Research article Special Issues

Advanced analytical techniques for fractional Schrödinger and Korteweg-de Vries equations

  • Published: 21 May 2025
  • MSC : 34G20, 35A20, 35A22, 35R11

  • This paper investigated the Schrödinger and Korteweg-de Vries equations within the framework of fractional-order differential equations, utilizing the variational iteration transform method and the q-homotopy analysis transform method. These equations, crucial for modeling wave propagation and nonlinear dispersive systems, were analyzed using the Caputo fractional derivative to explore the influence of non-integer orders on their dynamics. The findings contributed to a deeper understanding of how fractional-order parameters affected the behavior of nonlinear wave models and oscillations, underscoring the growing importance of fractional calculus in mathematical physics and engineering. Both methods presented in this study effectively converted fractional-order problems into iterative schemes that were straightforward to solve, leading to quicker convergence of the analytical solutions. A comparative analysis evaluated the accuracy, computational efficiency, and convergence properties of the variational iteration transform method (VITM) and the q-homotopy analysis transform method q-HATM. The results, supported by numerical simulations and various graphical representations, validated the practicality and effectiveness of these methods for solving complex fractional differential equations. This study not only enhanced our comprehension of fractional wave dynamics but also strengthened the body of knowledge in both analytical and computational methods in mathematical physics and engineering.

    Citation: Qasem M. Tawhari. Advanced analytical techniques for fractional Schrödinger and Korteweg-de Vries equations[J]. AIMS Mathematics, 2025, 10(5): 11708-11731. doi: 10.3934/math.2025530

    Related Papers:

  • This paper investigated the Schrödinger and Korteweg-de Vries equations within the framework of fractional-order differential equations, utilizing the variational iteration transform method and the q-homotopy analysis transform method. These equations, crucial for modeling wave propagation and nonlinear dispersive systems, were analyzed using the Caputo fractional derivative to explore the influence of non-integer orders on their dynamics. The findings contributed to a deeper understanding of how fractional-order parameters affected the behavior of nonlinear wave models and oscillations, underscoring the growing importance of fractional calculus in mathematical physics and engineering. Both methods presented in this study effectively converted fractional-order problems into iterative schemes that were straightforward to solve, leading to quicker convergence of the analytical solutions. A comparative analysis evaluated the accuracy, computational efficiency, and convergence properties of the variational iteration transform method (VITM) and the q-homotopy analysis transform method q-HATM. The results, supported by numerical simulations and various graphical representations, validated the practicality and effectiveness of these methods for solving complex fractional differential equations. This study not only enhanced our comprehension of fractional wave dynamics but also strengthened the body of knowledge in both analytical and computational methods in mathematical physics and engineering.



    加载中


    [1] I. Podlubny, Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, Elsevier, 1998.
    [2] K. S. Miller, B. Ross, An introduction to the fractional calculus and fractional differential equations, Wiley, 1993.
    [3] M. Caputo, Elasticita de dissipazione, Verlag: Zanichelli, Bologna, 1969.
    [4] B. Riemann, Versuch einer allgemeinen auffassung der integration und differentiation, In: R. Dedekind, H. M. Weber, Bernard Riemann's gesammelte mathematische werke und wissenschaftlicher nachlass, Cambridge University Press, 1876,331–344.
    [5] J. Liouville, Mémoire sur quelques questions de géometrie et de mécanique, et sur un nouveau genre de calcul pour résoudre ces wuétions, J. École Polytech., 13 (1832), 1–69.
    [6] A. Esen, T. A. Sulaiman, H. Bulut, H. M. Baskonus, Optical solitons to the space-time fractional $(1+ 1)$-dimensional coupled nonlinear Schrödinger equation, Optik, 167 (2018), 150–156. https://doi.org/10.1016/j.ijleo.2018.04.015 doi: 10.1016/j.ijleo.2018.04.015
    [7] H. Nasrolahpour, A note on fractional electrodynamics, Commun. Nonlinear Sci. Numer. Simul., 18 (2013), 2589–2593. https://doi.org/10.1016/j.cnsns.2013.01.0053 doi: 10.1016/j.cnsns.2013.01.0053
    [8] Y. Li, F. Liu, I. W. Turner, T. Li, Time-fractional diffusion equation for signal smoothing, Appl. Math. Comput., 326 (2018), 108–116. https://doi.org/10.1016/j.amc.2018.01.007 doi: 10.1016/j.amc.2018.01.007
    [9] W. Lin, Global existence theory and chaos control of fractional differential equations, J. Math. Anal. Appl., 332 (2007), 709–726. https://doi.org/10.1016/j.jmaa.2006.10.040 doi: 10.1016/j.jmaa.2006.10.040
    [10] M. Mostafa, M. S. Ullah, Soliton outcomes and dynamical properties of the fractional Phi-4 equation, AIP Adv., 15 (2025), 015105. https://doi.org/10.1063/5.0245261 doi: 10.1063/5.0245261
    [11] N. Alam, M. S. Ullah, T. A. Nofal, H. M. Ahmed, K. K. Ahmed, M. A. AL-Nahhas, Novel dynamics of the fractional KFG equation through the unified and unified solver schemes with stability and multistability analysis, Nonlinear Eng., 13 (2024), 20240034. https://doi.org/10.1515/nleng-2024-0034 doi: 10.1515/nleng-2024-0034
    [12] Y. Yıldirim, A. Biswas, M. Ekici, H. Triki, O. Gonzalez-Gaxiola, A. K. Alzahrani, et al., Optical solitons in birefringent fibers for Radhakrishnan-Kundu-Lakshmanan equation with five prolific integration norms, Optik, 208 (2020), 164550. https://doi.org/10.1016/j.ijleo.2020.164550 doi: 10.1016/j.ijleo.2020.164550
    [13] Y. Yıldirim, Optical solitons of Biswas-Arshed equation in birefringent fibers by trial equation technique, Optik, 182 (2019), 810–820. https://doi.org/10.1016/j.ijleo.2019.01.085 doi: 10.1016/j.ijleo.2019.01.085
    [14] A. A. Alderremy, R. Shah, N. Iqbal, S. Aly, K. Nonlaopon, Fractional series solution construction for nonlinear fractional reaction-diffusion Brusselator model utilizing Laplace residual power series, Symmetry, 14 (2022), 1944. https://doi.org/10.3390/sym14091944 doi: 10.3390/sym14091944
    [15] P. Sunthrayuth, A. M. Zidan, S. W. Yao, R. Shah, M. Inc, The comparative study for solving fractional-order Fornberg-Whitham equation via $\rho$-Laplace transform, Symmetry, 13 (2021), 784. https://doi.org/10.3390/sym13050784 doi: 10.3390/sym13050784
    [16] H. Khan, R. Shah, P. Kumam, D. Baleanu, M. Arif, An efficient analytical technique for the solution of fractional-order telegraph equations, Mathematics, 7 (2019), 426. https://doi.org/10.3390/math7050426 doi: 10.3390/math7050426
