Research article

Randić energies in decision making for human trafficking by interval-valued T-spherical fuzzy Hamacher graphs

  • Published: 25 April 2025
  • MSC : 05C12, 05C72, 90C70

  • The interval-valued ($ IV $) T-spherical fuzzy set $ (IVTSFS) $ appears to be more effective and practical in dealing with uncertainty and ambiguity while dealing with various decision-making ($ DM $) problems than other fuzzy sets, for example, the q-rung ortho-pair fuzzy set, T-spherical fuzzy set, and picture fuzzy set. In real-life problems, where intuitionistic fuzzy sets, interval-valued intuitionistic fuzzy sets, or interval-valued picture fuzzy sets give unsatisfactory results, the $ IVTSFS $ is a mathematical model that is used to deal with such problems where these method fails, and one can handle it efficiently by using $ IVTSFS. $ If there is a different framework that has a base of four opinions — yes, no, abstains, and refusal — the $ IVTSFS $ looks to be the most beneficial, and it is also proven to be so. In this article, an idea of interval-valued T-spherical fuzzy Hamacher graphs $ (IVTSFHGs) $ is proposed, which is based on the Hamacher t-norm ($ TN $) and Hamacher t-conorm ($ TCN $). It provides enhanced discrimination and flexibility in uncertain environments by capturing a broader spectrum of hesitancy and indeterminacy, which other fuzzy models like interval-valued intuitionistic fuzzy set ($ IVIFS $) or picture fuzzy set ($ PFS $) may overlook. This article aims to examine the energy associated with the splitting of $ IVTSFHGs, $ as well as the energy related to shadow $ IVTSFHGs. $ Moreover, the Randić energy of $ IVTSFHGs $ was presented, and an in-depth analysis of its essential outcomes was conducted. Additionally, this study introduces interval-valued T-spherical fuzzy Hamacher digraphs $ (IVTSFHDGs) $ and explores their diverse outcomes. An algorithm involving $ IVTSFHDGs $ was also studied, which is used to propose energies of $ IVTSFHGs $ in $ DM $, problems, and Hamacher aggregation operators. To validate the proposed results, a comparative study is conducted.

    Citation: Ali Ahmad, Humera Rashid, Hamdan Alshehri, Muhammad Kamran Jamil, Haitham Assiri. Randić energies in decision making for human trafficking by interval-valued T-spherical fuzzy Hamacher graphs[J]. AIMS Mathematics, 2025, 10(4): 9697-9747. doi: 10.3934/math.2025446

    Related Papers:

  • The interval-valued ($ IV $) T-spherical fuzzy set $ (IVTSFS) $ appears to be more effective and practical in dealing with uncertainty and ambiguity while dealing with various decision-making ($ DM $) problems than other fuzzy sets, for example, the q-rung ortho-pair fuzzy set, T-spherical fuzzy set, and picture fuzzy set. In real-life problems, where intuitionistic fuzzy sets, interval-valued intuitionistic fuzzy sets, or interval-valued picture fuzzy sets give unsatisfactory results, the $ IVTSFS $ is a mathematical model that is used to deal with such problems where these method fails, and one can handle it efficiently by using $ IVTSFS. $ If there is a different framework that has a base of four opinions — yes, no, abstains, and refusal — the $ IVTSFS $ looks to be the most beneficial, and it is also proven to be so. In this article, an idea of interval-valued T-spherical fuzzy Hamacher graphs $ (IVTSFHGs) $ is proposed, which is based on the Hamacher t-norm ($ TN $) and Hamacher t-conorm ($ TCN $). It provides enhanced discrimination and flexibility in uncertain environments by capturing a broader spectrum of hesitancy and indeterminacy, which other fuzzy models like interval-valued intuitionistic fuzzy set ($ IVIFS $) or picture fuzzy set ($ PFS $) may overlook. This article aims to examine the energy associated with the splitting of $ IVTSFHGs, $ as well as the energy related to shadow $ IVTSFHGs. $ Moreover, the Randić energy of $ IVTSFHGs $ was presented, and an in-depth analysis of its essential outcomes was conducted. Additionally, this study introduces interval-valued T-spherical fuzzy Hamacher digraphs $ (IVTSFHDGs) $ and explores their diverse outcomes. An algorithm involving $ IVTSFHDGs $ was also studied, which is used to propose energies of $ IVTSFHGs $ in $ DM $, problems, and Hamacher aggregation operators. To validate the proposed results, a comparative study is conducted.



    加载中


    [1] L. A. Zadeh, Similarity relations and fuzzy orderings, Inf. Sci., 3 (1971), 177–200. https://doi.org/10.1016/S0020-0255(71)80005-1 doi: 10.1016/S0020-0255(71)80005-1
    [2] L. A. Zadeh, Fuzzy sets, Inf. Control, 8 (1965), 338–353. https://doi.org/10.1016/S00199958(65)90241 doi: 10.1016/S00199958(65)90241
    [3] K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets Syst., 20 (1986), 87–96. https://doi.org/10.1016/S0165-0114(86)80034-3 doi: 10.1016/S0165-0114(86)80034-3
    [4] G. Qian, H. Wang, X. Feng, Generalized hesitant fuzzy sets and their application in decision support system, Knowl. Based Syst., 37 (2013), 357–365. https://doi.org/10.1016/j.knosys.2012.08.019 doi: 10.1016/j.knosys.2012.08.019
    [5] R. R. Yager, Pythagorean membership grades in multicriteria decision making, IEEE Trans. Fuzzy Syst., 22 (2014), 958–965. https://doi.org/10.1109/TFUZZ.2013.2278989 doi: 10.1109/TFUZZ.2013.2278989
    [6] B. C. Cuong, Picture fuzzy sets, J. Comput. Sci. Cybern., 30 (2015), 409–420. https://doi.org/10.15625/1813-9663/30/4/5032 doi: 10.15625/1813-9663/30/4/5032
    [7] W. Yang, Y. Pang, T-spherical fuzzy Bonferroni mean operators and their application in multiple attribute decision making, Mathematics, 10 (2022), 988. https://doi.org/10.3390/math10060988 doi: 10.3390/math10060988
    [8] P. Liu, Z. Ali, T. Mahmood, Novel complex T-spherical fuzzy 2-tuple linguistic Muirhead mean aggregation operators and their application to multi-attribute decision-making, Int. J. Comput. Intell. Syst., 14 (2021), 295–331. https://doi.org/10.2991/ijcis.d.201207.003 doi: 10.2991/ijcis.d.201207.003
    [9] K. Ullah, T. Mahmood, H. Garg, Evaluation of the performance of search and rescue robots using T-spherical fuzzy Hamacher aggregation operators, Int. J. Fuzzy Syst., 22 (2020), 570–582. https://doi.org/10.1007/s40815-020-00803-2 doi: 10.1007/s40815-020-00803-2
    [10] A. Rosenfeld, Fuzzy graphs, In: L. A. Zadeh, K. S. Fu, K. Tanaka, M. Shimura, Fuzzy sets and their applications to cognitive and decision processes, Academic Press, 1975, 77–95. https://doi.org/10.1016/B978-0-12-775260-0.50008-6
    [11] R. Parvathi, M. G. Karunambigai, Intuitionistic fuzzy graphs, In: B. Reusch, Computational intelligence, theory and applications, Springer, 2006. https://doi.org/10.1007/3-540-34783-6_15
    [12] A. N. Gani, S. S. Begum, Degree, order and size in intuitionistic fuzzy graphs, Int. J. Algorithms Comput. Math., 3 (2010), 11–16.
    [13] M. Akram, S. Naz, Energy of Pythagorean fuzzy graphs with applications, Mathematics, 6 (2018), 136. https://doi.org/10.3390/math6080136 doi: 10.3390/math6080136
    [14] H. AlSalman, B. F. Alkhamees, Graphical analysis of q-rung orthopair fuzzy information with application, Math. Probl. Eng., 2022 (2022), 9650995. https://doi.org/10.1155/2022/9650995 doi: 10.1155/2022/9650995
    [15] A. Habib, M. Akram, A. Farooq, q-Rung orthopair fuzzy competition graphs with application in the soil ecosystem, Mathematics, 7 (2019), 91. https://doi.org/10.3390/math7010091 doi: 10.3390/math7010091
    [16] C. Zuo, A. Pal, A. Dey, New concepts of picture fuzzy graphs with application, Mathematics, 7 (2019), 470. https://doi.org/10.3390/math7050470 doi: 10.3390/math7050470
    [17] M. Akram, D. Saleem, T. Al-Hawary, Spherical fuzzy graphs with application to decision-making, Math. Comput. Appl., 25 (2020), 8. https://doi.org/10.3390/mca25010008 doi: 10.3390/mca25010008
    [18] A. Guleria, R. K. Bajaj, T-spherical fuzzy graphs: operations and applications in various selection processes, Arabian J. Sci. Eng., 45 (2020), 2177–2193. https://doi.org/10.1007/s13369-019-04107-y doi: 10.1007/s13369-019-04107-y
    [19] L. Zedam, N. Jan, E. Rak, T. Mahmood, K. Ullah, An approach towards DM and shortest path problems based on T-spherical fuzzy information, Int. J. Fuzzy Syst., 22 (2020), 1521–1534. https://doi.org/10.1007/s40815-020-00820-1 doi: 10.1007/s40815-020-00820-1
    [20] M. Akram, W. A. Dudek, Interval-valued fuzzy graphs, Comput. Math. Appl., 61 (2011), 289–299. https://doi.org/10.1016/j.camwa.2010.11.004
    [21] S. N. Mishra, A. Pal, Product of interval valued intuitionistic fuzzy graph, Ann. Pure Appl. Math., 5 (2013), 37–46.
    [22] P. Xu, H. Guan, A. A. Talebi, M. Ghassemi, H. Rashmanlou, Certain concepts of interval-valued intuitionistic fuzzy graphs with an application, Adv. Math. Phys., 2022 (2022), 6350959. https://doi.org/10.1155/2022/6350959 doi: 10.1155/2022/6350959
    [23] M. Akram, S. Naz, B. Davvaz, Simplified interval-valued Pythagorean fuzzy graphs with application, Complex Intell. Syst., 5 (2019), 229–253. https://doi.org/10.1007/s40747-019-0106-3 doi: 10.1007/s40747-019-0106-3
    [24] A. Habib, M. Akram, A. Farooq, q-Rung orthopair fuzzy competition graphs with application in the soil ecosystem, Mathematics, 7 (2019), 91. https://doi.org/10.3390/math7010091 doi: 10.3390/math7010091
    [25] S. Jayalakshmi, R. Kamali, Interval valued picture fuzzy graphs, AIP Publishing LLC, 2022.
    [26] X. An, L. Du, F. Jiang, Y. Zhang, Z. Deng, J. Kurths, A few-shot identification method for stochastic dynamical systems based on residual multipeaks adaptive sampling, Chaos, 34 (2024), 073118. https://doi.org/ 10.1063/5.0209779 doi: 10.1063/5.0209779
    [27] M. Azeem, Cycle-super magic labeling of polyomino linear and zig-zag chains, J. Oper. Intell., 1 (2023), 1. https://doi.org/10.31181/jopi1120235 doi: 10.31181/jopi1120235
    [28] A. Ahmad, A. N. A. Koam, M. H. F. Siddiqui, M. Azeem, Resolvability of the starphene structure and applications in electronics, Ain Shams Eng. J., 13 (2022), 101587. https://doi.org/10.1016/j.asej.2021.09.014 doi: 10.1016/j.asej.2021.09.014
    [29] M. Nazar, M. Azeem, M. K. Jamil, Localisation of honeycomb rectangular torus, Molecular Phys., 122 (2024), e2252530. https://doi.org/10.1080/00268976.2023.2252530 doi: 10.1080/00268976.2023.2252530
    [30] M. Azeem, M. K. Jamil, Y. Shang, Notes on the localization of generalized hexagonal cellular networks, Mathematics, 11 (2023), 844. https://doi.org/10.3390/math11040844 doi: 10.3390/math11040844
    [31] M. F. Nadeem, M. Azeem, A. Khalil, The locating number of hexagonal Mobius ladder network, J. Appl. Math. Comput., 66 (2021), 149–165. https://doi.org/10.1007/s12190-020-01430-8 doi: 10.1007/s12190-020-01430-8
    [32] A. N. Koam, A. Ahmad, M. E. Abdelhag, M. Azeem, Metric and fault-tolerant metric dimension of hollow coronoid, IEEE Access, 9 (2021), 81527–81534. https://doi.org/10.1109/ACCESS.2021.3085584 doi: 10.1109/ACCESS.2021.3085584
    [33] S. Bukhari, M. K. Jamil, M. Azeem, S. Swaray, Patched network and its vertex-edge metric-based dimension, IEEE Access, 11 (2023), 4478–4485. https://doi.org/10.1109/ACCESS.2023.3235398 doi: 10.1109/ACCESS.2023.3235398
    [34] M. F. Nadeem, A. Shabbir, M. Azeem, On metric dimension and fault tolerant metric dimension of some chemical structures, Polycycl. Aromatic Comp., 42 (2022), 6975–6987. https://doi.org/10.1080/10406638.2021.1994429 doi: 10.1080/10406638.2021.1994429
    [35] A. N. Koam, A. Ahmad, M. Ibrahim, M. Azeem, Edge metric and fault-tolerant edge metric dimension of hollow coronoid, Mathematics, 9 (2021), 1405. https://doi.org/10.3390/math9121405 doi: 10.3390/math9121405
    [36] S. Bukhari, M. K. Jamil, M. Azeem, Vertex-edge based resolvability parameters of vanadium carbide network with an application, Molecular Phys., 122 (2023), e2260899. https://doi.org/10.1080/00268976.2023.2260899 doi: 10.1080/00268976.2023.2260899
    [37] M. Azeem, M. K. Jamil, A. Javed, A. Ahmed, Verification of some topological indices of $Y$-junction based nanostructures by M-polynomials, J. Math., 2022 (2022), 8238651. https://doi.org/10.1155/2022/8238651 doi: 10.1155/2022/8238651
    [38] I. Gutman, X. Li, J. Zhang, Graph energy, In: M. Dehmer, F. Emmert-Streib, Analysis of complex networks: from biology to linguistics, Wiley, 2009,145–174.
    [39] Z. Q. Chu, S. Nazeer, T. J. Zia, I. Ahmed, S. Shahid, Some new results on various graph energies of the splitting graph, J. Chem., 2019 (2019), 7214047. https://doi.org/10.1155/2019/7214047 doi: 10.1155/2019/7214047
    [40] C. Y. Liu, X. L. Mao, R. Greif, R. E. Russo, Time resolved shadowgraph images of silicon during laser ablation: Shockwaves and particle generation, J. Phys., 59 (2007), 338. https://doi.org/10.1088/1742-6596/59/1/071 doi: 10.1088/1742-6596/59/1/071
    [41] I. Gutman, B. Zhou, Laplacian energy of a graph, Linear Algebra Appl., 414 (2006), 29–37. https://doi.org/10.1016/j.laa.2005.09.008 doi: 10.1016/j.laa.2005.09.008
    [42] N. Anjali, S. Mathew, Energy of a fuzzy graph, Ann. Fuzzy Math. Inf., 6 (2013), 455–465.
    [43] S. S. Rahimi, F. Fayazi, Laplacian energy of a fuzzy graph, Iran. J. Math. Chem., 5 (2014), 1.
    [44] S. S. Basha, E. Kartheek, Laplacian energy of an intuitionistic fuzzy graph, Indian J. Sci. Technol., 8 (2015), 79899. https://doi.org/10.17485/ijst/2015/v8i33/79899 doi: 10.17485/ijst/2015/v8i33/79899
    [45] H. Hamacher, Über logische Verknüpfungen unscharfer Aussagen und deren zugehörige Bewertungsfunktionen, RWTH Aachen, 1975.
    [46] K. Asif, M. K. Jamil, H. Karamti, M. Azeem, K. Ullah, Randić energies for T-spherical fuzzy Hamacher graphs and their applications in decision making for business plans, Comput. Appl. Math., 42 (2023), 106. https://doi.org/10.1007/s40314-023-02243-8 doi: 10.1007/s40314-023-02243-8
    [47] C. Jiang, S. Jiang, J. Chen, Interval-valued dual hesitant fuzzy Hamacher aggregation operators for multiple attribute decision making, J. Syst. Sci. Inf., 7 (2019), 227–256. https://doi.org/10.21078/JSSI-2019-227-30 doi: 10.21078/JSSI-2019-227-30
    [48] P. Liu, Some Hamacher aggregation operators based on the interval-valued intuitionistic fuzzy numbers and their application to group decision making, IEEE Trans. Fuzzy Syst., 22 (2013), 83–97. https://doi.org/10.1109/TFUZZ.2013.2248736 doi: 10.1109/TFUZZ.2013.2248736
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(797) PDF downloads(44) Cited by(0)

Article outline

Figures and Tables

Figures(4)  /  Tables(14)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog