The determination of upper and lower bounds for topological indices in molecular graphs provides critical insights into the structural properties of chemical compounds. These bounds facilitate the estimation of the ranges of topological indices based on molecular structural parameters. This study presents novel inequalities for the Gutman-Milovanović index, which generalizes several significant indices such as the first and second Zagreb indices, the Randić index, the harmonic index, the geometric-arithmetic index, the general second Zagreb index, and the general sum-connectivity index. Moreover, we derive and characterize extremal graphs for many of these inequalities. Additionally, we explore the application of the Gutman-Milovanović index in modeling the physicochemical properties of 22 polycyclic aromatic hydrocarbons. Our results demonstrate that the topological index Mα,β provides accurate predictions for these properties, with R2 values ranging from 0.9406 to 0.9983, indicating a strong correlation between the index and experimental data. The findings underscore the versatility of Mα,β in chemical applications.
Citation: Edil D. Molina, José M. Rodríguez-García, José M. Sigarreta, Sergio J. Torralbas Fitz. On the Gutman-Milovanović index and chemical applications[J]. AIMS Mathematics, 2025, 10(2): 1998-2020. doi: 10.3934/math.2025094
[1] | Ali Ahmad, Humera Rashid, Hamdan Alshehri, Muhammad Kamran Jamil, Haitham Assiri . Randić energies in decision making for human trafficking by interval-valued T-spherical fuzzy Hamacher graphs. AIMS Mathematics, 2025, 10(4): 9697-9747. doi: 10.3934/math.2025446 |
[2] | Doaa Al-Sharoa . (α1, 2, β1, 2)-complex intuitionistic fuzzy subgroups and its algebraic structure. AIMS Mathematics, 2023, 8(4): 8082-8116. doi: 10.3934/math.2023409 |
[3] | Tahir Mahmood, Ubaid Ur Rehman, Muhammad Naeem . A novel approach towards Heronian mean operators in multiple attribute decision making under the environment of bipolar complex fuzzy information. AIMS Mathematics, 2023, 8(1): 1848-1870. doi: 10.3934/math.2023095 |
[4] | Jun Jiang, Junjie Lv, Muhammad Bilal Khan . Visual analysis of knowledge graph based on fuzzy sets in Chinese martial arts routines. AIMS Mathematics, 2023, 8(8): 18491-18511. doi: 10.3934/math.2023940 |
[5] | Tareq M. Al-shami, José Carlos R. Alcantud, Abdelwaheb Mhemdi . New generalization of fuzzy soft sets: (a,b)-Fuzzy soft sets. AIMS Mathematics, 2023, 8(2): 2995-3025. doi: 10.3934/math.2023155 |
[6] | Muhammad Qiyas, Muhammad Naeem, Saleem Abdullah, Neelam Khan . Decision support system based on complex T-Spherical fuzzy power aggregation operators. AIMS Mathematics, 2022, 7(9): 16171-16207. doi: 10.3934/math.2022884 |
[7] | Shichao Li, Zeeshan Ali, Peide Liu . Prioritized Hamy mean operators based on Dombi t-norm and t-conorm for the complex interval-valued Atanassov-Intuitionistic fuzzy sets and their applications in strategic decision-making problems. AIMS Mathematics, 2025, 10(3): 6589-6635. doi: 10.3934/math.2025302 |
[8] | Tahir Mahmood, Azam, Ubaid ur Rehman, Jabbar Ahmmad . Prioritization and selection of operating system by employing geometric aggregation operators based on Aczel-Alsina t-norm and t-conorm in the environment of bipolar complex fuzzy set. AIMS Mathematics, 2023, 8(10): 25220-25248. doi: 10.3934/math.20231286 |
[9] | Atiqe Ur Rahman, Muhammad Saeed, Mazin Abed Mohammed, Alaa S Al-Waisy, Seifedine Kadry, Jungeun Kim . An innovative fuzzy parameterized MADM approach to site selection for dam construction based on sv-complex neutrosophic hypersoft set. AIMS Mathematics, 2023, 8(2): 4907-4929. doi: 10.3934/math.2023245 |
[10] | Muhammad Arshad, Muhammad Saeed, Khuram Ali Khan, Nehad Ali Shah, Wajaree Weera, Jae Dong Chung . A robust MADM-approach to recruitment-based pattern recognition by using similarity measures of interval-valued fuzzy hypersoft set. AIMS Mathematics, 2023, 8(5): 12321-12341. doi: 10.3934/math.2023620 |
The determination of upper and lower bounds for topological indices in molecular graphs provides critical insights into the structural properties of chemical compounds. These bounds facilitate the estimation of the ranges of topological indices based on molecular structural parameters. This study presents novel inequalities for the Gutman-Milovanović index, which generalizes several significant indices such as the first and second Zagreb indices, the Randić index, the harmonic index, the geometric-arithmetic index, the general second Zagreb index, and the general sum-connectivity index. Moreover, we derive and characterize extremal graphs for many of these inequalities. Additionally, we explore the application of the Gutman-Milovanović index in modeling the physicochemical properties of 22 polycyclic aromatic hydrocarbons. Our results demonstrate that the topological index Mα,β provides accurate predictions for these properties, with R2 values ranging from 0.9406 to 0.9983, indicating a strong correlation between the index and experimental data. The findings underscore the versatility of Mα,β in chemical applications.
Let Ω={z∈Rn:R1<|z|<R2,R1,R2>0}. In this work we study the existence of positive radial solutions for the following system of boundary value problems with semipositone second order elliptic equations:
{Δφ+k(|z|)f(φ,ϕ)=0, z∈Ω,Δϕ+k(|z|)g(φ,ϕ)=0, z∈Ω,αφ+β∂φ∂n=0, αϕ+β∂ϕ∂n=0, |z|=R1,γφ+δ∂φ∂n=0, γϕ+δ∂ϕ∂n=0, |z|=R2, | (1.1) |
where α,β,γ,δ,k,f,g satisfy the conditions:
(H1) α,β,γ,δ≥0 with ρ≡γβ+αγ+αδ>0;
(H2) k∈C([R1,R2],R+), and k is not vanishing on [R1,R2];
(H3) f,g∈C(R+×R+,R), and there is a positive constant M such that
f(u,v),g(u,v)≥−M, ∀u,v∈R+. |
Elliptic equations have attracted a lot of attention in the literature since they are closely related to many mathematical and physical problems, for instance, incineration theory of gases, solid state physics, electrostatic field problems, variational methods and optimal control. The existence of solutions for this type of equation in annular domains has been discussed in the literature, see for example, [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18] and the references therein. In [1] the authors used the fixed point index to study positive solutions for the elliptic system:
{Δu+a(|x|)f(u,v)=0,Δv+b(|x|)g(u,v)=0, |
with one of the following boundary conditions
u=v=0,|x|=R1,|x|=R2,u=v=0,|x|=R1,∂u∂r=∂v∂r=0,|x|=R2,∂u∂r=∂v∂r=0,|x|=R1,u=v=0,|x|=R2. |
In [2] the authors used the method of upper and lower solutions to establish the existence of positive radial solutions for the elliptic equation
{−Δu=f(|x|,u,|∇u|), x∈Ω,u|∂Ω=0, |
where Ω={x∈RN: |x|<1},N≥2, and f:[0,1]×R+×R+→R is a continuous function.
However, we note that in most of the papers on nonlinear differential equations the nonlinear term is usually assumed to be nonnegative. In recent years boundary value problems for semipositone equations (f(t,x)≥−M,M>0) has received some attention (see [19,20,21,22,23,24,25,26,27,28,29,30,31,32]), and these equations describe and solve many natural phenomena in engineering and technical problems in real life, for example in mechanical systems, suspension bridge design, astrophysics and combustion theoretical models. In [19] the authors used a fixed point theorem to study the system for HIV-1 population dynamics in the fractional sense
{Dα0+u(t)+λf(t,u(t),Dβ0+u(t),v(t))=0,t∈(0,1),Dγ0+v(t)+λg(t,u(t))=0,t∈(0,1),Dβ0+u(0)=Dβ+10+u(0)=0,Dβ0+u(1)=∫10Dβ0+u(s)dA(s),v(0)=v′(0)=0,v(1)=∫10v(s)dB(s), |
where Dα0+,Dβ0+,Dγ0+ are the standard Riemann-Liouville derivatives, and f, g are two semipositone nonlinearities. In [28] the authors used the nonlinear alternative of Leray-Schauder type and the Guo-Krasnosel'skii fixed point theorem to study the existence of positive solutions for a system of nonlinear Riemann-Liouville fractional differential equations
{Dα0+u(t)+λf(t,v(t))=0,0<t<1, λ>0,Dα0+v(t)+λg(t,u(t))=0,0<t<1, λ>0,u(j)(0)=v(j)(0)=0,0⩽j⩽n−2,u(1)=μ∫10u(s)ds,v(1)=μ∫10v(s)ds, |
where f,g satisfy some superlinear or sublinear conditions:
(HZ)1 There exist M>0 such that lim supz→0g(t,z)z<M uniformly for t∈[0,1] (sublinear growth condition).
(HZ)2 There exists [θ1,θ2]⊂(0,1) such that lim infz→+∞f(t,z)z=+∞ and lim infz→+∞g(t,z)z=+∞ uniformly for t∈[θ1,θ2] (superlinear growth condition).
Inspired by the aforementioned work, in particular [31,32,33,34], we study positive radial solutions for (1.1) when the nonlinearities f,g satisfy the semipositone condition (H3). Moreover, some appropriate concave and convex functions are utilized to characterize coupling behaviors of our nonlinearities. Note that our conditions (H4) and (H6) (see Section 3) are more general than that in (HZ)1 and (HZ)2.
Using the methods in [1,4], we transform (1.1) into a system of ordinary differential equations involving Sturm-Liouville boundary conditions. Let φ=φ(r),ϕ=ϕ(r),r=|z|=√n∑i=1z2i. Then (1.1) can be expressed by the following system of ordinary differential equations:
{φ′′(r)+n−1rφ′(r)+k(r)f(φ(r),ϕ(r))=0, R1<r<R2,ϕ′′(r)+n−1rϕ′(r)+k(r)g(φ(r),ϕ(r))=0, R1<r<R2,αφ(R1)−βφ′(R1)=0, γφ(R2)+δφ′(R2)=0,αϕ(R1)−βϕ′(R1)=0, γϕ(R2)+δϕ′(R2)=0. | (2.1) |
Then if we let s=−∫R2r(1/tn−1)dt,t=(m−s)/m,m=−∫R2R1(1/tn−1)dt, (2.1) can be transformed into the system
{φ′′(t)+h(t)f(φ(t),ϕ(t))=0,0<t<1,ϕ′′(t)+h(t)g(φ(t),ϕ(t))=0,0<t<1,αφ(0)−βφ′(0)=0,γφ(1)+δφ′(1)=0,αϕ(0)−βϕ′(0)=0,γϕ(1)+δϕ′(1)=0, | (2.2) |
where h(t)=m2r2(n−1)(m(1−t))k(r(m(1−t))). Consequently, (2.2) is equivalent to the following system of integral equations
{φ(t)=∫10G(t,s)h(s)f(φ(s),ϕ(s))ds,ϕ(t)=∫10G(t,s)h(s)g(φ(s),ϕ(s))ds, | (2.3) |
where
G(t,s)=1ρ{(γ+δ−γt)(β+αs),0≤s≤t≤1,(γ+δ−γs)(β+αt),0≤t≤s≤1, | (2.4) |
and ρ is defined in (H1).
Lemma 2.1. Suppose that (H1) holds. Then
(i)
ρ(γ+δ)(β+α)G(t,t)G(s,s)≤G(t,s)≤G(s,s), t,s∈[0,1]; |
(ii)
G(t,s)≤G(t,t), t,s∈[0,1]. |
Proof. (i) In G(t,s), we fix the second variable s, we have
G(t,s)=1ρ{(γ+δ−γt)(β+αs)≤(γ+δ−γs)(β+αs),0≤s≤t≤1,(γ+δ−γs)(β+αt)≤(γ+δ−γs)(β+αs),0≤t≤s≤1. |
This implies that
G(t,s)≤G(s,s),t,s∈[0,1]. |
When t≥s, we have
1ρ(γ+δ−γt)(β+αs)ρ⋅1ρ⋅1ρ(γ+δ−γt)(β+αt)(γ+δ−γs)(β+αs)≥1(β+α)(γ+δ). |
When t≤s, we have
1ρ(γ+δ−γs)(β+αt)ρ⋅1ρ⋅1ρ(γ+δ−γt)(β+αt)(γ+δ−γs)(β+αs)≥1(β+α)(γ+δ). |
Combining the above we obtain
G(t,s)G(t,t)G(s,s)≥ρ(β+α)(γ+δ). |
(ii) In G(t,s) we fix the first variable t, and we obtain
G(t,s)=1ρ{(γ+δ−γt)(β+αs)≤(γ+δ−γt)(β+αt),0≤s≤t≤1,(γ+δ−γs)(β+αt)≤(γ+δ−γt)(β+αt),0≤t≤s≤1. |
Thus
G(t,s)≤G(t,t),t,s∈[0,1]. |
Lemma 2.2. Suppose that (H1) holds. Let ϑ(t)=G(t,t)h(t),t∈[0,1]. Then
κ1ϑ(s)≤∫10G(t,s)h(s)ϑ(t)dt≤κ2ϑ(s), |
where
κ1=ρ(γ+δ)(β+α)∫10G(t,t)ϑ(t)dt, κ2=∫10ϑ(t)dt. |
Proof. From (H1) and Lemma 2.1(i) we have
∫10G(t,s)h(s)ϑ(t)dt≤∫10G(s,s)h(s)ϑ(t)dt=κ2ϑ(s) |
and
∫10G(t,s)h(s)ϑ(t)dt≥∫10ρ(γ+δ)(β+α)G(t,t)G(s,s)h(s)ϑ(t)dt=κ1ϑ(s). |
Note we study (2.3) to obtain positive solutions for (1.1). However here the nonlinear terms f,g can be sign-changing (see (H3)). Therefore we study the following auxiliary problem:
u(t)=∫10G(t,s)h(s)˜f(u(s))ds, | (2.5) |
where G is in (2.4) and ˜f satisfies the condition:
(H2′) ˜f∈C(R+,R), and there exists a positive constant M such that
˜f(u)≥−M, ∀u∈R+. |
Let w(t)=M∫10G(t,s)h(s)ds,∀t∈[0,1]. Then w is a solution of the following boundary value problem:
{u′′(t)+h(t)M=0,0<t<1,αu(0)−βu′(0)=0,γu(1)+δu′(1)=0. | (2.6) |
Lemma 2.3. (i) If u∗ satisfies (2.5), then u∗+w is a solution of the equation:
u(t)=∫10G(t,s)h(s)˜F(u(s)−w(s))ds, | (2.7) |
where
˜F(u)={˜f(u)+M,u≥0,˜f(0)+M,u<0. | (2.8) |
(ii) If u∗∗ satisfies (2.7) with u∗∗(t)≥w(t),t∈[0,1], then u∗∗−w is a positive solution for (2.5).
Proof. We omit its proof since it is immediate.
Let E=C[0,1], ‖u‖=maxt∈[0,1]|u(t)|. Then (E,‖⋅‖) is a Banach space. Define a set on E as follows:
P={u∈E:u(t)≥0,∀t∈[0,1]}, |
and note P is a cone on E. Note, E2=E×E is also a Banach space with the norm: ‖(u,v)‖=‖u‖+‖v‖, and P2=P×P a cone on E2. In order to obtain positive radial solutions for (1.1), combining with (2.5)–(2.7), we define the following operator equation:
A(φ,ϕ)=(φ,ϕ), | (2.9) |
where A(φ,ϕ)=(A1,A2)(φ,ϕ), Ai(i=1,2) are
{A1(φ,ϕ)(t)=∫10G(t,s)h(s)F1(φ(s)−w(s),ϕ(s)−w(s))ds,A2(φ,ϕ)(t)=∫10G(t,s)h(s)F2(φ(s)−w(s),ϕ(s)−w(s))ds, | (2.10) |
and
F1(φ,ϕ)={f(φ,ϕ)+M,φ,ϕ≥0,f(0,ϕ)+M,φ<0,ϕ≥0,f(φ,0)+M,φ≥0,ϕ<0,f(0,0)+M,φ,ϕ<0, |
F2(φ,ϕ)={g(φ,ϕ)+M,φ,ϕ≥0,g(0,ϕ)+M,φ<0,ϕ≥0,g(φ,0)+M,φ≥0,ϕ<0,g(0,0)+M,φ,ϕ<0. |
Lemma 2.4. Define P0={φ∈P:φ(t)≥ρ(γ+δ)(β+α)G(t,t)‖φ‖,t∈[0,1]}. Then Ai(P×P)⊂P0,i=1,2.
Proof. We only prove it for A1. If φ,ϕ∈P, note the non-negativity of F1(denoted by F1(⋅,⋅)), from Lemma 2.1(i) we have
∫10ρ(γ+δ)(β+α)G(t,t)G(s,s)h(s)F1(⋅,⋅)ds≤A1(φ,ϕ)(t)≤∫10G(s,s)h(s)F1(⋅,⋅)ds. |
This implies that
A1(φ,ϕ)(t)≥∫10ρ(γ+δ)(β+α)G(t,t)G(s,s)h(s)F1(⋅,⋅)ds≥ρ(γ+δ)(β+α)G(t,t)‖A1(φ,ϕ)‖. |
Remark 2.1. (i) w(t)=M∫10G(t,s)h(s)ds∈P0;
(ii) Note (see Corollary 1.5.1 in [35]):
If k(x,y,u):˜GטG×R→R is continuous (˜G is a bounded closed domain in Rn), then K is a completely continuous operator from C(˜G) into itself, where
Kψ(x)=∫˜Gk(x,y,ψ(y))dy. |
Note that G(t,s),h(s),Fi(i=1,2) are continuous, and also Ai, A are completely continuous operators, i=1,2.
From Lemma 2.3 if there exists (φ,ϕ)∈P2∖{(0,0)} such that (2.9) holds with (φ,ϕ)≥(w,w), then φ(t),ϕ(t)≥w(t),t∈[0,1], and (φ−w,ϕ−w) is a positive solution for (2.3), i.e., we obtain positive radial solutions for (1.1). Note that φ,ϕ∈P0, and from Lemma 2.1(ii) we have
φ(t)−w(t)≥ρ(γ+δ)(β+α)G(t,t)‖φ‖−M∫10G(t,t)h(s)ds, |
ϕ(t)−w(t)≥ρ(γ+δ)(β+α)G(t,t)‖ϕ‖−M∫10G(t,t)h(s)ds. |
Hence, if
‖φ‖,‖ϕ‖≥M(γ+δ)(β+α)ρ∫10h(s)ds, |
we have (φ,ϕ)≥(w,w). As a result, we only need to seek fixed points of (2.9), when their norms are greater than M(γ+δ)(β+α)ρ∫10h(s)ds.
Let E be a real Banach space. A subset X⊂E is called a retract of E if there exists a continuous mapping r:E→X such that r(x)=x, x∈X. Note that every cone in E is a retract of E. Let X be a retract of real Banach space E. Then, for every relatively bounded open subset U of X and every completely continuous operator A:¯U→X which has no fixed points on ∂U, there exists an integer i(A,U,X) satisfying the following conditions:
(i) Normality: i(A,U,X)=1 if Ax≡y0∈U for any x∈¯U.
(ii) Additivity: i(A,U,X)=i(A,U1,X)+i(A,U2,X) whenever U1 and U2 are disjoint open subsets of U such that A has no fixed points on ¯U∖(U1∪U2).
(iii) Homotopy invariance: i(H(t,⋅),U,X) is independent of t (0≤t≤1) whenever H:[0,1]ׯU→X is completely continuous and H(t,x)≠x for any (t,x)∈[0,1]×∂U.
(iv) Permanence: i(A,U,X)=i(A,U∩Y,Y) if Y is a retract of X and A(¯U)⊂Y.
Then i(A,U,X) is called the fixed point index of A on U with respect to X.
Lemma 2.5. (see [35,36]). Let E be a real Banach space and P a cone on E. Suppose that Ω⊂E is a bounded open set and that A:¯Ω∩P→P is a continuous compact operator. If there exists ω0∈P∖{0} such that
ω−Aω≠λω0,∀λ≥0,ω∈∂Ω∩P, |
then i(A,Ω∩P,P)=0, where i denotes the fixed point index on P.
Lemma 2.6. (see [35,36]). Let E be a real Banach space and P a cone on E. Suppose that Ω⊂E is a bounded open set with 0∈Ω and that A:¯Ω∩P→P is a continuous compact operator. If
ω−λAω≠0,∀λ∈[0,1],ω∈∂Ω∩P, |
then i(A,Ω∩P,P)=1.