    [17] M. M. Khader, K. M. Saad, Z. Hammouch, D. Baleanu, A spectral collocation method for solving fractional KdV and KdV-Burgers equations with non-singular kernel derivatives, Appl. Numer. Math., 161 (2021), 137–146. https://doi.org/10.1016/j.apnum.2020.10.024 doi: 10.1016/j.apnum.2020.10.024
    [18] Z. Odibat, D. Baleanu, Numerical simulation of initial value problems with generalized Caputo-type fractional derivatives, Appl. Numer. Math., 156 (2020), 94–105. https://doi.org/10.1016/j.apnum.2020.04.015 doi: 10.1016/j.apnum.2020.04.015
    [19] S. Singh, R. Sakthivel, M. Inc, A. Yusuf, K. Murugesan, Computing wave solutions and conservation laws of conformable time-fractional Gardner and Benjamin-Ono equations, Pramana-J. Phys., 95 (2021), 43. https://doi.org/10.1007/s12043-020-02070-0 doi: 10.1007/s12043-020-02070-0
    [20] A. Yusuf, T. A. Sulaiman, E. M. Khalil, M. Bayram, H. Ahmad, Construction of multi-wave complexiton solutions of the Kadomtsev-Petviashvili equation via two efficient analyzing techniques, Results Phys., 21 (2021), 103775. https://doi.org/10.1016/j.rinp.2020.103775 doi: 10.1016/j.rinp.2020.103775
    [21] A. Yusuf, Symmetry analysis, invariant subspace and conservation laws of the equation for fluid flow in porous media, Int. J. Geom. Methods Mod. Phys., 17 (2020), 2050173. https://doi.org/10.1142/S021988782050173X doi: 10.1142/S021988782050173X
    [22] A. Shafee, Y. Alkhezi, R. Shah, Efficient solution of fractional system partial differential equations using Laplace residual power series method, Fractal Fract., 7 (2023), 429. https://doi.org/10.3390/fractalfract7060429 doi: 10.3390/fractalfract7060429
    [23] L. J. Mason, G. A. J. Sparling, Nonlinear Schrödinger and Korteweg-de Vries are reductions of self-dual Yang-Mills, Phys. Lett. A, 137 (1989), 29–33. https://doi.org/10.1016/0375-9601(89)90964-X doi: 10.1016/0375-9601(89)90964-X
    [24] C. Klein, Fourth order time-stepping for low dispersion Korteweg-de Vries and nonlinear Schrödinger equation, Electron. Trans. Numer. Anal., 29 (2008), 116–135.
    [25] S. Noor, B. M. Alotaibi, R. Shah, S. M. E. Ismaeel, S. A. El-Tantawy, On the solitary waves and nonlinear oscillations to the fractional Schrödinger-KdV equation in the framework of the Caputo operator, Symmetry, 15 (2023), 1616. https://doi.org/10.3390/sym15081616 doi: 10.3390/sym15081616
    [26] S. Alshammari, M. M. Al-Sawalha, R. Shah, Approximate analytical methods for a fractional-order nonlinear system of Jaulent-Miodek equation with energy-dependent Schrödinger potential, Fractal Fract., 7 (2023), 140. https://doi.org/10.3390/fractalfract7020140 doi: 10.3390/fractalfract7020140
    [27] R. Shah, A. A. Hyder, N. Iqbal, T. Botmart, Fractional view evaluation system of Schrödinger-KdV equation by a comparative analysis, AIMS Math., 7 (2022), 19846–19864. https://doi.org/10.3934/math.20221087 doi: 10.3934/math.20221087
    [28] D. Bekiranov, T. Ogawa, G. Ponce, Weak solvability and well-posedness of a coupled Schrödinger-Korteweg de Vries equation for capillary-gravity wave interactions, Proc. Amer. Math. Soc., 125 (1997), 2907–2919. https://doi.org/10.1090/S0002-9939-97-03941-5 doi: 10.1090/S0002-9939-97-03941-5
    [29] J. H. He, Some asymptotic methods for strongly nonlinear equations, Int. J. Mod. Phys. B, 20 (2006), 1141–1199. https://doi.org/10.1142/S0217979206033796 doi: 10.1142/S0217979206033796
    [30] J. H. He, Non-perturbative methods for strongly nonlinear problems, Berlin: Deverlag im Internet GmbH, 2006.
    [31] J. H. He, Variational iteration method–Some recent results and new interpretations, J. Comput. Appl. Math., 207 (2007), 3–17. https://doi.org/10.1016/j.cam.2006.07.009 doi: 10.1016/j.cam.2006.07.009
    [32] J. H. He, Variational iteration method–A kind of nonlinear analytical technique: some examples, Int. J. Nonlinear Mech., 34 (1999), 699–708. https://doi.org/10.1016/S0020-7462(98)00048-1 doi: 10.1016/S0020-7462(98)00048-1
    [33] J. H. He, X. H. Wu, Construction of solitary solution and compacton-like solution by variational iteration method, Chaos Soliton. Fract., 29 (2006), 108–113. https://doi.org/10.1016/j.chaos.2005.10.100 doi: 10.1016/j.chaos.2005.10.100
    [34] J. H. He, Addendum: new interpretation of homotopy perturbation method, Int. J. Mod. Phys. B, 20 (2006), 2561–2568. https://doi.org/10.1142/S0217979206034819 doi: 10.1142/S0217979206034819
    [35] S. J. Liao, The proposed homotopy analysis technique for the solution of nonlinear problems, Ph.D. Thesis, Shanghai Jiao Tong University, 1992.
    [36] J. Singh, D. Kumar, R. Swroop, Numerical solution of time-and space-fractional coupled Burgers' equations via homotopy algorithm, Alex. Eng. J., 55 (2016), 1753–1763. https://doi.org/10.1016/j.aej.2016.03.028 doi: 10.1016/j.aej.2016.03.028
    [37] H. M. Srivastava, D. Kumar, J. Singh, An efficient analytical technique for fractional model of vibration equation, Appl. Math. Model., 45 (2017), 192–204. https://doi.org/10.1016/j.apm.2016.12.008 doi: 10.1016/j.apm.2016.12.008
    [38] H. Bulut, D. Kumar, J. Singh, R. Swroop, H. M. Baskonus, Analytic study for a fractional model of HIV infection of $CD4^+$ T lymphocyte cells, Math. Nat. Sci., 2 (2018), 33–43. https://doi.org/10.22436/mns.02.01.04 doi: 10.22436/mns.02.01.04
    [39] A. Prakash, P. Veeresha, D. G. Prakasha, M. Goyal, A homotopy technique for a fractional order multi-dimensional telegraph equation via the Laplace transform, Eur. Phys. J. Plus, 134 (2019), 19. https://doi.org/10.1140/epjp/i2019-12831-9 doi: 10.1140/epjp/i2019-12831-9
    [40] D. Kumar, R. P. Agarwal, J. Singh, A modified numerical scheme and convergence analysis for fractional model of Lienard's equation, J. Comput. Appl. Math., 339 (2018), 405–413. https://doi.org/10.1016/j.cam.2017.03.011 doi: 10.1016/j.cam.2017.03.011
    [41] D. Kumar, R. P. Agarwal, J. Singh, A modified numerical scheme and convergence analysis for fractional model of Lienard's equation, J. Comput. Appl. Math., 339 (2018), 405–413. https://doi.org/10.1016/j.cam.2017.03.011 doi: 10.1016/j.cam.2017.03.011
    [42] A. Prakash, D. G. Prakasha, P. Veeresha, A reliable algorithm for time-fractional Navier-Stokes equations via Laplace transform, Nonlinear Eng., 8 (2019), 695–701. https://doi.org/10.1515/nleng-2018-0080 doi: 10.1515/nleng-2018-0080
    [43] M. Mohand, A. Mahgoub, The new integral transform "Mohand transform", Adv. Theor. Appl. Math., 12 (2017), 113–120.
    [44] M. Nadeem, J. H. He, A. Islam, The homotopy perturbation method for fractional differential equations: part 1 Mohand transform, Int. J. Numer. Methods Heat Fluid Flow, 31 (2021), 3490–3504. https://doi.org/10.1108/HFF-11-2020-0703 doi: 10.1108/HFF-11-2020-0703
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(824) PDF downloads(34) Cited by(2)

Article outline

Figures and Tables

Figures(6)  /  Tables(6)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog