the understanding of nonlinear wave dynamics governed by fractional calculus, offering valuable insights and analytical tools for tackling complex mathematical models in diverse scientific and engineering applications.
1.
Introduction
Many complicated structures' memory and natural features may be realized using fractional calculus (FC), which studies integrals and derivatives of fractional orders [1,2]. Many recent FC applications have included analyzing the dynamics of large-scale physical events by converting derivatives and integrals from classical to non-integer order. Many branches of engineering and the physical sciences use it, including electric circuits, mathematical biology, control theory, robotics, viscoelasticity, flow models, relaxation, and signal processing [3,4]. Numerous mysterious ideas have been refined via the study of fractional calculus, for example, logistic regression, Malthusian growth, and blood alcohol concentration, all of which have shown that fractional operators outperform integer-order operators [5,6].
Derivatives of fractional order such as Riemann-Liouville, Atangana Baleanu, Caputo, Hilfer, Grunwald-Letnikov, Caputo Fabrizio, and Riemann-Liouville are among the numerous that have recently been proposed [7,8]. Since all fractional derivatives may be reduced in Caputo's meaning with minor parametric adjustments, the fractional derivative of Caputo is the essential principle of FC to investigate fractional differential equations (FDEs). Caputo's operator, which has numerous applications to model various physical models, possesses a power-law kernel. To address this difficulty, the alternative fractional differential operator [9] was developed, which consists of a Mittag-Leffler kernel and an exponentially decaying kernel. Caputo-Fabrizio (CF) and Atangana-Baleanu are operators characterized by their non-singular kernels. These operators have been widely applied in analyzing diverse problem classes, including but not limited to biology, economics, geophysics, and bioengineering [10].
Korteweg and de Vries introduced the KdV equation in 1895 to formulate a model for Russell's soliton phenomenon, encompassing water waves of long and small amplitude. Solitons are classified as stable solitary waves, signifying their particle-like nature [11]. Various applied disciplines, including plasma physics, fluid dynamics, quantum mechanics, and optics, implement the KdV equations [12]. Particle physics has employed the fifth-order KdV equations to analyze many nonlinear phenomena [13]. Its function in the propagation of waves is crucial [14]. The authors find third-order and fifth-order dispersive terms in the KdV form equation pertinent to the magneto-acoustic wave problem. Furthermore, these dispersive terms manifest themselves in the vicinity of critical angle propagation [15]. An electrically conducting fluid, plasma is also dynamic and quasi-neutral. Ions, electrons, and neutral particles comprise it. Due to the electrical conductivity exhibited by plasma, it includes both electric and magnetic regions. The variety of particles and regions supports diverse types of plasma waves. A magnetic lock is a less longitudinal ion dispersion. In the low magnetic field range, the magneto-acoustic wave exhibits characteristics of an ion acoustic wave [16,17]. However, at low temperatures, it transforms into an Alfven wave.
Equivalent to the general model for the investigation of magnetic characteristics of acoustic waves with surface tension is the fifth order of KdV. According to a recent investigation [18,19], the solutions to the equation above concerning traveling waves persist beyond infinity. The following are two widely recognized types of fifth-order KdV equations [20,21]:
Here, Eqs (1.1) and (1.2) are called the Kawahara and KdV equation of fifth-order, respectively. The extreme nonlinearity of these mathematical models makes it difficult to find suitable analytical methods. Researchers have developed and implemented several techniques for solving nonlinear and linear equations of KdV in the past ten years. These techniques include the variational iteration method [21], the multi-symplectic method [22], He's homotopy perturbation method [23], and the Exp-function method [24].
Omar Abu Arqub established residual power series method (RPSM) in 2013 [25]. It is created by merging the residual error function with the Taylor series. According to [26], an infinite convergence series solves differential equations (DEs). The development of novel RPSM algorithms has been prompted by several DEs, including KdV Burger's equation, fuzzy DEs, Boussinesq DEs, and numerous others [27,28]. The goal of these algorithms is to provide efficient and accurate estimates.
A novel strategy for solving FDEs was established by integrating two effective methods. Some approaches that fall into these categories include those that use the natural transform [29], the Laplace transform with RPSM [30], and the homotopy perturbation method [31]. In this work, we used a novel combination method known as the Abdooh residual power series method (ARPSM) to discover approximation and precise solutions for time-fractional nonlinear partial differential equations (PDEs). This innovative method is significant because it combines the Aboodh transform technique with the RPSM [32,33].
The computing effort and complexity needed are significant issues with the previously mentioned approaches. Our suggested Aboodh transform iterative method (ATIM) [34] is this work's unique aspect that solves the Kawahara and KdV equations of fractional order. By integrating the Aboodh transform with the new iterative technique, this strategy significantly reduces the computing effort and complexity required. According to [35,36], the suggested approach yields a convergent series solution.
The ARPSM and the ATIM are the two most straightforward approaches to solving fractional DEs. These methods fully and immediately explain the symbolic terms used in analytical solutions and offer numerical solutions to PDEs. This paper assesses ATIM and ARPSM's efficacy in solving the fifth-order KdV and Kawahara equations.
The fifth-order KdV and Kawahara equations are solved using ARPSM and ATIM. These methods provide more precise numerical answers when compared with other numerical techniques. Additionally, a comparison analysis is performed on the numerical findings. The suggested approaches' findings are consistent with one another, which is a strong indicator of their efficacy and reliability. For various values of fractional-order derivatives, there is additional graphical importance. Therefore, the methods are accurate, easy to implement, not affected by computational error phases, and quick. This study lays the groundwork for researchers to quickly solve various PDEs.
2.
Basics of fractional calculus
Definition 2.1.[37] Assume that η(ϵ,Ω) is an exponential order continuous function. The definition of the Aboodh transform (AT), assuming σ≥0 for η(ϵ,Ω), is as follows:
A[η(ϵ,Ω)]=Ψ(ϵ,ξ)=1ξ∫∞0η(ϵ,Ω)e−ΩξdΩ,r1≤ξ≤r2.
The Aboodh inverse transform (AIT) is given as:
A−1[Ψ(ϵ,ξ)]=η(ϵ,Ω)=12πi∫u+i∞u−i∞Ψ(ϵ,Ω)ξeΩξdΩ,
where ϵ=(ϵ1,ϵ2,⋯,ϵp)∈Rp and p∈N.
Lemma 2.1.[38,39] It is assumed that there exist two exponentially ordered, piecewise continuous functions η1(ϵ,Ω) and η2(ϵ,Ω) on [0,∞]. Let A[η1(ϵ,Ω)]=Ψ1(ϵ,Ω),A[η2(ϵ,Ω)]=Ψ2(ϵ,Ω), and χ1,χ2 be arbitrary constants. These characteristics are thus true:
Definition 2.2.[40] In terms of order p, the function η(ϵ,Ω) has derivative of fractional order as stated by Caputo.
DpΩη(ϵ,Ω)=Jm−pΩη(m)(ϵ,Ω),m−1<p≤m,r≥0,
where ϵ=(ϵ1,ϵ2,⋯,ϵp)∈Rp and p,m∈R,Jm−pΩ is the integral of the Riemann-Liouville of η(ϵ,Ω).
Definition 2.3.[41] The representation of power series is composed of the following structure.
∞∑r=0ℏr(ϵ)(Ω−Ω0)rp=1+ℏ1(Ω−Ω0)p+ℏ2(Ω−Ω0)2p+⋯,
where ϵ=(ϵ1,ϵ2,⋯,ϵp)∈Rp and p∈N. This is known as the multiple fractional power series concerning Ω0, where Ω and ℏr(ϵ)′s are variable and series coefficients, respectively.
Lemma 2.2.Consider the exponential order function is denoted as η(ϵ,Ω). A[η(ϵ,Ω)]=Ψ(ϵ,ξ) is the description of the AT in this case. Hence,
By using the integral of the Riemann-Liouville and derivative of Caputo on Eq (2.14), the subsequent result can be obtained.
LHS=ξpA[DKpΩη(ϵ,Ω)]−g(ϵ,0)ξ2−p.
(2.15)
To get Eq (2.15), use Eq (2.11).
LHS=ξrpΨ(ϵ,ξ)−r−1∑j=0ξp(r−j)−2DjpΩη(ϵ,0).
(2.16)
In addition, Eq (2.16) produces the subsequent outcome.
LHS=A[DrpΩη(ϵ,0)].
Thus, for r=K+1, Eq (2.1) holds. For all positive integers, Eq (2.1) holds true according to the mathematical induction technique. □
A deeper understanding of the ARPSM and multiple fractional Taylor series (MFTS) are given as follow.
Lemma 2.3.Consider the function η(ϵ,Ω) is an exponential order. A[η(ϵ,Ω)]=Ψ(ϵ,ξ) is the expression that signifies the AT of η(ϵ,Ω). AT is represented as follows in MFTS notation:
Ψ(ϵ,ξ)=∞∑r=0ℏr(ϵ)ξrp+2,ξ>0,
(2.17)
where, ϵ=(s1,ϵ2,⋯,ϵp)∈Rp,p∈N.
Proof. Consider the Taylor's series:
η(ϵ,Ω)=ℏ0(ϵ)+ℏ1(ϵ)ΩpΓ[p+1]AA+ℏ2(ϵ)Ω2pΓ[2p+1]+⋯.
(2.18)
The subsequent equality is produced when the AT is applied to Eq (2.18):
The equality that results from taking the limit is as follows:
ℏ1(ϵ)=limξ→∞(ξp+2Ψ(ϵ,ξ)−ξpℏ0(ϵ)).
(2.22)
Using Lemma 2.2, we obtain:
ℏ1(ϵ)=limξ→∞(ξ2A[DpΩη(ϵ,Ω)](ξ)).
(2.23)
Furthermore, the Eq (2.23) is modified using Lemma 2.3.
ℏ1(ϵ)=DpΩη(ϵ,0).
Using Taylor's series and applying limitξ→∞ again, we obtain:
ℏ2(ϵ)=ξ2p+2Ψ(ϵ,ξ)−ξ2pℏ0(ϵ)−ξpℏ1(ϵ)−ℏ3(ϵ)ξp−⋯.
Lemma 2.3 gives us the result
ℏ2(ϵ)=limξ→∞ξ2(ξ2pΨ(ϵ,ξ)−ξ2p−2ℏ0(ϵ)−ξp−2ℏ1(ϵ)).
(2.24)
Equation (2.24) is transformed using Lemmas 2.2 and Eq (2.4).
ℏ2(ϵ)=D2pΩη(ϵ,0).
Apply the same procedure and Taylor series, and we obtain:
ℏ3(ϵ)=limξ→∞ξ2(A[D2pΩη(ϵ,p)](ξ)).
Finally, we get:
ℏ3(ϵ)=D3pΩη(ϵ,0).
In general,
ℏr(ϵ)=DrpΩη(ϵ,0),
is proved. □ The new Taylor series has the conditions for the convergence given in the subsequent theorem.
Theorem 2.6.The expression for MFTS is given in Lemma 2.3 and can be expressed as: A[η(ϵ,Ω)]=Ψ(ϵ,ξ). When |ξaA[D(K+1)pΩη(ϵ,Ω)]|≤T, ∀0<p≤1, and 0<ξ≤s, RK(ϵ,ξ) is the residual of the new MFTS satisfying:
|RK(ϵ,ξ)|≤Tξ(K=1)p+2,0<ξ≤s.
Proof. For r=0,1,2,⋯,K+1, and 0<ξ≤s, we consider to define A[DrpΩη(ϵ,Ω)](ξ). Utilize the Taylor series to derive the subsequent relation:
RK(ϵ,ξ)=Ψ(ϵ,ξ)−K∑r=0ℏr(ϵ)ξrp+2.
(2.25)
Apply Theorem 2.5 on Eq (2.25) to obtain:
RK(ϵ,ξ)=Ψ(ϵ,ξ)−K∑r=0DrpΩη(ϵ,0)ξrp+2.
(2.26)
ξ(K+1)a+2 is to be multiplied with Eq (2.26) to obtain the following form.
The function to be determined is η(ϵ,Ω), while Φ(η(ϵ,Ω),DΩϵη(ϵ,Ω),D2Ωϵη(ϵ,Ω)D3Ωϵη(ϵ,Ω)) are operators of η(ϵ,Ω),DΩϵη(ϵ,Ω),D2Ωϵη(ϵ,Ω) and D3Ωϵη(ϵ,Ω). The AT is applied on Eq (3.7) to obtain:
It takes some calculation to find fr(ϵ,s) for r=1,2,3,.... Using these procedures, we replace the rth-truncated series Eq (4.4) for the rth-RAF Eq (4.6), applying lims→∞(srp+1) and solving AΩResη,r(ϵ,s))=0, for r=1,2,3,⋯. Some terms that we obtain are given below:
Table 1 presents the ARPSM solution comparison for different values of the parameter p for Ω=0.1, illustrating how the choice of p impacts the accuracy and behavior of the solutions. Figure 1 shows a comparison between the approximate solution obtained using ARPSM (a) and the exact solution (b) for Example 1, confirming the high accuracy of the ARPSM approach. Figure 2 visualizes the impact of varying fractional orders on the ARPSM solution for different p values (p=0.32,0.52,0.72), showcasing how changes in the fractional order influence the solution structure. Figure 3 extends the comparison in two dimensions, offering a 2D view of the fractional order solutions using ARPSM for the same values of p, further confirming the method's ability to capture the dynamics of fractional systems.
Table 1.
ARPSM solution comparison for the values of p of Example 1 for Ω=0.1.
Table 2 compares ATIM solutions for the same set of parameters, with similar trends observed as in ARPSM, demonstrating the robustness of both methods. Figure 4 juxtaposes the ATIM approximate solution (a) with the exact solution (b), verifying the precision of the ATIM method. Figure 5 compares the fractional order solutions using ATIM for (p=0.32,0.52,0.72), and Figure 6 presents a 2D version of this comparison, highlighting the impact of the fractional order on the solution dynamics. Table 3 compares the absolute error for ARPSM and ATIM at Ω=0.1, demonstrating that both methods achieve highly accurate solutions with minimal error.
Table 2.
ATIM solution comparison for the values of p of Example 1 for Ω=0.1.
It takes some calculation to find fr(ϵ,s) for r=1,2,3,.... Using these procedures, we replace the rth-truncated series Eq (4.22) for the rth-RAF Eq (4.24), applying lims→∞(srp+1) and solving AΩResη,r(ϵ,s))=0, for r=1,2,3,⋯.
f1(ϵ,s)=−eϵ,
(4.25)
f2(ϵ,s)=eϵ,
(4.26)
f2(ϵ,s)=−eϵ,
(4.27)
and so on.
For r=1,2,3,⋯, replace fr(ϵ,s) in Eq (4.22):
η(ϵ,s)=eϵs−eϵsp+1+eϵs2p+1−eϵs3p+1+⋯.
(4.28)
Apply AIT to obtain:
η(ϵ,Ω)=eϵ−eϵΩpΓ(p+1)+eϵΩ2pΓ(2p+1)−eϵΩ4pΓ(3p+1)+⋯.
(4.29)
Figure 7 explores the fractional order comparison using ARPSM for an extended range of p values (p=0.33,0.55,0.77,1.00), providing a more comprehensive analysis of how different orders affect the solution. Figure 8 offers 2D and 3D graphs for ARPSM solutions, further highlighting the changes in solution behavior as the fractional order varies.
Figure 7.
Fractional order comparison using ARPSM for p=0.33,0.55,0.77,1.00.
The final solution that is obtained via ATIM is given as:
η(ϵ,Ω)=η0(ϵ,Ω)+η1(ϵ,Ω)+η2(ϵ,Ω)+η3(ϵ,Ω)+⋯.
(4.36)
η(ϵ,Ω)=eϵ(1−ΩpΓ(p+1)+Ω2pΓ(2p+1)−Ω4pΓ(3p+1)+⋯).
(4.37)
Table 4 analyzes the effect of various fractional orders for ARPSM and ATIM, for Example 2, indicating the consistency and accuracy of both methods across different fractional orders. Figures 9 and 10 continue the analysis for ATIM, comparing fractional order solutions and offering 3D and 2D views further to elucidate the complex behavior of fractional wave systems as modeled by the Kawahara and KdV equations. These figures and tables collectively emphasize the efficacy of ARPSM and ATIM in providing accurate and insightful solutions for fractional nonlinear PDEs, especially in the context of nonlinear wave phenomena in applied mathematics and physics. The graphical representations and error comparisons showcase the reliability and precision of these methods in solving complex fractional models.
Table 4.
Analysis of various fractional order of ARPSM and ATIM of Example 2 for Ω=0.1.
The study utilizes advanced analytical methods, precisely the ARPSM and the ATIM, to investigate the fractional Kawahara and fifth-order KdV equations. The discussion of figures and tables highlights the effectiveness of these methods in providing accurate approximate solutions, comparing their results with exact solutions, and examining the effects of fractional orders on the solutions.
5.
Conclusions
In conclusion, our analytical investigation into the fractional Kawahara equation and fifth-order KdV equations employing the ARPSM and ATIM has yielded significant insights and advancements in understanding nonlinear wave phenomena. Through rigorous analysis and computational simulations, we have demonstrated the effectiveness of these advanced analytical techniques in providing accurate and insightful solutions to these complex equations governed by fractional calculus under the Caputo operator framework. Our findings contribute to the theoretical understanding of nonlinear wave dynamics and offer practical analytical tools for addressing complex mathematical models in various scientific and engineering domains. Further research in this direction holds promise for exploring additional applications of the Aboodh methods and advancing our understanding of nonlinear wave phenomena in diverse real-world contexts. Future research can extend the ARPSM and ATIM methods to more complex nonlinear fractional PDEs, including those with higher-order fractional operators. Exploring their application to multidimensional systems could provide deeper insights into wave propagation in fields like quantum field theory. Investigating computational efficiency and convergence across different fractional orders may optimize these techniques for broader use. Applying these methods to real-world engineering problems could further validate their utility in practical settings.
Author contributions
Conceptualization, M.Y.A.; Data curation, H.A.; Formal analysis, M.Y.A; Resources, H.A.; Investigation, M.Y.A.; Project administration, M.Y.A.; Validation, H.A.; Software, H.A.; Validation, M.Y.A.; Visualization, M.Y.A.; Validation, H.A.; Visualization, M.Y.A.; Resources, H.A.; Project administration, H.A.; Writing-review & editing, H.A.; Funding, M.Y.A. All authors have read and agreed to the published version of the manuscript.
Acknowledgments
The authors gratefully acknowledge the funding of the Deanship of Graduate Studies and Scientific Research, Jazan University, Saudi Arabia, through project number: RG24-L02.
Conflict of interest
The authors declare that they have no conflicts of interest.
References
[1]
R. Khalil, M. Al Horani, A. Yousef, M. Sababheh, A new definition of fractional derivative, J. Comput. Appl. Math., 264 (2014), 65–70. https://doi.org/10.1016/j.cam.2014.01.002 doi: 10.1016/j.cam.2014.01.002
[2]
S. Khirsariya, S. Rao, J. Chauhan, Solution of fractional modified Kawahara equation: a semi-analytic approach, Math. Appl. Sci. Eng., 4 (2023), 249–350. https://doi.org/10.5206/mase/16369 doi: 10.5206/mase/16369
[3]
S. R. Khirsariya, J. P. Chauhan, S. B. Rao, A robust computational analysis of residual power series involving general transform to solve fractional differential equations, Math. Comput. Simul., 216 (2024), 168–186. https://doi.org/10.1016/j.matcom.2023.09.007 doi: 10.1016/j.matcom.2023.09.007
[4]
S. R. Khirsariya, S. B. Rao, J. P. Chauhan, Semi-analytic solution of time-fractional Korteweg-de Vries equation using fractional residual power series method, Results Nonlinear Anal., 5 (2022), 222–234.
[5]
L. K. B. Kuroda, A. V. Gomes, R. Tavoni, P. F. de Arruda Mancera, N. Varalta, R. de Figueiredo Camargo, Unexpected behavior of Caputo fractional derivative, Comp. Appl. Math., 36 (2017), 1173–1183. https://doi.org/10.1007/s40314-015-0301-9 doi: 10.1007/s40314-015-0301-9
[6]
R. Almeida, N. Bastos, M. Teresa, T. Monteiro, A prelude to the fractional calculus applied to tumor dynamic, Math. Methods Appl. Sci., 39 (2016), 4846–4855.
[7]
J. Losada, J. J. Nieto, Properties of a new fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 1 (2015), 87–92.
[8]
M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 1 (2015), 73–85.
[9]
S. Alshammari, M. M. Al-Sawalha, R. Shah, Approximate analytical methods for a fractional-order nonlinear system of Jaulent–Miodek equation with energy-dependent Schrodinger potential, Fractal Fract., 7 (2023), 140. https://doi.org/10.3390/fractalfract7020140 doi: 10.3390/fractalfract7020140
[10]
A. Atangana, J. F. Gomez-Aguilar, A new derivative with normal distribution kernel: theory, methods and applications. Phys. A: Stat. Mech. Appl., 476 (2017), 1–14. https://doi.org/10.1016/j.physa.2017.02.016 doi: 10.1016/j.physa.2017.02.016
[11]
M. Alesemi, N. Iqbal, M. S. Abdo, Novel investigation of fractional-order Cauchy-reaction diffusion equation involving Caputo-Fabrizio operator, J. Funct. Spaces, 2022 (2022), 1–14. https://doi.org/10.1155/2022/4284060 doi: 10.1155/2022/4284060
[12]
N. Iqbal, H. Yasmin, A. Rezaiguia, J. Kafle, A. O. Almatroud, T. S. Hassan, Analysis of the fractional-order Kaup-Kupershmidt equation via novel transforms, J. Math., 2021 (2021), 1–13. https://doi.org/10.1155/2021/2567927 doi: 10.1155/2021/2567927
[13]
N. Iqbal, H. Yasmin, A. Ali, A. Bariq, M. M. Al-Sawalha, W. W. Mohammed, Numerical methods for fractional-order Fornberg-Whitham equations in the sense of Atangana-Baleanu derivative, J. Funct. Spaces, 2021 (2021), 1–10. https://doi.org/10.1155/2021/2197247 doi: 10.1155/2021/2197247
[14]
P. Sunthrayuth, A. M. Zidan, S. W. Yao, R. Shah, M. Inc, The comparative study for solving fractional-order Fornberg-Whitham equation via ρ-Laplace transform, Symmetry, 13 (2021), 784. https://doi.org/10.3390/sym13050784 doi: 10.3390/sym13050784
[15]
T. Kakutani, H. Ono, Weak non-linear hydromagnetic waves in a cold collision-free plasma, J. Phys. Soc. Jpn., 26 (1969), 1305–1318. https://doi.org/10.1143/JPSJ.26.1305 doi: 10.1143/JPSJ.26.1305
[16]
R. Shah, H. Khan, D. Baleanu, P. Kumam, M. Arif, A novel method for the analytical solution of fractional Zakharov-Kuznetsov equations, Adv. Differ. Equ., 2019 (2019), 1–14. https://doi.org/10.1186/s13662-019-2441-5 doi: 10.1186/s13662-019-2441-5
[17]
A. Goswami, J. Singh, D. Kumar, Numerical simulation of fifth order KdV equations occurring in magneto-acoustic waves, Ain Shams Eng. J., 9 (2018), 2265–2273. https://doi.org/10.1016/j.asej.2017.03.004 doi: 10.1016/j.asej.2017.03.004
[18]
M. O. Miansari, M. E. Miansari, A. Barari, D. D. Ganji, Application of He's variational iteration method to nonlinear Helmholtz and fifth-order KdV equations, J. Appl. Math., Stat. Inf. (JAMSI), 5 (2009).
[19]
S. Abbasbandy, F. S. Zakaria, Soliton solutions for the fifth-order KdV equation with the homotopy analysis method. Nonlinear Dyn., 51 (2008), 83–87. https://doi.org/10.1007/s11071-006-9193-y doi: 10.1007/s11071-006-9193-y
[20]
A. M. Wazwaz, Solitons and periodic solutions for the fifth-order KdV equation, Appl. Math. Lett., 19 (2006), 1162–1167. https://doi.org/10.1016/j.aml.2005.07.014 doi: 10.1016/j.aml.2005.07.014
[21]
M. T. Darvishi, F. Khani, Numerical and explicit solutions of the fifth-order Korteweg-de Vries equations, Chaos, Solitons Fract., 39 (2009), 2484–2490. https://doi.org/10.1016/j.chaos.2007.07.034 doi: 10.1016/j.chaos.2007.07.034
[22]
I. Ahmad, H. Seno, An epidemic dynamics model with limited isolation capacity, Theory Biosci., 142 (2023), 259–273. https://doi.org/10.1007/s12064-023-00399-9 doi: 10.1007/s12064-023-00399-9
[23]
H. Khan, R. Shah, P. Kumam, D. Baleanu, M. Arif, Laplace decomposition for solving nonlinear system of fractional order partial differential equations, Adv. Differ. Equ., 2020 (2020), 1–18. https://doi.org/10.1186/s13662-020-02839-y doi: 10.1186/s13662-020-02839-y
[24]
S. Zhang, Application of Exp-function method to a KdV equation with variable coefficients, Phys. Lett. A, 365 (2007), 448–453. https://doi.org/10.1016/j.physleta.2007.02.004 doi: 10.1016/j.physleta.2007.02.004
[25]
O. A. Arqub, Series solution of fuzzy differential equations under strongly generalized differentiability, J. Adv. Res. Appl. Math., 5 (2013), 31–52.
[26]
O. Abu Arqub, Z. Abo-Hammour, R. Al-Badarneh, S. Momani, A reliable analytical method for solving higher-order initial value problems, Discrete Dyn. Nat. Soc., 2013 (2013), 673829. https://doi.org/10.1155/2013/673829 doi: 10.1155/2013/673829
[27]
J. Zhang, Z. Wei, L. Li, C. Zhou, Least-squares residual power series method for the time-fractional differential equations, Complexity, 2019 (2019), 1–15. https://doi.org/10.1155/2019/6159024 doi: 10.1155/2019/6159024
[28]
I. Jaradat, M. Alquran, R. Abdel-Muhsen, An analytical framework of 2D diffusion, wave-like, telegraph, and Burgers' models with twofold Caputo derivatives ordering, Nonlinear Dyn., 93 (2018), 1911–1922. https://doi.org/10.1007/s11071-018-4297-8 doi: 10.1007/s11071-018-4297-8
[29]
Y. Xie, I. Ahmad, T. I. S. Ikpe, E. F. Sofia, H. Seno, What influence could the acceptance of visitors cause on the epidemic dynamics of a reinfectious disease?: a mathematical model, Acta Biotheor., 72 (2024), 3. https://doi.org/10.1007/s10441-024-09478-w doi: 10.1007/s10441-024-09478-w
[30]
S. Mukhtar, M. Sohaib, I. Ahmad, A numerical approach to solve volume-based batch crystallization model with fines dissolution unit, Processes, 7 (2019), 453. https://doi.org/10.3390/pr7070453 doi: 10.3390/pr7070453
[31]
M. F. Zhang, Y. Q. Liu, X. S. Zhou, Efficient homotopy perturbation method for fractional non-linear equations using Sumudu transform, Therm. Sci., 19 (2015), 1167–1171.
[32]
M. I. Liaqat, S. Etemad, S. Rezapour, C. Park, A novel analytical Aboodh residual power series method for solving linear and nonlinear time-fractional partial differential equations with variable coefficients, AIMS Math., 7 (2022), 16917–16948. https://doi.org/10.3934/math.2022929 doi: 10.3934/math.2022929
[33]
M. I. Liaqat, A. Akgul, H. Abu-Zinadah, Analytical investigation of some time-fractional Black-Scholes models by the Aboodh residual power series method, Mathematics, 11 (2023), 276. https://doi.org/10.3390/math11020276 doi: 10.3390/math11020276
[34]
G. O. Ojo, N. I. Mahmudov, Aboodh transform iterative method for spatial diffusion of a biological population with fractional-order, Mathematics, 9 (2021), 155. https://doi.org/10.3390/math9020155 doi: 10.3390/math9020155
[35]
M. A. Awuya, G. O. Ojo, N. I. Mahmudov, Solution of space-time fractional differential equations using Aboodh transform iterative method, J. Math., 2022 (2022), 4861588. https://doi.org/10.1155/2022/4861588 doi: 10.1155/2022/4861588
[36]
M. A. Awuya, D. Subasi, Aboodh transform iterative method for solving fractional partial differential equation with Mittag-Leffler kernel, Symmetry, 13 (2021), 2055. https://doi.org/10.3390/sym13112055 doi: 10.3390/sym13112055
[37]
K. S. Aboodh, The new integral transform'Aboodh transform, Global J. Pure Appl. Math., 9 (2013), 35–43.
[38]
S. Aggarwal, R. Chauhan, A comparative study of Mohand and Aboodh transforms, Int. J. Res. Adv. Technol., 7 (2019), 520–529.
[39]
M. E. Benattia, K. Belghaba, Application of the Aboodh transform for solving fractional delay differential equations, Univ. J. Math. Appl., 3 (2020), 93–101. https://doi.org/10.32323/ujma.702033 doi: 10.32323/ujma.702033
[40]
B. B. Delgado, J. E. Macias-Diaz, On the general solutions of some non-homogeneous Div-curl systems with Riemann-Liouville and Caputo fractional derivatives, Fractal Fract., 5 (2021), 117. https://doi.org/10.3390/fractalfract5030117 doi: 10.3390/fractalfract5030117
[41]
S. Alshammari, M. Al-Smadi, I. Hashim, M. A. Alias, Residual power series technique for simulating fractional Bagley-Torvik problems emerging in applied physics, Appl. Sci., 9 (2019), 5029. https://doi.org/10.3390/app9235029 doi: 10.3390/app9235029
This article has been cited by:
1.
Aljawhara H. Almuqrin, Sherif M. E. Ismaeel, C. G. L. Tiofack, A. Mohamadou, Badriah Albarzan, Weaam Alhejaili, Samir A. El-Tantawy,
Solving fractional physical evolutionary wave equations using advanced techniques,
2025,
2037-4631,
10.1007/s12210-025-01320-w
2.
Samir A. El-Tantawy, Sahibzada I. H. Bacha, Muhammad Khalid, Weaam Alhejaili,
Application of the Tantawy Technique for Modeling Fractional Ion-Acoustic Waves in Electronegative Plasmas having Cairns Distributed-Electrons, Part (I): Fractional KdV Solitary Waves,
2025,
55,
0103-9733,
10.1007/s13538-025-01741-w