Denote OM,h=M(γ+δ)(β+α)ρ∫10h(s)ds, Bζ={u∈E:‖u‖<ζ},ζ>0,B2ζ=Bζ×Bζ. We list our assumptions as follows:
(H4) There exist p,q∈C(R+,R+) such that
(i) p is a strictly increasing concave function on R+;
(ii) lim infv→∞f(u,v)p(v)≥1, lim infu→∞g(u,v)q(u)≥1;
(iii) there exists e1∈(κ−21,∞) such that lim infz→∞p(LG,hq(z))z≥e1LG,h, where LG,h=maxt,s∈[0,1]G(t,s)h(s).
(H5) There exists Qi∈(0,OM,hκ2) such that
Fi(u−w,v−w)≤Qi,u,v∈[0,OM,h],i=1,2. |
(H6) There exist ζ,η∈C(R+,R+) such that
(i) ζ is a strictly increasing convex function on R+;
(ii) lim supv→∞f(u,v)ζ(v)≤1, lim supu→∞g(u,v)η(u)≤1;
(iii) there exists e2∈(0,κ−22) such that lim supz→∞ζ(LG,hη(z))z≤e2LG,h.
(H7) There exists ˜Qi∈(OM,hκ2LG,∞) such that
Fi(u−w,v−w)≥˜Qi,u,v∈[0,OM,h],i=1,2, |
where LG=maxt∈[0,1]ρ(γ+δ)(β+α)G(t,t).
Remark 3.1. Condition (H4) implies that f grows p(v)-superlinearly at ∞ uniformly on u∈R+, g grows q(u)-superlinearly at ∞ uniformly on v∈R+; condition (H6) implies that f grows ζ(v)-sublinearly at ∞ uniformly on u∈R+, g grows η(u)-sublinearly at ∞ uniformly on v∈R+.
Theorem 3.1. Suppose that (H1)–(H5) hold. Then (1.1) has at least one positive radial solution.
Proof. Step 1. When φ,ϕ∈∂BOM,h∩P, we have
(φ,ϕ)≠λA(φ,ϕ),λ∈[0,1]. | (3.1) |
Suppose the contrary i.e., if (3.1) is false, then there exist φ0,ϕ0∈∂BOM,h∩P and λ0∈[0,1] such that
(φ0,ϕ0)=λ0A(φ0,ϕ0). |
This implies that
φ0,ϕ0∈P0 | (3.2) |
and
‖φ0‖≤‖A1(φ0,ϕ0)‖, ‖ϕ0‖≤‖A2(φ0,ϕ0)‖. | (3.3) |
From (H5) we have
Ai(φ0,ϕ0)(t)=∫10G(t,s)h(s)Fi(φ0(s)−w(s),ϕ0(s)−w(s))ds≤∫10ϑ(s)Qids<OM,h,i=1,2. |
Thus
‖A1(φ0,ϕ0)‖+‖A2(φ0,ϕ0)‖<2OM,h=‖φ0‖+‖ϕ0‖(φ0,ϕ0∈∂BOM,h∩P), |
which contradicts (3.3), and thus (3.1) holds. From Lemma 2.6 we have
i(A,B2OM,h∩P2,P2)=1. | (3.4) |
Step 2. There exists a sufficiently large R>OM,h such that
(φ,ϕ)≠A(φ,ϕ)+λ(ϱ1,ϱ1),φ,ϕ∈∂BR∩P,λ≥0, | (3.5) |
where ϱ1∈P0 is a given element. Suppose the contrary. Then there are φ1,ϕ1∈∂BR∩P,λ1≥0 such that
(φ1,ϕ1)=A(φ1,ϕ1)+λ1(ϱ1,ϱ1). | (3.6) |
This implies that
φ1(t)=A1(φ1,ϕ1)(t)+λ1ϱ1(t), ϕ1(t)=A2(φ1,ϕ1)(t)+λ1ϱ1(t),t∈[0,1]. |
From Lemma 2.4 and ϱ1∈P0 we have
φ1,ϕ1∈P0. | (3.7) |
Note that ‖φ1‖=‖ϕ1‖=R>OM,h, and thus φ1(t)≥w(t),ϕ1(t)≥w(t),t∈[0,1].
By (H4)(ii) we obtain
lim infϕ→∞F1(φ,ϕ)p(ϕ)=lim infϕ→∞f(φ,ϕ)+Mp(ϕ)≥1, lim infφ→∞F2(φ,ϕ)q(φ)=lim infφ→∞g(φ,ϕ)+Mq(φ)≥1. |
This implies that there exist c1,c2>0 such that
F1(φ,ϕ)≥p(ϕ)−c1, F2(φ,ϕ)≥q(φ)−c2, φ,ϕ∈R+. |
Therefore, we have
φ1(t)=A1(φ1,ϕ1)(t)+λ1ϱ1(t)≥A1(φ1,ϕ1)(t)≥∫10G(t,s)h(s)[p(ϕ1(s)−w(s))−c1]ds≥∫10G(t,s)h(s)p(ϕ1(s)−w(s))ds−c1κ2 | (3.8) |
and
ϕ1(t)=A2(φ1,ϕ1)(t)+λ1ϱ1(t)≥A2(φ1,ϕ1)(t)≥∫10G(t,s)h(s)[q(φ1(s)−w(s))−c2]ds≥∫10G(t,s)h(s)q(φ1(s)−w(s))ds−c2κ2. | (3.9) |
Consequently, we have
ϕ1(t)−w(t)≥∫10G(t,s)h(s)q(φ1(s)−w(s))ds−c2κ2−w(t)≥∫10G(t,s)h(s)q(φ1(s)−w(s))ds−(c2+M)κ2. |
From (H4)(iii), there is a c3>0 such that
p(LG,hq(z))≥e1LG,hz−LG,hc3,z∈R+. |
Combining with (H4)(i), we have
p(ϕ1(t)−w(t))≥p(ϕ1(t)−w(t)+(c2+M)κ2)−p((c2+M)κ2)≥p(∫10G(t,s)h(s)q(φ1(s)−w(s))ds)−p((c2+M)κ2)=p(∫10G(t,s)h(s)LG,hLG,hq(φ1(s)−w(s))ds)−p((c2+M)κ2)≥∫10p(G(t,s)h(s)LG,hLG,hq(φ1(s)−w(s)))ds−p((c2+M)κ2)≥∫10G(t,s)h(s)LG,hp(LG,hq(φ1(s)−w(s)))ds−p((c2+M)κ2)≥∫10G(t,s)h(s)LG,h(e1LG,h(φ1(s)−w(s))−LG,hc3)ds−p((c2+M)κ2)≥e1∫10G(t,s)h(s)(φ1(s)−w(s))ds−p((c2+M)κ2)−c3κ2. |
Substituting this inequality into (3.8) we have
φ1(t)−w(t)≥∫10G(t,s)h(s)[e1∫10G(s,τ)h(τ)(φ1(τ)−w(τ))dτ−p((c2+M)κ2)−c3κ2]ds −(c1+M)κ2≥e1∫10∫10G(t,s)h(s)G(s,τ)h(τ)(φ1(τ)−w(τ))dτds −p((c2+M)κ2)κ2−c3κ22−(c1+M)κ2. |
Multiply by ϑ(t) on both sides of the above and integrate over [0,1] and use Lemma 2.2 to obtain
∫10(φ1(t)−w(t))ϑ(t)dt≥e1∫10ϑ(t)∫10∫10G(t,s)h(s)G(s,τ)h(τ)(φ1(τ)−w(τ))dτdsdt −p((c2+M)κ2)κ22−c3κ32−(c1+M)κ22≥e1κ21∫10(φ1(t)−w(t))ϑ(t)dt−p((c2+M)κ2)κ22−c3κ32−(c1+M)κ22. |
From this inequality we have
∫10(φ1(t)−w(t))ϑ(t)dt≤p((c2+M)κ2)κ22+c3κ32+(c1+M)κ22e1κ21−1 |
and thus
∫10φ1(t)ϑ(t)dt≤p((c2+M)κ2)κ22+c3κ32+(c1+M)κ22e1κ21−1+∫10w(t)ϑ(t)dt≤p((c2+M)κ2)κ22+c3κ32+(c1+M)κ22e1κ21−1+Mκ22. |
Note that (3.7), φ1∈P0, and we have
‖φ1‖≤p((c2+M)κ2)κ22+c3κ32+(c1+M)κ22κ1(e1κ21−1)+Mκ22κ1. |
On the other hand, multiply by ϑ(t) on both sides of (3.8) and integrate over [0,1] and use Lemma 2.2 to obtain
κ1∫10ϑ(t)p(ϕ1(t)−w(t))dt≤∫10φ1(t)ϑ(t)dt+c1κ22≤p((c2+M)κ2)κ22+c3κ32+(c1+M)κ22e1κ21−1+Mκ22+c1κ22. |
From Remark 2.1 we have w∈P0, note that ‖ϕ1‖=R>M(γ+δ)(β+α)ρ∫10h(s)ds≥‖w‖ and ϕ1∈P0, then ϕ1−w∈P0. By the concavity of p we have
‖ϕ1−w‖≤κ−11∫10(ϕ1(t)−w(t))ϑ(t)dt=‖ϕ1−w‖κ1p(‖ϕ1−w‖)∫10ϕ1(t)−w(t)‖ϕ1−w‖p(‖ϕ1−w‖)ϑ(t)dt≤‖ϕ1−w‖κ1p(‖ϕ1−w‖)∫10p(ϕ1(t)−w(t)‖ϕ1−w‖‖ϕ1−w‖)ϑ(t)dt≤‖ϕ1−w‖κ21p(‖ϕ1−w‖)[p((c2+M)κ2)κ22+c3κ32+(c1+M)κ22e1κ21−1+Mκ22+c1κ22]. |
This implies that
p(‖ϕ1−w‖)≤1κ21[p((c2+M)κ2)κ22+c3κ32+(c1+M)κ22e1κ21−1+Mκ22+c1κ22]. |
From (H4)(i) we have
p(‖ϕ1‖)=p(‖ϕ1−w+w‖)≤p(‖ϕ1−w‖+‖w‖)≤p(‖ϕ1−w‖)+p(‖w‖)≤1κ21[p((c2+M)κ2)κ22+c3κ32+(c1+M)κ22e1κ21−1+Mκ22+c1κ22]+p(‖w‖)≤1κ21[p((c2+M)κ2)κ22+c3κ32+(c1+M)κ22e1κ21−1+Mκ22+c1κ22]+p(Mκ2)<+∞. |
Therefore, there exists Oϕ1>0 such that ‖ϕ1‖≤Oϕ1.
We have prove the boundedness of φ1,ϕ1 when (3.6) holds, i.e., when φ1,ϕ1∈∂BR∩P, there exist a positive constant to control the norms of φ1,ϕ1. Now we choose a sufficiently large
R1>max{OM,h,Oϕ1,p((c2+M)κ2)κ22+c3κ32+(c1+M)κ22κ1(e1κ21−1)+Mκ22κ1}. |
Then when φ1,ϕ1∈∂BR1∩P, (3.6) is not satisfied, and thus (3.5) holds. From Lemma 2.5 we have
i(A,B2R1∩P2,P2)=0. | (3.10) |
Combining (3.4) with (3.10) we have
i(A,(B2R1∖¯B2OM,h)∩P2,P2)=i(A,B2R1∩P2,P2)−i(A,B2OM,h∩P2,P2)=0−1=−1. |
Then the operator A has at least one fixed point (denoted by (φ∗,ϕ∗)) on (B2R1∖¯B2OM,h)∩P2 with φ∗(t),ϕ∗(t)≥w(t),t∈[0,1]. Therefore, (φ∗−w,ϕ∗−w) is a positive solution for (2.2), and (1.1) has at least one positive radial solution.
Theorem 3.2. Suppose that (H1)–(H3), (H6) and (H7) hold. Then (1.1) has at least one positive radial solution.
Proof. Step 1. When φ,ϕ∈∂BOM,h∩P, we have
(φ,ϕ)≠A(φ,ϕ)+λ(ϱ2,ϱ2),λ≥0, | (3.11) |
where ϱ2∈P is a given element. Suppose the contrary. Then there exist φ2,ϕ2∈∂BOM,h∩P,λ2≥0 such that
(φ2,ϕ2)=A(φ2,ϕ2)+λ2(ϱ2,ϱ2). |
This implies that
‖φ2‖≥φ2(t)≥A1(φ2,ϕ2)(t)+λ2ϱ2(t)≥A1(φ2,ϕ2)(t),t∈[0,1], |
‖ϕ2‖≥ϕ2(t)≥A2(φ2,ϕ2)(t)+λ2ϱ2(t)≥A2(φ2,ϕ2)(t),t∈[0,1]. |
Then we have
‖φ2‖+‖ϕ2‖≥‖A1(φ2,ϕ2)‖+‖A2(φ2,ϕ2)‖. | (3.12) |
From (H7) we have
‖Ai(φ2,ϕ2)‖=maxt∈[0,1]Ai(φ2,ϕ2)(t)≥maxt∈[0,1]ρ(γ+δ)(β+α)G(t,t)∫10G(s,s)h(s)Fi(φ2(s)−w(s),ϕ2(s)−w(s))ds≥LG∫10G(s,s)h(s)˜Qids=˜Qiκ2LG,i=1,2. |
By the condition on ˜Qi we have
‖A1(φ2,ϕ2)‖+‖A2(φ2,ϕ2)‖>2OM,h=‖φ2‖+‖ϕ2‖, |
and this contradicts (3.12), so (3.11) holds. By Lemma 2.5 we have
i(A,B2OM,h∩P2,P2)=0. | (3.13) |
Step 2. There exists a sufficiently large R>OM,h such that
(φ,ϕ)≠λA(φ,ϕ),φ,ϕ∈∂BR∩P,λ∈[0,1]. | (3.14) |
Suppose the contrary. Then there exist φ3,ϕ3∈∂BR∩P,λ3∈[0,1] such that
(φ3,ϕ3)=λ3A(φ3,ϕ3). | (3.15) |
Combining with Lemma 2.4 we have
φ3,ϕ3∈P0. | (3.16) |
Note that φ3,ϕ3∈∂BR∩P, and then φ3(t)−w(t),ϕ3(t)−w(t)≥0,t∈[0,1]. Hence, from (H6) we have
lim supϕ→∞F1(φ,ϕ)ζ(ϕ)=lim supϕ→∞f(φ,ϕ)+Mζ(ϕ)≤1, lim supφ→∞F2(φ,ϕ)η(φ)=lim supφ→∞g(φ,ϕ)+Mη(φ)≤1. |
This implies that there exists ˜M>0 such that
F1(φ,ϕ)≤ζ(ϕ), F2(φ,ϕ)≤η(φ),φ,ϕ≥˜M. | (3.17) |
By similar methods as in Theorem 3.1, choosing R>˜M, and from (3.15) we obtain
φ3(t)=λ3A1(φ3,ϕ3)(t)≤∫10G(t,s)h(s)ζ(ϕ3(s)−w(s))ds | (3.18) |
and
ϕ3(t)=λ3A2(φ3,ϕ3)(t)≤∫10G(t,s)h(s)η(φ3(s)−w(s))ds. | (3.19) |
From (H6)(iii), there exists c4>0 such that
ζ(LG,hη(z))≤e2LG,hz+c4LG,h,z∈R+. |
By the convexity of ζ we have
ζ(ϕ3(t)−w(t))≤ζ(∫10G(t,s)h(s)η(φ3(s)−w(s))ds)≤∫10ζ[G(t,s)h(s)η(φ3(s)−w(s))]ds=∫10ζ[G(t,s)h(s)LG,hLG,hη(φ3(s)−w(s))]ds≤∫10G(t,s)h(s)LG,hζ[LG,hη(φ3(s)−w(s))]ds≤∫10G(t,s)h(s)LG,h[e2LG,h(φ3(s)−w(s))+c4LG,h]ds≤∫10G(t,s)h(s)[e2(φ3(s)−w(s))+c4]ds. | (3.20) |
Substituting this inequality into (3.18) we have
φ3(t)≤∫10G(t,s)h(s)∫10G(s,τ)h(τ)[e2(φ3(τ)−w(τ))+c4]dτds≤e2∫10∫10G(t,s)h(s)G(s,τ)h(τ)(φ3(τ)−w(τ))dτds+c4κ22. | (3.21) |
Consequently, we have
φ3(t)−w(t)≤∫10G(t,s)h(s)∫10G(s,τ)h(τ)[e2(φ3(τ)−w(τ))+c4]dτds≤e2∫10∫10G(t,s)h(s)G(s,τ)h(τ)(φ3(τ)−w(τ))dτds+c4κ22. | (3.22) |
Multiply by ϑ(t) on both sides of (3.22) and integrate over [0,1] and use Lemma 2.2 to obtain
∫10(φ3(t)−w(t))ϑ(t)dt≤e2κ22∫10(φ3(t)−w(t))ϑ(t)dt+c4κ32, |
and we have
∫10(φ3(t)−w(t))ϑ(t)dt≤c4κ321−e2κ22. |
Note that (3.16), w∈P0, and
‖φ3−w‖≤c4κ32κ1(1−e2κ22). |
By the triangle inequality we have
‖φ3‖=‖φ3−w+w‖≤‖φ3−w‖+‖w‖≤c4κ32κ1(1−e2κ22)+Mκ2. |
On the other hand, from (3.20) we have
ζ(ϕ3(t)−w(t))≤∫10G(t,s)h(s)[e2(φ3(s)−w(s))+c4]ds≤∫10ϑ(s)[e2(φ3(s)−w(s))+c4]ds≤c4e2κ321−e2κ22+c4κ2. |
Note that c4e2κ321−e2κ22+c4κ2 is independent to R, and using (H6)(i) there exists Oϕ3>0 such that
‖ϕ3−w‖≤Oϕ3, |
and then
‖ϕ3‖=‖ϕ3−w+w‖≤‖ϕ3−w‖+‖w‖≤Oϕ3+Mκ2. |
Therefore, when φ3,ϕ3∈∂BR∩P, we obtain there is a positive constant to control the norms of φ3,ϕ3. Then if we choose
R2>{OM,h,Oϕ3+Mκ2,˜M,c4κ32κ1(1−e2κ22)+Mκ2}, |
then (3.14) holds, and from Lemma 2.6 we have
i(A,B2R2∩P2,P2)=1. | (3.23) |
From (3.13) and (3.23) we have
i(A,(B2R2∖¯B2OM,h)∩P2,P2)=i(A,B2R2∩P2,P2)−i(A,B2OM,h∩P2,P2)=1−0=1. |
Then the operator A has at least one fixed point (denoted by (u∗∗,v∗∗)) on (B2R2∖¯B2OM,h)∩P2 with u∗∗(t),v∗∗(t)≥w(t),t∈[0,1]. Therefore, (u∗∗−w,v∗∗−w) is a positive solution for (2.2), and (1.1) has at least one positive radial solution.
We now provide some examples to illustrate our main results. Let α=β=γ=δ=1, and k(|z|)=e|z|,z∈Rn. Then (H1) and (H2) hold.
Example 3.1. Let p(ϕ)=ϕ45,q(φ)=φ2,φ,ϕ∈R+. Then lim infz→∞p(LG,hq(z))z=lim infz→∞L45G,hz85z≥∞, and (H4)(i), (iii) hold. If we choose
f(φ,ϕ)=1β1κ2(|sinφ|+1)ϕ−M, g(φ,ϕ)=O1−β3M,hβ2κ2(|cosϕ|+1)φβ3−M,β1,β2>1,β3>2, |
then (H3) holds, and when φ,ϕ∈[0,OM,h], we have
F1(φ,ϕ)=f(φ,ϕ)+M≤OM,hβ1κ2:=Q1, F2(φ,ϕ)=g(φ,ϕ)+M≤O1−β3M,hβ2κ2Oβ3M,h=OM,hβ2κ2:=Q2. |
Hence, (H5) holds. Also we have
lim infϕ→∞f(φ,ϕ)p(ϕ)=lim infϕ→∞1β1κ2(|sinφ|+1)ϕ−Mϕ45=∞, lim infφ→∞g(φ,ϕ)q(φ)=lim infφ→∞O1−β3M,hβ2κ2(|cosϕ|+1)φβ3−Mφ2=∞. |
Then (H4)(ii) holds. As a result, all the conditions in Theorem 3.1 hold, and (1.1) has at least one positive radial solution.
Example 3.2. Let \zeta(\phi) = \phi^2, \eta(\varphi) = \varphi^{\frac{2}{5}} , \varphi, \phi\in \mathbb R^+ . Then \limsup_{z\to\infty}\frac{\zeta(\mathcal {L}_{G, h}\eta(z))}{z} = \limsup_{z\to\infty}\frac{\mathcal {L}^2_{G, h}z^{\frac{4}{5}}}{z} = 0\le e_2\mathcal {L}_{G, h} , and (H7)(i), (iii) hold. If we choose
f(\varphi, \phi) = \widetilde{Q}_{1}+\left(\phi+|\cos \varphi |\right)^{\alpha_{1}}-M, \ g(\varphi, \phi) = \widetilde{Q}_{2}+\left(|\sin \phi|+\varphi\right)^{\alpha_{2}}-M, \varphi, \phi \in \mathbb{R}^{+}, |
where \alpha_{1} \in(0, 2), \alpha_{2} \in\left(0, \frac{2}{5}\right) . Then (H3) holds. Moreover, we have
\mathcal{F}_{1}(\varphi, \phi) = f(\varphi, \phi)+M \geq \widetilde{Q}_{1}, \ \mathcal{F}_{2}(\varphi, \phi) = g(\varphi, \phi)+M \geq \widetilde{Q}_{2}, |
and
\limsup\limits _{\phi \rightarrow \infty} \frac{\widetilde{Q}_{1}-M+\left(\phi+|\cos \varphi |\right)^{\alpha_{1}}}{\phi^2} = 0, \limsup \limits_{\varphi \rightarrow \infty} \frac{\widetilde{Q}_{2}-M+\left(|\sin \phi|+\varphi\right)^{\alpha_{2}}}{\varphi^{\frac{2}{5}}} = 0. |
Therefore, (\mathrm{H} 6) and (\mathrm{H} 7) (ii) hold. As a result, all the conditions in Theorem 3.2 hold, and (1.1) has at least one positive radial solution.
Remark 3.2. Note that condition (HZ)_2 is often used to study various kinds of semipositone boundary value problems (for example, see [19,22,23,26,28,29,30]). However, in Example 3.1 we have
\liminf\limits _{\phi \to +\infty } \frac{f(\varphi, \phi)}{\varphi} = \liminf\limits _{\phi \to +\infty } \frac{\frac{1}{\beta_1\kappa_2(|\sin \varphi|+1)}\phi-M}{\phi} = \frac{1}{2\beta_1\kappa_2}, \forall \varphi\in \mathbb R^+. |
Comparing with (HZ)_2 we see that our theory gives new results for boundary value problem with semipositone nonlinearities.
This research was supported by the National Natural Science Foundation of China (12101086), Changzhou Science and Technology Planning Project (CJ20210133), Natural Science Foundation of Chongqing (cstc2020jcyj-msxmX0123), and Technology Research Foundation of Chongqing Educational Committee (KJQN202000528).
The authors declare no conflict of interest.
[1] |
A. S. Alali, S. Ali, N. Hassan, A. M. Mahnashi, Y. Shang, A. Assiry, Algebraic structure graphs over the commutative ring \mathbb{Z}_m : exploring topological indices and entropies using \mathbb{M}-polynomials, Mathematics, 11 (2023), 3833. https://doi.org/10.3390/math11183833 doi: 10.3390/math11183833
![]() |
[2] |
A. Ali, E. Milovanović, S. Stankov, M. Matejić, I. Milovanović, Inequalities involving the harmonic-arithmetic index, Afr. Mat., 35 (2024), 46. https://doi.org/10.1007/s13370-024-01183-8 doi: 10.1007/s13370-024-01183-8
![]() |
[3] |
A. Ali, S. Sekar, S. Balachandran, S. Elumalai, A. M. Alanazi, T. S. Hassan, et al., Graphical edge-weight-function indices of trees, AIMS Math., 9 (2024), 32552–32570. https://doi.org/10.3934/math.20241559 doi: 10.3934/math.20241559
![]() |
[4] |
R. Aguilar-Sánchez, I. F. Herrera-González, J. A. Méndez-Bermúdez, J. M. Sigarreta, Computational properties of general indices on random networks, Symmetry, 12 (2020), 1341. https://doi.org/10.3390/sym12081341 doi: 10.3390/sym12081341
![]() |
[5] |
G. Britto Antony Xavier, E. Suresh, I. Gutman, Counting relations for general Zagreb indices, Kragujevac J. Math., 38 (2014), 95–103. https://doi.org/10.5937/KGJMATH1401095X doi: 10.5937/KGJMATH1401095X
![]() |
[6] |
W. Carballosa, A. Granados, J. A. Méndez-Bermúdez, D. Pestana, A. Portilla, Computational properties of the arithmetic-geometric index, J. Math. Chem., 60 (2022), 1854–1871. https://doi.org/10.1007/s10910-022-01390-3 doi: 10.1007/s10910-022-01390-3
![]() |
[7] | K. C. Das, On geometric–arithmetic index of graphs, MATCH Commun. Math. Comput. Chem., 64 (2010), 619–630. |
[8] | K. C. Das, I. Gutman, B. Furtula, Survey on geometric-arithmetic indices of graphs, MATCH Commun. Math. Comput. Chem., 65 (2011), 595–644. |
[9] |
K. C. Das, I. Gutman, B. Furtula, On first geometric-arithmetic index of graphs, Discrete Appl. Math., 159 (2011), 2030–2037. https://doi.org/10.1016/j.dam.2011.06.020 doi: 10.1016/j.dam.2011.06.020
![]() |
[10] |
M. Eliasi, A. Iranmanesh, On ordinary generalized geometric-arithmetic index, Appl. Math. Lett., 24 (2011), 582–587. https://doi.org/10.1016/j.aml.2010.11.021 doi: 10.1016/j.aml.2010.11.021
![]() |
[11] |
F. Falahati-Nezhad, M. Azari, T. Došlić, Sharp bounds on the inverse sum indeg index, Discrete Appl. Math., 217 (2017), 185–195. https://doi.org/10.1016/j.dam.2016.09.014 doi: 10.1016/j.dam.2016.09.014
![]() |
[12] | S. Fajtlowicz, On conjectures of Graffiti–Ⅱ, Congr. Numer. 60 (1987), 187–197. |
[13] |
A. Granados, A. Portilla, Y. Quintana, E. Tourís, New bounds for variable topological indices and applications, J. Math. Chem., 62 (2024), 1435–1453. https://doi.org/10.1007/s10910-024-01593-w doi: 10.1007/s10910-024-01593-w
![]() |
[14] | A. Granados, A. Portilla, Y. Quintana, E. Tourís, Bounds for the Gutman-Milovanović index and applications, J. Math. Chem., In press, 2024. https://doi.org/10.1007/s10910-024-01677-7 |
[15] | I. Gutman, M. Matejić, E. Milovanović, I. Milovanović, Lower bounds for inverse sum indeg index of graphs, Kragujevac J. Math., 44 (2020), 551–562. |
[16] |
I. Gutman, E. Milovanović, I. Milovanović, Beyond the Zagreb indices, AKCE Int. J. Graphs Comb., 17 (2020), 74–85. https://doi.org/10.1016/j.akcej.2018.05.002 doi: 10.1016/j.akcej.2018.05.002
![]() |
[17] |
I. Gutman, J. M. Rodríguez, J. M. Sigarreta, Linear and non-linear inequalities on the inverse sum indeg index, Discr. Appl. Math., 258 (2019), 123–134. https://doi.org/10.1016/j.dam.2018.10.041 doi: 10.1016/j.dam.2018.10.041
![]() |
[18] |
I. Gutman, N. Trinajstić, Graph theory and molecular orbitals. Total \pi-electron energy of alternant hydrocarbons, Chem. Phys. Lett., 17 (1972), 535–538. https://doi.org/10.1016/0009-2614(72)85099-1 doi: 10.1016/0009-2614(72)85099-1
![]() |
[19] | V. P. Kulli, On hyper Gourava indices and coindices, Int. J. Math. Arch., 8 (2017), 116–120. |
[20] |
V. P. Kulli, The Gourava indices and coindices of graphs, Ann. Pure Appl. Math., 14 (2017), 33–38. http://dx.doi.org/10.22457/apam.v14n1a4 doi: 10.22457/apam.v14n1a4
![]() |
[21] | V. P. Kulli, The product connectivity Gourava index, J. Comput. Math. Sci., 8 (2017), 235–242. |
[22] |
S. Kumar, P. Sarkar, A. Pal, A study on the energy of graphs and its applications, Polycycl. Aromat. Comp., 44 (2023), 41270–4136. https://doi.org/10.1080/10406638.2023.2245104 doi: 10.1080/10406638.2023.2245104
![]() |
[23] | X. Li, J. Zheng, A unified approach to the extremal trees for different indices, MATCH Commun. Math. Comput. Chem., 54 (2005), 195–208. |
[24] |
B. Lučić, N. Trinajstić, B. Zhou, Comparison between the sum-connectivity index and product-connectivity index for benzenoid hydrocarbons, Chem. Phys. Lett., 475 (2009), 146–148. https://doi.org/10.1016/j.cplett.2009.05.022 doi: 10.1016/j.cplett.2009.05.022
![]() |
[25] | B. Lučić, S. Nikolić, N. Trinajstić, B. Zhou, S. Ivaniš Turk, Sum-connectivity index, In: I. Gutman, B. Furtula, Novel molecular structure descriptors-theory and applications I, Kragujevac, University Kragujevac, 2010,101–136. |
[26] |
A. Martínez-Pérez, J. M. Rodríguez, J. M. Sigarreta, A new approximation to the geometric-arithmetic index, J. Math. Chem., 56 (2018), 1865–1883. https://doi.org/10.1007/s10910-017-0811-3 doi: 10.1007/s10910-017-0811-3
![]() |
[27] | A. Miličević, S. Nikolić, On variable Zagreb indices, Croat. Chem. Acta, 77 (2004), 97–101. |
[28] | S. Noureen, R. Batool, A. M. Albalahi, Y. Shang, T. Alraqad, A. Ali, On tricyclic graphs with maximum atom–bond sum–connectivity index, Heliyon, 10 (2024), e33841. |
[29] | S. Nikolić, G. Kovačević, A. Miličević, N. Trinajstić, The Zagreb indices 30 years after, Croat. Chem. Acta, 76 (2003), 113–124. |
[30] |
K. Pattabiraman, Inverse sum indeg index of graphs, AKCE Int. J. Graphs Combin., 15 (2018), 155–167. https://doi.org/10.1016/j.akcej.2017.06.001 doi: 10.1016/j.akcej.2017.06.001
![]() |
[31] |
J. A. Paz Moyado, Y. Quintana, J. M. Rodríguez, J. M. Sigarreta, New reverse Holder-type inequalities and applications, J. Inequal. Appl., 26 (2023), 1021–1038. https://doi.org/10.7153/mia-2023-26-63 doi: 10.7153/mia-2023-26-63
![]() |
[32] |
M. Randić, Novel graph theoretical approach to heteroatoms in quantitative structure—activity relationships, Chemometri. Intell. Lab. Syst., 10 (1991), 213–227. https://doi.org/10.1016/0169-7439(91)80051-Q doi: 10.1016/0169-7439(91)80051-Q
![]() |
[33] |
M. Randić, On computation of optimal parameters for multivariate analysis of structure-property relationship, J. Conput. Chem., 12 (1991), 970–980. https://doi.org/10.1002/jcc.540120810 doi: 10.1002/jcc.540120810
![]() |
[34] |
M. Randić, D. Plavšić, N. Lerš, Variable connectivity index for cycle-containing structures, J. Chem. Inf. Comput. Sci., 41 (2001), 657–662. https://doi.org/10.1021/ci000118z doi: 10.1021/ci000118z
![]() |
[35] | J. M. Rodríguez, J. M. Sigarreta, On the geometric-arithmetic index, MATCH Commun. Math. Comput. Chem., 74 (2015), 103–120. |
[36] |
J. M. Rodríguez, J. M. Sigarreta, Spectral properties of geometric-arithmetic index, Appl. Math. Comput., 277 (2016), 142–153. https://doi.org/10.1016/j.amc.2015.12.046 doi: 10.1016/j.amc.2015.12.046
![]() |
[37] |
J. M. Sigarreta, Mathematical properties of variable topological indices, Symmetry, 13 (2021), 43. https://doi.org/10.3390/sym13010043 doi: 10.3390/sym13010043
![]() |
[38] | W. Specht, Zer Theorie der elementaren Mittel, Math. Z., 74 (1960), 91–98. |
[39] | M. Tominaga, Specht's ratio in the Young inequality, Sci. Math. Japan, 55 (2002), 583–588. |
[40] | D. Vukičević, M. Gašperov, Bond additive modeling 1. Adriatic indices, Croat. Chem. Acta, 83 (2010), 243–260. |
[41] | D. Vukičević, Bond additive modeling 2. Mathematical properties of max-min rodeg index, Croat. Chem. Acta, 83 (2010), 261–273. |
[42] |
H. Wiener, Structural determination of paraffin boiling points, J. Am. Chem. Soc., 69 (1947), 17–20. https://doi.org/10.1021/ja01193a005 doi: 10.1021/ja01193a005
![]() |
[43] |
B. Zhou, N. Trinajstić, On a novel connectivity index, J. Math. Chem., 46 (2009), 1252–1270. https://doi.org/10.1007/s10910-008-9515-z doi: 10.1007/s10910-008-9515-z
![]() |
[44] |
B. Zhou, N. Trinajstić, On general sum-connectivity index, J. Math. Chem., 47 (2010), 210–218. https://doi.org/10.1007/s10910-009-9542-4 doi: 10.1007/s10910-009-9542-4
![]() |
1. | Ala Amourah, Abdullah Alsoboh, Daniel Breaz, Sheza M. El-Deeb, A Bi-Starlike Class in a Leaf-like Domain Defined through Subordination via q̧-Calculus, 2024, 12, 2227-7390, 1735, 10.3390/math12111735 |