The complex interval-valued Atanassov intuitionistic fuzzy set theory is an advanced modification of traditional fuzzy information that combines elements of both interval-valued fuzzy information and Atanassov intuitionistic fuzzy set theory, and incorporates complex numbers. Additionally, aggregating a finite number of alternatives into a singleton set is very important, where the Hamy mean operator and prioritized aggregation operator are much more suitable and flexible for depicting such kinds of problems. Our main goal of this manuscript was to analyze the Dombi operational laws based on complex interval-valued Atanassov intuitionistic fuzzy numbers. Further, the prioritized Hamy mean operators based on Dombi operational laws for complex interval-valued Atanassov intuitionistic fuzzy values, called the complex interval-valued Atanassov intuitionistic fuzzy Dombi Hamy mean operator, complex interval-valued Atanassov intuitionistic fuzzy weighted Dombi prioritized Hamy mean operator, complex interval-valued Atanassov intuitionistic fuzzy Dombi Dual Hamy mean operator, and complex interval-valued Atanassov intuitionistic fuzzy weighted Dombi Dual prioritized Hamy mean operator, were proposed. Some dominant and flexible properties of the evaluated operators were also examined. Further, in some multi-attribute decision-making problems, biased conclusions may be produced due to the deficiency of consideration for many relationships between the criteria of decision-making. Therefore, to evaluate the proficiency and reliability of the proposed operators, the multi-attribute decision-making technique based on derived operators for complex interval-valued Atanassov intuitionistic fuzzy values was developed. Finally, the proposed method with some prevailing techniques was compared to show its advantages and benefits.
Citation: Shichao Li, Zeeshan Ali, Peide Liu. Prioritized Hamy mean operators based on Dombi t-norm and t-conorm for the complex interval-valued Atanassov-Intuitionistic fuzzy sets and their applications in strategic decision-making problems[J]. AIMS Mathematics, 2025, 10(3): 6589-6635. doi: 10.3934/math.2025302
[1] | Ghulam Farid, Maja Andrić, Maryam Saddiqa, Josip Pečarić, Chahn Yong Jung . Refinement and corrigendum of bounds of fractional integral operators containing Mittag-Leffler functions. AIMS Mathematics, 2020, 5(6): 7332-7349. doi: 10.3934/math.2020469 |
[2] | Hengxiao Qi, Muhammad Yussouf, Sajid Mehmood, Yu-Ming Chu, Ghulam Farid . Fractional integral versions of Hermite-Hadamard type inequality for generalized exponentially convexity. AIMS Mathematics, 2020, 5(6): 6030-6042. doi: 10.3934/math.2020386 |
[3] | Ghulam Farid, Saira Bano Akbar, Shafiq Ur Rehman, Josip Pečarić . Boundedness of fractional integral operators containing Mittag-Leffler functions via (s,m)-convexity. AIMS Mathematics, 2020, 5(2): 966-978. doi: 10.3934/math.2020067 |
[4] | Ye Yue, Ghulam Farid, Ayșe Kübra Demirel, Waqas Nazeer, Yinghui Zhao . Hadamard and Fejér-Hadamard inequalities for generalized k-fractional integrals involving further extension of Mittag-Leffler function. AIMS Mathematics, 2022, 7(1): 681-703. doi: 10.3934/math.2022043 |
[5] | Maryam Saddiqa, Ghulam Farid, Saleem Ullah, Chahn Yong Jung, Soo Hak Shim . On Bounds of fractional integral operators containing Mittag-Leffler functions for generalized exponentially convex functions. AIMS Mathematics, 2021, 6(6): 6454-6468. doi: 10.3934/math.2021379 |
[6] | Yue Wang, Ghulam Farid, Babar Khan Bangash, Weiwei Wang . Generalized inequalities for integral operators via several kinds of convex functions. AIMS Mathematics, 2020, 5(5): 4624-4643. doi: 10.3934/math.2020297 |
[7] | Wenfeng He, Ghulam Farid, Kahkashan Mahreen, Moquddsa Zahra, Nana Chen . On an integral and consequent fractional integral operators via generalized convexity. AIMS Mathematics, 2020, 5(6): 7632-7648. doi: 10.3934/math.2020488 |
[8] | Maryam Saddiqa, Saleem Ullah, Ferdous M. O. Tawfiq, Jong-Suk Ro, Ghulam Farid, Saira Zainab . k-Fractional inequalities associated with a generalized convexity. AIMS Mathematics, 2023, 8(12): 28540-28557. doi: 10.3934/math.20231460 |
[9] | Ghulam Farid, Hafsa Yasmeen, Hijaz Ahmad, Chahn Yong Jung . Riemann-Liouville Fractional integral operators with respect to increasing functions and strongly (α,m)-convex functions. AIMS Mathematics, 2021, 6(10): 11403-11424. doi: 10.3934/math.2021661 |
[10] | Sabir Hussain, Rida Khaliq, Sobia Rafeeq, Azhar Ali, Jongsuk Ro . Some fractional integral inequalities involving extended Mittag-Leffler function with applications. AIMS Mathematics, 2024, 9(12): 35599-35625. doi: 10.3934/math.20241689 |
The complex interval-valued Atanassov intuitionistic fuzzy set theory is an advanced modification of traditional fuzzy information that combines elements of both interval-valued fuzzy information and Atanassov intuitionistic fuzzy set theory, and incorporates complex numbers. Additionally, aggregating a finite number of alternatives into a singleton set is very important, where the Hamy mean operator and prioritized aggregation operator are much more suitable and flexible for depicting such kinds of problems. Our main goal of this manuscript was to analyze the Dombi operational laws based on complex interval-valued Atanassov intuitionistic fuzzy numbers. Further, the prioritized Hamy mean operators based on Dombi operational laws for complex interval-valued Atanassov intuitionistic fuzzy values, called the complex interval-valued Atanassov intuitionistic fuzzy Dombi Hamy mean operator, complex interval-valued Atanassov intuitionistic fuzzy weighted Dombi prioritized Hamy mean operator, complex interval-valued Atanassov intuitionistic fuzzy Dombi Dual Hamy mean operator, and complex interval-valued Atanassov intuitionistic fuzzy weighted Dombi Dual prioritized Hamy mean operator, were proposed. Some dominant and flexible properties of the evaluated operators were also examined. Further, in some multi-attribute decision-making problems, biased conclusions may be produced due to the deficiency of consideration for many relationships between the criteria of decision-making. Therefore, to evaluate the proficiency and reliability of the proposed operators, the multi-attribute decision-making technique based on derived operators for complex interval-valued Atanassov intuitionistic fuzzy values was developed. Finally, the proposed method with some prevailing techniques was compared to show its advantages and benefits.
The theory of inequalities of convex functions is part of the general subject of convexity since a convex function is one whose epigraph is a convex set. Nonetheless it is a theory important per se, which touches almost all branches of mathematics. Probably, the first topic who make necessary the encounter with this theory is the graphical analysis. With this occasion we learn on the second derivative test of convexity, a powerful tool in recognizing convexity. Then comes the problem of finding the extremal values of functions of several variables and the use of Hessian as a higher dimensional generalization of the second derivative. Passing to optimization problems in infinite dimensional spaces is the next step, but despite the technical sophistication in handling such problems, the basic ideas are pretty similar with those underlying the one variable case.
The objective of this paper is to present the fractional Hadamard and Fejér-Hadamard inequalities in generalized forms. We start from the integral operators containing generalized Mittag-Leffler function defined by Prabhaker in [25].
Definition 1.1. Let σ,τ,ρ be positive real numbers and ω∈R. Then the generalized fractional integral operators containing Mittag-Leffler function ϵρσ,τ,ω,a+f and ϵρσ,τ,ω,b−f for a real valued continuous function f are defined by:
(ϵρσ,τ,ω,a+f)(x)=∫xa(x−t)τ−1Eρσ,τ(ω(x−t)σ)f(t)dt, | (1.1) |
(ϵρσ,τ,ω,b−f)(x)=∫bx(t−x)τ−1Eρσ,τ(ω(t−x)σ)f(t)dt, | (1.2) |
where the function Eρσ,τ(t) is the generalized Mittag-Leffler function; Eρσ,τ(t)=∑∞n=0(ρ)ntnΓ(σn+τ)n! and (ρ)n=Γ(ρ+n)Γ(ρ).
Fractional integral operators associated with generalized Mittag-Leffler function play a vital role in fractional calculus. Different fractional integral operators have different types of properties and these integral operators may be singular or non-singular depending upon their kernels. For example, the global Riemann Liouville integral is a singular integral operator but the singularity is integrable. Some new models [2,7] have been designed due to the non-singularity of their defining integrals. Fractional integral operators are useful in the generalization of classical mathematical concepts. Fractional integral operators are very fruitful in obtaining fascinating and glorious results, for example fractional order systems and fractional differential equations are used in physical and mathematical phenomena. Many inequalities like Hadamard are studied in the context of fractional calculus operators, see [1,6,8,20,28].
After the existence of Prabhaker fractional integral operators, the researchers began to think in this direction and consequently they further generalized and extended these operators in different ways for instance see [14,18,23,29], and references therein. By using the Mittag-Leffler function these fractional integral operators are generalized by many authors. In [27] Salim and Faraj defined the following fractional integral operators involving an extended Mittag-Leffler function in the kernel.
Definition 1.2. Let σ,τ,k,δ,ρ be positive real numbers and ω∈R. Then the generalized fractional integral operators containing Mittag-Leffler function ϵρ,r,kσ,τ,δ,ω,a+f and ϵρ,r,kσ,τ,δ,ω,b−f for a real valued continuous function f are defined by:
(ϵρ,r,kσ,τ,δ,ω,a+f)(x)=∫xa(x−t)τ−1Eρ,r,kσ,τ,δ(ω(x−t)σ)f(t)dt, | (1.3) |
(ϵρ,r,kσ,τ,δ,ω,b−f)(x)=∫bx(t−x)τ−1Eρ,r,kσ,τ,δ(ω(t−x)σ)f(t)dt, | (1.4) |
where the function Eρ,r,kσ,τ,δ(t) is the generalized Mittag-Leffler function; Eρ,r,kσ,τ,δ(t)=∑∞n=0(ρ)kntnΓ(σn+τ)(r)δn and (ρ)kn=Γ(ρ+kn)Γ(ρ).
Further fractional integral operators containing an extended generalized Mittag-Leffler function in their kernels are defined as follows:
Definition 1.3. [18] Let ω,τ,δ,ρ,c∈C, p,σ,r≥0 and 0<k≤r+σ. Let f∈L1[a,b] and x∈[a,b]. Then the generalized fractional integral operators ϵρ,r,k,cσ,τ,δ,ω,a+f and ϵρ,r,k,cσ,τ,δ,ω,b−f are defined by:
(ϵρ,r,k,cσ,τ,δ,ω,a+f)(x;p)=∫xa(x−t)τ−1Eρ,r,k,cσ,τ,δ(ω(x−t)σ;p)f(t)dt, | (1.5) |
(ϵρ,r,k,cσ,τ,δ,ω,b−f)(x;p)=∫bx(t−x)τ−1Eρ,r,k,cσ,τ,δ(ω(t−x)σ;p)f(t)dt, | (1.6) |
where
Eρ,r,k,cσ,τ,δ(t;p)=∞∑n=0βp(ρ+nk,c−ρ)(c)nktnβ(ρ,c−ρ)Γ(σn+τ)(δ)nr, | (1.7) |
is the extended generalized Mittag-Leffler function.
Recently, Farid et al. defined a unified integral operator in [14] (see also [22]) as follows:
Definition 1.4. Let f,g:[a,b]→R, 0<a<b be the functions such that f be positive and f∈L1[a,b] and g be a differentiable and strictly increasing. Also let ϕx be an increasing function on [a,∞) and ω,τ,δ,ρ,c∈C, ℜ(τ),ℜ(δ)>0, ℜ(c)>ℜ(ρ)>0 with p≥0, σ,r>0 and 0<k≤r+σ. Then for x∈[a,b] the integral operators (gFϕ,ρ,r,k,cσ,τ,δ,ω,a+f) and (gFϕ,ρ,r,k,cσ,τ,δ,ω,b−f) are defined by:
(gFϕ,ρ,r,k,cσ,τ,δ,ω,a+f)(x;p)=∫xaϕ(g(x)−g(t))g(x)−g(t)Eρ,r,k,cσ,τ,δ(ω(g(x)−g(t))σ;p)f(t)d(g(t)), | (1.8) |
(gFϕ,ρ,r,k,cσ,τ,δ,ω,b−f)(x;p)=∫bxϕ(g(t)−g(x))g(t)−g(x)Eρ,r,k,cσ,τ,δ(ω(g(t)−g(x))σ;p)f(t)d(g(t)). | (1.9) |
The following definition of generalized fractional integral operator containing extended Mittag-Leffler function in the kernel can be extracted by setting ϕ(x)=xτ in Definition 1.4.
Definition 1.5. Let f,g:[a,b]→R, 0<a<b be the functions such that f be positive and f∈L1[a,b] and g be a differentiable and strictly increasing. Also let ω,τ,δ,ρ,c∈C, ℜ(τ),ℜ(δ)>0, ℜ(c)>ℜ(ρ)>0 with p≥0, σ,r>0 and 0<k≤r+σ. Then for x∈[a,b] the integral operators are defined by:
(gΥρ,r,k,cσ,τ,δ,ω,a+f)(x;p)=∫xa(g(x)−g(t))τ−1Eρ,r,k,cσ,τ,δ(ω(g(x)−g(t))σ;p)f(t)d(g(t)), | (1.10) |
(gΥρ,r,k,cσ,τ,δ,ω,b−f)(x;p)=∫bx(g(t)−g(x))τ−1Eρ,r,k,cσ,τ,δ(ω(g(t)−g(x))σ;p)f(t)d(g(t)). | (1.11) |
The following remark provides some connection of Definition 1.5 with already known operators:
Remark 1. (ⅰ) If we take p=0 and g(x)=x in equation (1.10), then it reduces to the fractional integral operators defined by Salim and Faraj in [27].
(ⅱ) If we take δ=r=1 and g(x)=x in (1.10), then it reduces to the fractional integral operators gΥρ,1,k,cσ,τ,1,ω,a+ and gΥρ,1,k,cσ,τ,1,ω,b− containing generalized Mittag-Leffler function Eρ,1,k,cσ,τ,1(t;p) defined by Rahman et al. in [26].
(ⅲ) If we set p=0,δ=r=1 and g(x)=x in (1.10), then it reduces to integral operators containing extended generalized Mittag-Leffler function introduced by Srivastava and Tomovski in [29].
(ⅳ) If we take p=0,δ=r=k=1 and g(x)=x, (1.10) reduces to integral operators defined by Prabhaker in [25] containing generalized Mittag-Leffler function.
(ⅴ) For p=ω=0 and g(x)=x in (1.10), then generalized fractional integral operators gΥρ,r,k,cσ,τ,δ,ω,a+ and gΥρ,r,k,cσ,τ,δ,ω,b− reduce to Riemann-Liouville fractional integral operators.
Our aim in this paper is to establish Hadamard and Fejér-Hadamard inequalities for generalized fractional integral operators containing extended generalized Mittag-Leffler function for a monotone increasing function via m-convex functions.
More than a hundred years ago, the mathematicians introduced the convexity and they established a lot of inequalities for the class of convex functions. The convex functions are playing a significant and a tremendous role in fractional calculus. Convexity has been widely employed in many branches of mathematics, for instance, in mathematical analysis, optimization theory, function theory, functional analysis and so on. Recently, many authors and researchers have given their attention to the generalizations, extensions, refinements of convex functions in multi-directions.
Definition 1.6. A function f:[a,b]→R is said to be convex if
f(tx+(1−t)y)≤tf(x)+(1−t)f(y) |
holds for all x,y∈[a,b] and t∈[0,1].
The m-convex function is a close generalization of convex function and its concept was introduced by Toader [30].
Definition 1.7. A function f:[0,b]→R, b>0 is said to be m-convex if for all x,y∈[0,b] and t∈[0,1]
f(tx+m(1−t)y)≤tf(x)+m(1−t)f(y) |
holds for m∈[0,1].
If we take m=1, we get the definition for convex function. An m-convex function need not be a convex function.
Example 1. [24] A function f:[0,∞)→R defined by f(x)=x4−5x3+9x2−5x is 1617-convex but it is not m-convex for m∈(1617,1].
A lot of results and inequalities pertaining to convex, m-convex and related functions have been produced (see, [11,12,13,14,15,16,17,18,19,20] and references therein). Many fractional integral inequalities like Hadamard and Fejér-Hadamard are very important and researchers have produced their generalizations and refinements (see, [5] and references therein). Fractional inequalities have many applications, for instance, the most fruitful ones are used in establishing uniqueness of solutions of fractional boundary value problems and fractional partial differential equations. For instance the following Hadamard inequality is given in [21]:
Theorem 1.8. Let f:[0,∞)→R, be positive real function. Let a,b∈[0,∞) with a<mb and f∈L1[a,mb]. If f is m-convex on [a,mb], then the following inequalities for the extended generalized fractional integrals hold:
f(a+mb2)(ϵω′,ρ,r,k,ca+,σ,τ,δ1)(mb;p)≤(ϵω′,ρ,r,k,ca+,σ,τ,δf)(mb;p)+mτ+1(ϵmσω′,ρ,r,k,cb−,σ,τ,δf)(am;p)2≤mτ+12[f(a)−m2f(am2)mb−a(ϵmσω′,ρ,r,k,cb−,σ,τ+1,δ1)(am;p)+(f(b)+mf(am2))(ϵmσω′,ρ,r,k,cb−,σ,τ,δ1)(am;p)],ω′=ω(mb−a)σ. |
In the upcoming section we will derive the Hadamard inequality for m-convex functions by means of fractional integrals (1.10) and (1.11). This version of the Hadamard inequality gives at once the Hadamard inequalities quoted in Section 2. Further we will establish the Fejér-Hadamard inequality for these operators of m-convex functions which will provide the corresponding inequalities proved in [31]. Moreover in Section 3 by establishing two identities error estimations of the Hadamard and the Fejér-Hadamard inequalities are obtained.
Theorem 2.1. Let f,g:[a,b]→R, 0<a<b, Range (g) ⊂[a,b], be the functions such that f be positive and f∈L1[a,b], g be differentiable and strictly increasing. If f be m-convex m∈(0,1] and g(a)<mg(b), then the following inequalities for fractional operators (1.10) and (1.11) hold:
f(g(a)+mg(b)2)(gΥρ,r,k,cσ,τ,δ,ω′,a+1)(g−1(mg(b));p)≤(gΥρ,r,k,cσ,τ,δ,ω′,a+(f∘g))(g−1(mg(b));p)+mτ+1(gΥρ,r,k,cσ,τ,δ,mσω′,b−(f∘g))(g−1(g(a)m);p)2≤mτ+12[f(g(a))−m2f(g(a)m2)mg(b)−g(a)(gΥρ,r,k,cσ,τ+1,δ,mσω′,b−1)(g−1(g(a)m);p)+(f(g(b))+mf(g(a)m2))(gΥρ,r,k,cσ,τ,δ,mσω′,b−1)(g−1(g(a)m);p)],ω′=ω(mg(b)−g(a))σ. |
Proof. By definition of m-convex function f, we have
2f(g(a)+mg(b)2)≤f(tg(a)+m(1−t)g(b))+mf(tg(b)+(1−t)g(a)m). | (2.1) |
Further from (2.1), one can obtain the following integral inequality:
2f(g(a)+mg(b)2)∫10tτ−1Eρ,r,k,cσ,τ,δ(ωtσ;p)dt≤∫10tτ−1Eρ,r,k,cσ,τ,δ(ωtσ;p)f(tg(a)+m(1−t)g(b))dt+m∫10tτ−1Eρ,r,k,cσ,τ,δ(ωtσ;p)f(tg(b)+(1−t)g(a)m)dt. | (2.2) |
Setting g(x)=tg(a)+m(1−t)g(b) and g(y)=tg(b)+(1−t)g(a)m in (2.2), we get the following inequality:
2f(g(a)+mg(b)2)(gΥρ,r,k,cσ,τ,δ,ω′,a+1)(g−1(mg(b));p)≤(gΥρ,r,k,cσ,τ,δ,ω′,a+(f∘g))(g−1(mg(b));p)+mτ+1(gΥρ,r,k,cσ,τ,δ,mσω′,b−(f∘g))(g−1(g(a)m);p). | (2.3) |
Also by using the m-convexity of f, one can has
f(tg(a)+m(1−t)g(b))+mf(tg(b)+(1−t)g(a)m)≤m(f(g(b))+mf(g(a)m2))+(f(g(a))−m2f(g(a)m2))t. | (2.4) |
This leads to the following integral inequality:
∫10tτ−1Eρ,r,k,cσ,τ,δ(ωtσ;p)f(tg(a)+m(1−t)g(b))dt+m∫10tτ−1Eρ,r,k,cσ,τ,δ(ωtσ;p)f(tg(b)+(1−t)g(a)m)dt≤m(f(g(b))+mf(g(a)m2))∫10tτ−1Eρ,r,k,cσ,τ,δ(ωtσ;p)dt+(f(g(a))−m2f(g(a)m2))∫10tτEρ,r,k,cσ,τ,δ(ωtσ;p)dt. | (2.5) |
Again by setting g(x)=tg(a)+m(1−t)g(b), g(y)=tg(b)+(1−t)g(a)m in (2.5) and after calculation, we get
(gΥρ,r,k,cσ,τ,δ,ω′,a+(f∘g))(g−1(mg(b));p)+mτ+1(gΥρ,r,k,cσ,τ,δ,mσω′,b−(f∘g))(g−1(g(a)m);p)≤mτ+1(f(g(a))−m2f(g(a)m2)mg(b)−g(a)(gΥρ,r,k,cσ,τ+1,δ,mσω′,b−1)(g−1(g(a)m);p)+(f(g(b))+mf(g(a)m2))(gΥρ,r,k,cσ,τ,δ,mσω′,b−1)(g−1(g(a)m);p)). | (2.6) |
Combining (2.3) and (2.6) we get the desired result.
Remark 2. ● In Theorem 2.1, if we put m=1, we get [31,Theorem 3.1]
● In Theorem 2.1, if we put g=I, we get [21,Theorem 3.1].
The following theorem gives the Fejér-Hadamard inequality for m-convex functions.
Theorem 2.2. Let f,g,h:[a,b]→R, 0<a<b, Range (g), be the functions such that f be positive and f∈L1[a,b], g be a differentiable and strictly increasing and h be integrable and non-negative. If f is m-convex, m∈(0,1], g(a)<mg(b) and g(a)+mg(b)−mg(x)=g(x), then the following inequalities for fractional operator (1.11) hold:
2f(g(a)+mg(b)2)(gΥρ,r,k,cσ,τ,δ,ω′,mb−h∘g)(g−1(g(a)m);p)≤(1+m)(gΥρ,r,k,cσ,τ,δ,ω′,b−(f∘g)(h∘g))(g−1(g(a)m);p)≤f(g(a))−m2f(g(a)m2)(g(b)−g(a)m)(gΥρ,r,k,cσ,τ,δ,ω′,b−h∘g)(g−1(g(a)m);p)+m(f(g(b))+mf(g(a)m2))(gΥρ,r,k,cσ,τ,δ,ω′,b−h∘g)(g−1(g(a)m);p),ω′=ω(g(b)−g(a)m)σ. |
Proof. Multiplying both sides of (2.1) by 2tτ−1h(tg(b)+(1−t)g(a)m)Eρ,r,k,cσ,τ,δ(ωtσ;p) and integrating on [0,1], we get
2f(g(a)+mg(b)2)∫10tτ−1h(tg(b)+(1−t)g(a)m)Eρ,r,k,cσ,τ,δ(ωtσ;p)dt≤∫10tτ−1h(tg(b)+(1−t)g(a)m)Eρ,r,k,cσ,τ,δ(ωtσ;p)f(tg(a)+m(1−t)g(b))dt+m∫10tτ−1h(tg(b)+(1−t)g(a)m)Eρ,r,k,cσ,τ,δ(ωtσ;p)f(tg(b)+(1−t)g(a)m)dt. | (2.7) |
Setting g(x)=tg(b)+(1−t)g(a)m and also using g(a)+mg(b)−mg(x)=g(x) the following inequality is obtained:
2f(g(a)+mg(b)2)(gΥρ,r,k,cσ,τ,δ,ω′,b−h∘g)(g−1(g(a)m);p)≤(1+m)(gΥρ,r,k,cσ,τ,δ,ω′,b−(f∘g)(h∘g))(g−1(g(a)m);p). | (2.8) |
Multiplying both sides of inequality (2.4) with tτ−1h(tg(b)+(1−t)g(a)m)Eρ,r,k,cσ,τ,δ(ωtσ;p) and integrating on [0,1], then setting g(x)=tg(b)+(1−t)g(a)m and also using g(a)+mg(b)−mg(x)=g(x) we have
(1+m)(gΥρ,r,k,cσ,τ,δ,ω′,b−(f∘g)(h∘g))(g−1(g(a)m);p)≤(f(g(a))−m2f(g(a)m2))g((b)−g(a)m)(gΥρ,r,k,cσ,τ,δ,ω′,b−h∘g)(g−1(g(a)m);p)+m(f(g(b))+mf(g(a)m2))(gΥρ,r,k,cσ,τ,δ,ω′,b−h∘g)(g−1(g(a)m);p). | (2.9) |
Combining (2.8) and (2.9) we get the desired result.
Remark 3. ● In Theorem 2.2, if we put m=1, then we get [31,Theorem 3.2].
● In Theorem 2.2, if we put g=I and p=0, then we get results of [3].
● In Theorem 2.2, if we put g=I, then we get results of [4].
To find error estimates first we prove the following two lemmas.
Lemma 3.1. Let f,g:[a,mb]→R, 0<a<mb, Range (g) ⊂[a,mb] be the functions such that f be positive and f∘g∈L1[a,mb] and g be a differentiable and strictly increasing. Also if f(g(x))=f(g(a)+g(mb)−g(x)), then the following equality for fractional operators (1.10) and (1.11) holds:
(gΥρ,r,k,cσ,τ,δ,ω,a+f∘g)(mb;p)=(gΥρ,r,k,cσ,τ,δ,ω,mb−f∘g)(a;p)=(gΥρ,r,k,cσ,τ,δ,ω,a+f∘g)(mb;p)+(gΥρ,r,k,cσ,τ,δ,ω,mb−f∘g)(a;p)2. | (3.1) |
Proof. By Definition 1.5 of the generalized fractional integral operator containing extended generalized Mittag-Leffler function, we have
(gΥρ,r,k,cσ,τ,δ,ω,a+f∘g)(mb;p)=∫mba(g(mb)−g(x))τ−1Eρ,r,k,cσ,τ,δ(ω(g(mb)−g(x))σ;p)f(g(x))d(g(x)). | (3.2) |
Replacing g(x) by g(a)+g(mb)−g(x) in (3.2) and using f(g(x))=f(g(a)+g(mb)−g(x)), we have
(gΥρ,r,k,cσ,τ,δ,ω,a+f∘g)(mb;p)=∫mba(g(x)−g(a))τ−1Eρ,r,k,cσ,τ,δ(ω(g(x)−g(a))σ;p)f(g(x))d(g(x)). |
This implies
(gΥρ,r,k,cσ,τ,δ,ω,a+f∘g)(mb;p)=(gΥρ,r,k,cσ,τ,δ,ω,mb−f∘g)(a;p). | (3.3) |
By adding (3.2) and (3.3), we get (3.1).
Lemma 3.2. Let f,g,h:[a,mb]→R, 0<a<mb, Range (g), Range (h) ⊂[a,mb] be the functions such that f be positive and f∘g,h∘g∈L1[a,mb], g be a differentiable and strictly increasing and h be non-negative and continuous. If f′∘g∈L1[a,mb] and h(g(t))=h(g(a)+g(mb)−g(t)), then the following equality for the generalized fractional integral operators (1.10) and (1.11) holds:
f(g(a))+f(g(mb))2[(gΥρ,r,k,cσ,τ,δ,ω,a+h∘g)(mb;p)+(gΥρ,r,k,cσ,τ,δ,ω,mb−h∘g)(a;p)] | (3.4) |
−[(gΥρ,r,k,cσ,τ,δ,ω,a+(f∘g)(h∘g))(mb;p)+(gΥρ,r,k,cσ,τ,δ,ω,mb−(f∘g)(h∘g))(a;p)]=∫mba[∫ta(g(mb)−g(s))τ−1Eρ,r,k,cσ,τ,δ(ω(g(mb)−g(s))σ;p)h(g(s))d(g(s))−∫mbt(g(s)−g(a))τ−1Eρ,r,k,cσ,τ,δ(ω(g(s)−g(a))σ;p)h(g(s))d(g(s))]f′(g(t))d(g(t)). |
Proof. To prove the lemma, we have
∫mba[∫ta(g(mb)−g(s))τ−1Eρ,r,k,cσ,τ,δ(ω(g(mb)−g(s))σ;p)h(g(s))d(g(s))]f′(g(t))d(g(t))=f(g(mb))∫mba(g(mb)−g(s))τ−1Eρ,r,k,cσ,τ,δ(ω(g(mb)−g(s))σ;p)h(g(s))d(g(s))−∫mba((g(mb)−g(t))τ−1Eρ,r,k,cσ,τ,δ(ω(g(mb)−g(t))σ;p))f(g(t))h(g(t))d(g(t))=f(g(mb))(gΥρ,r,k,cσ,τ,δ,ω,a+h∘g)(mb;p)−(gΥρ,r,k,cσ,τ,δ,ω,a+(f∘g)(h∘g))(mb;p). |
By using Lemma 3.1, we have
∫mba[∫ta(g(mb)−g(s))τ−1Eρ,r,k,cσ,τ,δ(ω(g(mb)−g(s))σ;p)h(g(s))d(g(s))]f′(g(t))d(g(t))=f(g(mb))2[(gΥρ,r,k,cσ,τ,δ,ω,a+h∘g)(mb;p)+(gΥρ,r,k,cσ,τ,δ,ω,mb−h∘g)(a;p)](gΥρ,r,k,cσ,τ,δ,ω,a+(f∘g)(h∘g))(mb;p). |
In the same way we have
∫mba[−∫mbt(g(s)−g(a))τ−1Eρ,r,k,cσ,τ,δ(ω(g(s)−g(a))σ;p)h(g(s))d(g(s))]f′(g(t))d(g(t))=f(g(a))2[(gΥρ,r,k,cσ,τ,δ,ω,a+h∘g)(mb;p)+(gΥρ,r,k,cσ,τ,δ,ω,mb−h∘g)(a;p)](gΥρ,r,k,cσ,τ,δ,ω,mb−(f∘g)(h∘g))(a;p). |
By adding (3.5) and (3.5), we get (3.4).
By using Lemma 3.2, we prove the following theorem.
Theorem 3.3. Let f,g,h:[a,mb]→R, 0<a<mb, Range (g), Range (h) ⊂[a,mb] be the functions such that f be positive and (f∘g)′∈L1[a,mb], where g be a differentiable and strictly increasing and h be non-negative and continuous. Also let h(g(t))=h(g(a)+g(mb)−g(t)) and |(f∘g)′| is m-convex on [a,b]. Then for k<r+ℜ(σ), the following inequality for fractional integral operators (1.10) and (1.11) holds:
|f(g(a))+f(g(mb))2[(gΥρ,r,k,cσ,τ,δ,ω,a+h∘g)(mb;p)+(gΥρ,r,k,cσ,τ,δ,ω,mb−h∘g)(a;p)]−[(gΥρ,r,k,cσ,τ,δ,ω,a+(f∘g)(h∘g))(mb;p)+(gΥρ,r,k,cσ,τ,δ,ω,mb−(f∘g)(h∘g))(a;p)]|≤∥h∥∞M(g(mb)−g(a))τ+1τ(τ+1)(1−Ω)[|f′(g(a))+mf′(g(b))|], | (3.5) |
where ∥h∥∞=supt∈[a,mb]|h(t)| and
Ω=1τ+2[{(g(a+mb2)−g(a)g(mb)−g(a))τ+2}+{(g(mb)−g(a+mb2)g(mb)−g(a))τ+2}]
−τ+1τ+2[{(g(a+mb2)−g(a)g(mb)−g(a))τ+2}+{(g(mb)−g(a+mb2)g(mb)−g(a))τ+2}]
−(g(a+mb2)−g(a)g(mb)−g(a))τ+1(g(mb)−g(a+mb2)g(mb)−g(a))+(g(a+mb2)−g(a)g(mb)−g(a))(g(mb)−g(a+mb2)g(mb)−g(a))τ+1.
Proof. Using Lemma 3.2, we have
|(f(g(a))+f(g(mb))2)[(gΥρ,r,k,cσ,τ,δ,ω,a+h∘g)(mb;p)+(gΥρ,r,k,cσ,τ,δ,ω,mb−h∘g)(a;p)]−[(gΥρ,r,k,cσ,τ,δ,ω,a+(f∘g)(h∘g))(mb;p)+(gΥρ,r,k,cσ,τ,δ,ω,mb−(f∘g)(h∘g))(a;p)]|≤∫mba|[∫ta(g(mb)−g(s))τ−1Eρ,r,k,cσ,τ,δ(ω(g(mb)−g(s))σ;p)h(g(s))d(g(s))−∫mbt(g(s)−g(a))τ−1Eρ,r,k,cσ,τ,δ(ω(g(s)−g(a))σ;p)h(g(s))d(g(s))]||f′(g(t))|d(g(t)). | (3.6) |
Using the m-convexity of |(f∘g)′| on [a,b], we have
|f′(g(t))|≤g(mb)−g(t)g(mb)−g(a)|f′(g(a))|+mg(t)−g(a)g(mb)−g(a)|f′(g(b))|,t∈[a,b]. | (3.7) |
If we replace g(s) by g(a)+g(mb)−g(s) and using h(g(s))=h(g(a)+g(mb)−g(s)), t′=g−1(g(a)+g(mb)−g(t)), in second integral in the followings, we get
|∫ta(g(mb)−g(s))τ−1Eρ,r,k,cσ,τ,δ(ω(g(mb)−g(s))σ;p)h(g(s))d(g(s))−∫mbt(g(s)−g(a))τ−1Eρ,r,k,cσ,τ,δ(ω(g(s)−g(a))σ;p)h(g(s))d(g(s))|=|−∫at(g(mb)−g(s))τ−1Eρ,r,k,cσ,τ,δ(ω(g(mb)−g(s))σ;p)h(g(s))d(g(s))−∫t′a(g(mb)−g(s))τ−1Eρ,r,k,cσ,τ,δ(ω(g(mb)−g(s))σ;p)h(g(s))d(g(s))|=|∫t′t(g(mb)−g(s))τ−1Eρ,r,k,cσ,τ,δ(ω(g(mb)−g(s))σ;p)h(g(s))d(g(s))| |
≤{∫t′t|(g(mb)−g(s))τ−1Eρ,r,k,cσ,τ,δ(ω(g(mb)−g(s))σ;p)h(g(s))|d(g(s)),t∈[a,a+mb2] ∫tt′|(g(mb)−g(s))τ−1Eρ,r,k,cσ,τ,δ(ω(g(mb)−g(s))σ;p)h(g(s))|d(g(s)),t∈[a+mb2,mb]. | (3.8) |
By (3.6)–(3.8) and using absolute convergence of extended Mittag-Leffler function, we have
|f(g(a))+f(g(mb))2((gΥρ,r,k,cσ,τ,δ,ω,a+h∘g)(mb;p)+(gΥρ,r,k,cσ,τ,δ,ω,mb−h∘g)(a;p))−[(gΥρ,r,k,cσ,τ,δ,ω,a+(f∘g)(h∘g))(mb;p)+(gΥρ,r,k,cσ,τ,δ,ω,mb−(f∘g)(h∘g))(a;p)]|≤∫a+mb2a(∫a+mb−ta|(g(mb)−g(s))τ−1Eρ,r,k,cσ,τ,δ(ω(g(mb)−g(s))σ;p)h(g(s))|d(g(s)))×(g(mb)−g(t)g(mb)−g(a)|f′(g(a))|+mg(t)−g(a)g(mb)−g(a)|f′(g(b))|)d(g(t))+∫mba+mb2(∫ta+mb−t|(g(mb)−g(s))τ−1Eρ,r,k,cσ,τ,δ(ω(g(mb)−g(s))σ;p)h(g(s))|d(g(s)))×(g(mb)−g(t)g(mb)−g(a)|f′(g(a))|+mg(t)−g(a)g(mb)−g(a)|f′(g(b))|)d(g(t))≤∥h∥∞Mτ(g(mb)−g(a))[∫a+mb2a((g(mb)−g(t))τ−(g(t)−g(a))τ)(g(mb)−g(t))|f′(g(a))|d(g(t))+m∫a+mb2a((g(mb)−g(t))τ−(g(t)−g(a))τ)m(g(t)−g(a))|f′(g(b))|d(g(t))+∫mba+mb2((g(t)−g(a))τ−(g(mb)−g(t))τ)(g(mb)−g(t))|f′(g(a))|d(g(t))+m∫mba+mb2((g(t)−g(a))τ−(g(mb)−g(t))τ)m(g(t)−g(a))|f′(g(b))|d(g(t))]. | (3.9) |
After some calculations, we get
∫a+mb2a((g(mb)−g(t))τ−(g(t)−g(a))τ)(g(mb)−g(t))d(g(t))=∫mba+mb2((g(t)−g(a))τ−(g(mb)−g(t))τ)(g(t)−g(a))d(g(t))=(g(mb)−g(a))τ+2τ+2−(g(mb)−g(a+mb2))τ+2τ+2−(g(a+mb2)−g(a))τ+1τ+1(g(mb)−g(a+mb2))−(g(a+mb2)−g(a))τ+2(τ+1)(τ+2), |
and
∫a+mb2a((g(mb)−g(t))τ−(g(t)−g(a))τ)(g(t)−g(a))d(g(t))=∫mba+mb2((g(t)−g(a))τ−(g(mb)−g(t))τ)(g(mb)−g(t))d(g(t))=−(g(a+mb2)−g(a))τ+1τ+1(g(mb)−g(a+mb2))+(g(mb)−g(a))τ+2(τ+1)(τ+2)−(g(a+mb2)−g(a))τ+2(τ+1)(τ+2)−(g(mb)−g(a+mb2))τ+2τ+2. |
Using the above evaluations of integrals in (3.9), we get the required inequality (3.5).
Remark 4. ● In Theorem 3.3, if we put m=1, then we get [31,Theorem]
● In Theorem 3.3, if we put g=I and p=0, then we get [3,Theorem 2.3].
● In Theorem 3.3, if we put g=I, p=0 and m=1, then we get [19,Theorem 2.3].
● In Theorem 3.3, if we put g=I, then we get [4,Theorem].
● In Theorem 3.3, if we put g=I, m=1, then we get [16,Theorem 2.3].
● In Theorem 3.3, for ω=p=0, g=I and h=1 along with τ=m=1, then we get [9,Theorem 2.2].
● In Theorem 3.3, if we put ω=p=0, g=I and h=1 with m=1, then we get [28,Theorem 3].
Theorem 3.4. Let f,g,h:[a,mb]→R, 0<a<mb, Range (g), Range (h) ⊂[a,mb] be the functions such that f be positive, (f∘g)′∈L1[a,mb], g be a differentiable and strictly increasing and h be continuous. Also let h(g(t))=h(g(a)+g(mb)−g(t)) and |(f∘g)′|q1, q1≥1 is m-convex. Then for k<r+ℜ(σ), the following inequality for fractional integral operators (1.10) and (1.11) holds:
|(f(g(a))+f(g(mb))2)[(gΥρ,r,k,cσ,τ,δ,ω,a+h∘g)(mb;p)+(gΥρ,r,k,cσ,τ,δ,ω,mb−h∘g)(a;p)]−[(gΥρ,r,k,cσ,τ,δ,ω,a+(f∘g)(h∘g))(mb;p)+(gΥρ,r,k,cσ,τ,δ,ω,mb−(f∘g)(h∘g))(a;p)]|≤∥h∥∞M(g(mb)−g(a))τ+1τ(τ+1)((1−Ψ)1p1(1−Ω)1q1)(|f′(g(a))|q1+m|f′(g(b))|q12)1q1, | (3.10) |
where ∥h∥∞=supt∈[a,mb]|h(t)|, 1p1+1q1=1,
Ψ=(g(mb)−g(a+mb2)g(mb)−g(a))τ+1+(g(a+mb2)−g(a)g(mb)−g(a))τ+1 and
Ω=1τ+2[{(g(a+mb2)−g(a)g(mb)−g(a))τ+2}+{(g(mb)−g(a+mb2)g(mb)−g(a))τ+2}]
−τ+1τ+2[{(g(a+mb2)−g(a)g(mb)−g(a))τ+2}+{(g(mb)−g(a+mb2)g(mb)−g(a))τ+2}]
−(g(a+mb2)−g(a)g(mb)−g(a))τ+1(g(mb)−g(a+mb2)g(mb)−g(a))+(g(a+mb2)−g(a)g(mb)−g(a))(g(mb)−g(a+mb2)g(mb)−g(a))τ+1.
Proof. Using Lemma 3.2, power mean inequality, (3.8) and m-convexity of |(f∘g)′|q1 respectively, we have
|(f(g(a))+f(g(mb))2)[(gΥρ,r,k,cσ,τ,δ,ω,a+h∘g)(mb;p)+(gΥρ,r,k,cσ,τ,δ,ω,mb−h∘g)(a;p)]−[(gΥρ,r,k,cσ,τ,δ,ω,a+(f∘g)(h∘g))(mb;p)+(gΥρ,r,k,cσ,τ,δ,ω,mb−(f∘g)(h∘g))(a;p)]|≤[∫mba|∫a+mb−tt(g(mb)−g(s))τ−1Eρ,r,k,cσ,τ,δ(ω(g(mb)−g(s))σ;p)h(g(s))d(g(s))|d(g(t))]1−1q1[∫mba|∫a+mb−tt(g(mb)−g(s))τ−1Eρ,r,k,cσ,τ,δ(ω(g(mb)−g(s))σ;p)h(g(s))d(g(s))||f′(g(t))|q1]1q1. | (3.11) |
Since |(f∘g)′|q1 is m-convex on [a,b], we have
|f′(g(t))|q1≤g(mb)−g(t)g(mb)−g(a)|f′(g(a))|q1+mg(t)−g(a)g(mb)−g(a)|f′(g(b))|q1. | (3.12) |
Using ∥h∥∞=supt∈[a,mb]|h(t)|, and absolute convergence of extended Mittag-Leffler function, inequality (3.11) becomes
|(f(g(a))+f(g(mb))2)[(gΥρ,r,k,cσ,τ,δ,ω,a+h∘g)(mb;p)+(gΥρ,r,k,cσ,τ,δ,ω,mb−h∘g)(a;p)]−[(gΥρ,r,k,cσ,τ,δ,ω,a+(f∘g)(h∘g))(mb;p)+(gΥρ,r,k,cσ,τ,δ,ω,mb−(f∘g)(h∘g))(a;p)]|≤∥h∥1−1q1∞M1−1q1[∫a+mb2a(∫a+mb−tt(g(mb)−g(s))τ−1d(g(s)))d(g(t))+∫ba+mb2(∫ta+mb−t(g(mb)−g(s))τ−1d(g(s)))d(g(t))]1−1q1×∥h∥1q1∞M1q1[∫a+mb2a(∫a+mb−tt(g(mb)−g(s))τ−1d(g(s)))×(g(mb)−g(t)g(mb)−g(a)|f′(g(a))|q1+mg(t)−g(a)g(mb)−g(a)|f′(g(b))|q1)d(g(t))+∫ba+mb2(∫ta+mb−t(g(mb)−g(s))τ−1d(g(s)))×(g(mb)−g(t)g(mb)−g(a)|f′(g(a)))|q1+mg(t)−g(a)g(mb)−g(a)|f′(g(b))|q1)d(g(t))]1q1. |
After integrating and simplifying above inequality, we get (3.10).
Remark 5. ● In Theorem 3.4, if we put m=1, then we get [31,Theorem].
● In Theorem 3.4, if we put g=I and p=0, then we get [3,Theorem 2.6].
● In Theorem 3.4, if we put g=I, p=0 and m=1, then we get [19,Theorem 2.6].
● In Theorem 3.4, if we put g=I, then we get [4,Theorem].
● In Theorem 3.4, if we put g=I, m=1, then we get [16,Theorem 2.5].
This work provides the Hadamard and the Fejér-Hadamard inequalities for generalized extended fractional integral operators involving monotonically increasing function. These inequalities are obtained by using m-convex function which give results for convex function in particular. The presented results are generalizations of several fractional integral inequalities which are directly connected, consequently the well-known published results are quoted in remarks.
1. The research was supported by the National Natural Science Foundation of China (Grant Nos. 11971142, 11871202, 61673169, 11701176, 11626101, 11601485).
2. This work was sponsored in part by National key research and development projects of China (2017YFB1300502).
All authors declare no conflicts of interest in this paper.
[1] |
L. A. Zadeh, Fuzzy sets, Infor. Control, 8 (1965), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X doi: 10.1016/S0019-9958(65)90241-X
![]() |
[2] |
K. T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Set. Syst, 20 (1986), 87–96. https://doi.org/10.1016/S0165-0114(86)80034-3 doi: 10.1016/S0165-0114(86)80034-3
![]() |
[3] | K. T. Atanassov, Interval-valued intuitionistic fuzzy sets, In: Intuitionistic fuzzy sets, 35 (1999), 139–177. https://doi.org/10.1007/978-3-7908-1870-3_2 |
[4] |
D. Ramot, R. Milo, M. Friedman, A. Kandel, Complex fuzzy sets, IEEE T. Fuzzy Syst., 10 (2002), 171–186. https://doi.org/10.1109/91.995119 doi: 10.1109/91.995119
![]() |
[5] |
A. M. J. S. Alkouri, A. R. Salleh, Complex intuitionistic fuzzy sets, AIP Conf. Proc., 1482 (2012), 464–470. https://doi.org/10.1063/1.4757515 doi: 10.1063/1.4757515
![]() |
[6] |
H. Garg, D. Rani, Complex interval-valued intuitionistic fuzzy sets and their aggregation operators, Fund. Inform., 164 (2019), 61–101. https://doi.org/10.3233/FI-2019-1755 doi: 10.3233/FI-2019-1755
![]() |
[7] |
T. Mahmood, Z. Ali, Fuzzy superior mandelbrot sets, Soft Comput., 26 (2022), 9011–9020. https://doi.org/10.1007/s00500-022-07254-x doi: 10.1007/s00500-022-07254-x
![]() |
[8] |
I. İnce, S. Ersoy, Generalized fuzzy Mandelbrot and Mandelbrot sets, Commun. Nonlinear Sci. Numer. Simul., 118 (2023), 107045. https://doi.org/10.1016/j.cnsns.2022.107045 doi: 10.1016/j.cnsns.2022.107045
![]() |
[9] |
O. Castillo, P. Melin, A review on interval type-2 fuzzy logic applications in intelligent control. Inform. Sciences, 279 (2014), 615–631. https://doi.org/10.1016/j.ins.2014.04.015 doi: 10.1016/j.ins.2014.04.015
![]() |
[10] |
R. John, S. Coupland, Type-2 fuzzy logic: A historical view, IEEE Comput. Intell. Magaz., 2 (2007), 57–62. https://doi.org/10.1109/MCI.2007.357194 doi: 10.1109/MCI.2007.357194
![]() |
[11] |
O. Kaleva, Fuzzy differential equations, Fuzzy Set. Syst., 24 (1987), 301–317. https://doi.org/10.1016/0165-0114(87)90029-7 doi: 10.1016/0165-0114(87)90029-7
![]() |
[12] |
J. J. Buckley, T. Feuring, Fuzzy differential equations, Fuzzy Set. Syst., 110 (2000), 43–54. https://doi.org/10.1007/978-3-642-35221-8_9 doi: 10.1007/978-3-642-35221-8_9
![]() |
[13] |
O. Kaleva, A note on fuzzy differential equations, Nonlinear Anal. Theor., 64 (2006), 895–900. https://doi.org/10.1016/j.na.2005.01.003 doi: 10.1016/j.na.2005.01.003
![]() |
[14] |
J. Y. Park, H. K. Han, Fuzzy differential equations, Fuzzy Set. Syst., 110 (2000), 69–77. https://doi.org/10.1016/S0165-0114(98)00150-X doi: 10.1016/S0165-0114(98)00150-X
![]() |
[15] |
D. Pan, H. J. Zhou, X. X. Yan, Characterizations for the negativity of continuous t-conorms over fuzzy implications, Fuzzy Set. Syst., 456 (2023), 173–196. https://doi.org/10.1016/j.fss.2022.04.006 doi: 10.1016/j.fss.2022.04.006
![]() |
[16] |
B. Gohain, R. Chutia, P. Dutta, A distance measure for optimistic viewpoint of the information in interval-valued intuitionistic fuzzy sets and its applications, Eng. Appl. Artif. Intel., 119 (2023), 105747. https://doi.org/10.1016/j.engappai.2022.105747 doi: 10.1016/j.engappai.2022.105747
![]() |
[17] |
K. Sharma, V. P. Singh, A. Ebrahimnejad, D. Chakraborty, Solving a multi-objective chance constrained hierarchical optimization problem under intuitionistic fuzzy environment with its application, Expert Syst. Appl., 217 (2023), 119595. https://doi.org/10.1016/j.eswa.2023.119595 doi: 10.1016/j.eswa.2023.119595
![]() |
[18] |
A. R. Mishra, P. Rani, F. Cavallaro, I. M. Hezam, Intuitionistic fuzzy fairly operators and additive ratio assessment-based integrated model for selecting the optimal sustainable industrial building options, Sci. Rep., 13 (2023), 5055. https://doi.org/10.1038/s41598-023-31843-x doi: 10.1038/s41598-023-31843-x
![]() |
[19] |
Z. A. Xue, M. M. Jing, Y. X. Li, Y. Zheng, Variable precision multi-granulation covering rough intuitionistic fuzzy sets, Granul. Comput., 8 (2023), 577–596. https://doi.org/10.1007/s41066-022-00342-1 doi: 10.1007/s41066-022-00342-1
![]() |
[20] |
J. Więckowski, B. Kizielewicz, W. Sałabun, Handling decision-making in intuitionistic fuzzy environment: PyIFDM package, SoftwareX, 22 (2023), 101344. https://doi.org/10.1016/j.softx.2023.101344 doi: 10.1016/j.softx.2023.101344
![]() |
[21] |
A. İlbaş, A. Gürdere, F. E. Boran, An integrated intuitionistic fuzzy set and stochastic multi-criteria acceptability analysis approach for supplier selection, Neural Comput. Applic., 35 (2023), 3937–3953. https://doi.org/10.1007/s00521-022-07919-6 doi: 10.1007/s00521-022-07919-6
![]() |
[22] |
I. M. Hezam, N. R. D. Vedala, B. R. Kumar, A. R. Mishra, F. Cavallaro, Assessment of Biofuel industry sustainability factors based on the intuitionistic fuzzy symmetry point of criterion and Rank-Sum-Based MAIRCA method, Sustainability, 15 (2023), 6749. https://doi.org/10.3390/su15086749 doi: 10.3390/su15086749
![]() |
[23] |
K. Atanassov, On intuitionistic fuzzy temporal topological structures, Axioms, 2 (2023), 182. https://doi.org/10.3390/axioms12020182 doi: 10.3390/axioms12020182
![]() |
[24] |
P. Liu, Z. Ali, T. Mahmood, The distance measures and cross-entropy based on complex fuzzy sets and their application in decision making, J. Intell. Fuzzy Syst., 39 (2020), 3351–3374. https://doi.org/10.3233/JIFS-191718 doi: 10.3233/JIFS-191718
![]() |
[25] |
T. Mahmood, Z. Ali, A. Gumaei, Interdependency of complex fuzzy neighborhood operators and derived complex fuzzy coverings, IEEE Access, 9 (2021), 73506–73521. https://doi.org/10.1109/ACCESS.2021.3074590 doi: 10.1109/ACCESS.2021.3074590
![]() |
[26] |
C. Li, T. W. Chiang, Complex neurofuzzy ARIMA forecasting-a new approach using complex fuzzy sets, IEEE T. Fuzzy Syst., 21 (2012), 567–584. https://doi.org/10.1109/TFUZZ.2012.2226890 doi: 10.1109/TFUZZ.2012.2226890
![]() |
[27] |
C. Li, T. Wu, F. T. Chan, Self-learning complex neuro-fuzzy system with complex fuzzy sets and its application to adaptive image noise canceling, Neurocomputing, 94 (2012), 121–139. https://doi.org/10.1016/j.neucom.2012.04.011 doi: 10.1016/j.neucom.2012.04.011
![]() |
[28] |
T. Mahmood, Z. Ali, M. Albaity, Aggregation operators based on algebraic t-Norm and t-Conorm for complex linguistic fuzzy sets and their applications in strategic decision making, Symmetry, 14 (2022), 1990. https://doi.org/10.3390/sym14101990 doi: 10.3390/sym14101990
![]() |
[29] |
W. Azeem, W. Mahmood, T. Mahmood, Z. Ali, M. Naeem, Analysis of Einstein aggregation operators based on complex intuitionistic fuzzy sets and their applications in multi-attribute decision-making, AIMS Math., 8 (2023), 6036–6063. https://doi.org/10.3934/math.2023305 doi: 10.3934/math.2023305
![]() |
[30] |
Z. Ali, T. Mahmood, M. Aslam, R. Chinram, Another view of complex intuitionistic fuzzy soft sets based on prioritized aggregation operators and their applications to multiattribute decision making, Mathematics, 9 (2021), 1922. https://doi.org/10.3390/math9161922 doi: 10.3390/math9161922
![]() |
[31] |
H. Garg, J. Vimala, S. Rajareega, D. Preethi, L. Perez-Dominguez, Complex intuitionistic fuzzy soft SWARA-COPRAS approach: An application of ERP software selection, AIMS Math., 7 (2022), 5895–5909. https://doi.org/10.3934/math.2022327 doi: 10.3934/math.2022327
![]() |
[32] |
J. Dombi, A general class of fuzzy operators, the DeMorgan class of fuzzy operators and fuzziness measures induced by fuzzy operators, Fuzzy Set. Syst., 8 (1982), 149–163. https://doi.org/10.1016/0165-0114(82)90005-7 doi: 10.1016/0165-0114(82)90005-7
![]() |
[33] |
D. J. Yu, Intuitionistic fuzzy geometric Heronian mean aggregation operators, Appl. Soft Comput., 13 (2013), 1235–1246. https://doi.org/10.1016/j.asoc.2012.09.021 doi: 10.1016/j.asoc.2012.09.021
![]() |
[34] |
L. P. Wu, G. W. Wei, J. Wu, C. Wei, Some interval-valued intuitionistic fuzzy dombi heronian mean operators and their application for evaluating the ecological value of forest ecological tourism demonstration areas, Int. J. Environ. Res. Public Health, 17 (2020), 829. https://doi.org/10.3390/ijerph17030829 doi: 10.3390/ijerph17030829
![]() |
[35] |
D. J. Yu, Y. Y. Wu, T. Lu, Interval-valued intuitionistic fuzzy prioritized operators and their application in group decision making, Knowl.-Based Syst, 30 (2012), 57–66. https://doi.org/10.1016/j.knosys.2011.11.004 doi: 10.1016/j.knosys.2011.11.004
![]() |
[36] |
H. Garg, D. Rani, New prioritized aggregation operators with priority degrees among priority orders for complex intuitionistic fuzzy information, J. Ambient Intell. Human. Comput., 14 (2023), 1373–1399. https://doi.org10.1007/s12652-021-03164-2 doi: 10.1007/s12652-021-03164-2
![]() |
[37] |
H. Garg, D. Rani, Novel aggregation operators and ranking method for complex intuitionistic fuzzy sets and their applications to decision-making process, Artif. Intell. Rev., 53 (2020), 3595–3620. https://doi.org/10.1007/s10462-019-09772-x doi: 10.1007/s10462-019-09772-x
![]() |
[38] |
X. M. Shi, Z. Ali, T. Mahmood, P. D. Liu, Power aggregation operators of interval-valued Atanassov-Intuitionistic fuzzy sets based on Aczel-Alsina t-Norm and t-Conorm and their applications in decision making, Int. J. Comput. Intell. Syst., 16 (2023), 43. https://doi.org/10.1007/s44196-023-00208-7 doi: 10.1007/s44196-023-00208-7
![]() |
[39] |
T. Y. Chen, A prioritized aggregation operator-based approach to multiple criteria decision making using interval-valued intuitionistic fuzzy sets: A comparative perspective, Inform. Sciences, 28 (2014), 97–112. https://doi.org/10.1016/j.ins.2014.05.018 doi: 10.1016/j.ins.2014.05.018
![]() |
[40] |
P. Wang, B. Y. Zhu, Y. Yu, Z. Ali, B. Almohsen, Complex intuitionistic fuzzy DOMBI prioritized aggregation operators and their application for resilient green supplier selection, Facta Univ. Ser. Mech. Eng., 21 (2023), 339–357. https://doi.org/10.22190/FUME230805029W doi: 10.22190/FUME230805029W
![]() |
[41] |
H. Fang, T. Mahmood, Z. Ali, S. Zeng, Y. Jin, WASPAS method and Aczel-Alsina aggregation operators for managing complex interval-valued intuitionistic fuzzy information and their applications in decision-making, Peer J Computer Sci., 9 (2023), e1362. https://doi.org/10.7717/peerj-cs.1362 doi: 10.7717/peerj-cs.1362
![]() |
[42] |
S. P. Wan, J. Y. Dong, S. M. Chen, A novel intuitionistic fuzzy best-worst method for group decision making with intuitionistic fuzzy preference relations, Inform. Sciences, 666 (2024), 120404. https://doi.org/10.1016/j.ins.2024.120404 doi: 10.1016/j.ins.2024.120404
![]() |
[43] |
J. Y. Dong, S. P. Wan, Interval-valued intuitionistic fuzzy best-worst method with additive consistency, Expert Syst. Appl., 236 (2024), 121213. https://doi.org/10.1016/j.eswa.2023.121213 doi: 10.1016/j.eswa.2023.121213
![]() |
[44] |
S. P. Wan, T. Rao, J. Y. Dong, Time-series based multi-criteria large-scale group decision making with intuitionistic fuzzy information and application to multi-period battery supplier selection, Expert Syst Appl., 232 (2023), 120749. https://doi.org/10.1016/j.eswa.2023.12074 doi: 10.1016/j.eswa.2023.12074
![]() |
[45] |
X. Y. Lu, J. Y. Dong, S. P. Wan, Y. F. Yuan, Consensus reaching with minimum adjustment and consistency management in group decision making with intuitionistic multiplicative preference relations, Expert Syst. Appl., 232 (2023), 120674. https://doi.org/10.1016/j.eswa.2023.120674 doi: 10.1016/j.eswa.2023.120674
![]() |
[46] |
Z. H. Chen, S. P. Wan, J. Y. Dong, An integrated interval-valued intuitionistic fuzzy technique for resumption risk assessment amid COVID-19 prevention, Inform. Sciences, 619 (2023), 695–721. https://doi.org/10.1016/j.ins.2022.11.028 doi: 10.1016/j.ins.2022.11.028
![]() |
[47] |
X. Gou, Z. Xu, P. Ren, The properties of continuous Pythagorean fuzzy information, Inter J.Intel Syst., 3 (2016), 401–424. https://doi.org/10.1002/int.21788 doi: 10.1002/int.21788
![]() |
[48] |
X. J. Gou, Z. S. Xu, F. Herrera, Consensus reaching process for large-scale group decision making with double hierarchy hesitant fuzzy linguistic preference relations, Knowl.-Based Syst., 157 (2018), 20–33. https://doi.org/10.1016/j.knosys.2018.05.008 doi: 10.1016/j.knosys.2018.05.008
![]() |
[49] |
X. J. Gou, X. R. Xu, Z. S. Xu, M. Skare, Circular economy and fuzzy set theory: A bibliometric and systematic review based on Industry 4.0 technologies perspective, Technol. Econ. Dev. Eco., 30 (2024), 489–526. https://doi.org/10.3846/tede.2024.20286 doi: 10.3846/tede.2024.20286
![]() |
[50] |
X. J. Gou, X. R. Xu, F. M. Deng, W. Zhou, E. Herrera-Viedma, Medical health resources allocation evaluation in public health emergencies by an improved ORESTE method with linguistic preference orderings, Fuzzy Optim. Decis. Making, 23 (2024), 1–27. https://doi.org/10.1007/s10700-023-09409-3 doi: 10.1007/s10700-023-09409-3
![]() |
[51] |
X. T. Cheng, Z. S. Xu, X. J. Gou, A large-scale group decision-making model considering risk attitudes and dynamically changing roles, Expert Syst. Appl., 245 (2024), 123017. https://doi.org/10.1016/j.eswa.2023.123017 doi: 10.1016/j.eswa.2023.123017
![]() |
[52] |
Z. Lian, P. Shi, C. C. Lim, X. Yuan, Fuzzy-model-based lateral control for networked autonomous vehicle systems under hybrid cyber-attacks, IEEE T. Cybernetics, 53 (2023), 2600-2609. https://doi.org/10.1109/TCYB.2022.3151880 doi: 10.1109/TCYB.2022.3151880
![]() |
[53] |
M. Zivkovic, N. Bacanin, K. Venkatachalam, A. Nayyar, A. Djordjevic, I. Strumberger, F. Al-Turjman. COVID-19 cases prediction by using hybrid machine learning and beetle antennae search approach. Sustain. Cities Soc., 66 (2021), 102669. https://doi.org/10.1016/j.scs.2020.102669 doi: 10.1016/j.scs.2020.102669
![]() |
[54] |
N. A. Korenevskiy, A. V. Bykov, R. T. Al-Kasasbeh, A. A. Aikeyeva, S. N. Rodionova, I. Maksim, et al., Developing hybrid fuzzy model for predicting severity of end organ damage of the anatomical zones of the lower extremities, Inter Jour Medical Engine Infor., 14 (2023), 323–335. https://doi.org/10.1504/IJMEI.2022.123925 doi: 10.1504/IJMEI.2022.123925
![]() |
[55] |
A. Azizpour, M. A. Izadbakhsh, S. Shabanlou, F. Yosefvand, A. Rajabi, Simulation of time-series groundwater parameters using a hybrid metaheuristic neuro-fuzzy model, Environ. Sci. Pollut. Res., 29 (2022), 28414–28430. https://doi.org/10.1007/s11356-021-17879-4 doi: 10.1007/s11356-021-17879-4
![]() |
[56] |
M. Parsajoo, D. J. Armaghani, P. G. Asteris, A precise neuro-fuzzy model enhanced by artificial bee colony techniques for assessment of rock brittleness index, Neural Comput. Applic., 34 (2022), 3263–3281. https://doi.org/10.1007/s00521-021-06600-8 doi: 10.1007/s00521-021-06600-8
![]() |
1. | Muhammad Aamir Ali, Hüseyin Budak, Mujahid Abbas, Yu-Ming Chu, Quantum Hermite–Hadamard-type inequalities for functions with convex absolute values of second qb-derivatives, 2021, 2021, 1687-1847, 10.1186/s13662-020-03163-1 | |
2. | Muhammad Aamir Ali, Yu-Ming Chu, Hüseyin Budak, Abdullah Akkurt, Hüseyin Yıldırım, Manzoor Ahmed Zahid, Quantum variant of Montgomery identity and Ostrowski-type inequalities for the mappings of two variables, 2021, 2021, 1687-1847, 10.1186/s13662-020-03195-7 | |
3. | Humaira Kalsoom, Muhammad Idrees, Artion Kashuri, Muhammad Uzair Awan, Yu-Ming Chu, Some New (p1p2,q1q2)-Estimates of Ostrowski-type integral inequalities via n-polynomials s-type convexity, 2020, 5, 2473-6988, 7122, 10.3934/math.2020456 | |
4. | Artion Kashuri, Sajid Iqbal, Saad Ihsan Butt, Jamshed Nasir, Kottakkaran Sooppy Nisar, Thabet Abdeljawad, Basil K. Papadopoulos, Trapezium-Type Inequalities for k -Fractional Integral via New Exponential-Type Convexity and Their Applications, 2020, 2020, 2314-4785, 1, 10.1155/2020/8672710 | |
5. | Thabet Abdeljawad, Saima Rashid, A. A. El-Deeb, Zakia Hammouch, Yu-Ming Chu, Certain new weighted estimates proposing generalized proportional fractional operator in another sense, 2020, 2020, 1687-1847, 10.1186/s13662-020-02935-z | |
6. | Thabet Abdeljawad, Saima Rashid, Zakia Hammouch, İmdat İşcan, Yu-Ming Chu, Some new Simpson-type inequalities for generalized p-convex function on fractal sets with applications, 2020, 2020, 1687-1847, 10.1186/s13662-020-02955-9 | |
7. | Tie-Hong Zhao, Zai-Yin He, Yu-Ming Chu, On some refinements for inequalities involving zero-balanced hypergeometric function, 2020, 5, 2473-6988, 6479, 10.3934/math.2020418 | |
8. | Xiaoli Qiang, Abid Mahboob, Yu-Ming Chu, Jiabin Zuo, Numerical Approximation of Fractional-Order Volterra Integrodifferential Equation, 2020, 2020, 2314-8888, 1, 10.1155/2020/8875792 | |
9. | Imran Abbas Baloch, Aqeel Ahmad Mughal, Yu-Ming Chu, Absar Ul Haq, Manuel De La Sen, A variant of Jensen-type inequality and related results for harmonic convex functions, 2020, 5, 2473-6988, 6404, 10.3934/math.2020412 | |
10. | Muhammad Shoaib Saleem, Yu-Ming Chu, Nazia Jahangir, Huma Akhtar, Chahn Yong Jung, On Generalized Strongly p-Convex Functions of Higher Order, 2020, 2020, 2314-4629, 1, 10.1155/2020/8381431 | |
11. | Shuang-Shuang Zhou, Saima Rashid, Muhammad Aslam Noor, Khalida Inayat Noor, Farhat Safdar, Yu-Ming Chu, New Hermite-Hadamard type inequalities for exponentially convex functions and applications, 2020, 5, 2473-6988, 6874, 10.3934/math.2020441 | |
12. | Muhammad Uzair Awan, Sadia Talib, Artion Kashuri, Muhammad Aslam Noor, Khalida Inayat Noor, Yu-Ming Chu, A new q-integral identity and estimation of its bounds involving generalized exponentially μ-preinvex functions, 2020, 2020, 1687-1847, 10.1186/s13662-020-03036-7 | |
13. | Xiaobin Wang, Muhammad Shoaib Saleem, Kiran Naseem Aslam, Xingxing Wu, Tong Zhou, Sunil Kumar, On Caputo–Fabrizio Fractional Integral Inequalities of Hermite–Hadamard Type for Modified h -Convex Functions, 2020, 2020, 2314-4785, 1, 10.1155/2020/8829140 | |
14. | Jian Wang, Ayesha Jamal, Xuemei Li, Kamal Shah, Numerical Solution of Fractional-Order Fredholm Integrodifferential Equation in the Sense of Atangana–Baleanu Derivative, 2021, 2021, 1563-5147, 1, 10.1155/2021/6662808 | |
15. | Saad Ihsan Butt, Muhammad Umar, Saima Rashid, Ahmet Ocak Akdemir, Yu-Ming Chu, New Hermite–Jensen–Mercer-type inequalities via k-fractional integrals, 2020, 2020, 1687-1847, 10.1186/s13662-020-03093-y | |
16. | Shu-Bo Chen, Saima Rashid, Muhammad Aslam Noor, Rehana Ashraf, Yu-Ming Chu, A new approach on fractional calculus and probability density function, 2020, 5, 2473-6988, 7041, 10.3934/math.2020451 | |
17. | Xi-Fan Huang, Miao-Kun Wang, Hao Shao, Yi-Fan Zhao, Yu-Ming Chu, Monotonicity properties and bounds for the complete p-elliptic integrals, 2020, 5, 2473-6988, 7071, 10.3934/math.2020453 | |
18. | Lei Chen, Muhammad Shoaib Saleem, Muhammad Sajid Zahoor, Rahat Bano, Xiaolong Qin, Some Inequalities Related to Interval-Valued η h -Convex Functions, 2021, 2021, 2314-4785, 1, 10.1155/2021/6617074 | |
19. | Qi Li, Muhammad Shoaib Saleem, Peiyu Yan, Muhammad Sajid Zahoor, Muhammad Imran, Ahmet Ocak Akdemir, On Strongly Convex Functions via Caputo–Fabrizio-Type Fractional Integral and Some Applications, 2021, 2021, 2314-4785, 1, 10.1155/2021/6625597 | |
20. | Lanxin Chen, Junxian Zhang, Muhammad Shoaib Saleem, Imran Ahmed, Shumaila Waheed, Lishuang Pan, Fractional integral inequalities for h-convex functions via Caputo-Fabrizio operator, 2021, 6, 2473-6988, 6377, 10.3934/math.2021374 | |
21. | Haoliang Fu, Muhammad Shoaib Saleem, Waqas Nazeer, Mamoona Ghafoor, Peigen Li, On Hermite-Hadamard type inequalities for n-polynomial convex stochastic processes, 2021, 6, 2473-6988, 6322, 10.3934/math.2021371 | |
22. | Slavko Simić, Bandar Bin-Mohsin, Some generalizations of the Hermite–Hadamard integral inequality, 2021, 2021, 1029-242X, 10.1186/s13660-021-02605-y | |
23. | Wengui Yang, Certain New Chebyshev and Grüss-Type Inequalities for Unified Fractional Integral Operators via an Extended Generalized Mittag-Leffler Function, 2022, 6, 2504-3110, 182, 10.3390/fractalfract6040182 | |
24. | Muhammad Imran Asjad, Waqas Ali Faridi, Mohammed M. Al-Shomrani, Abdullahi Yusuf, The generalization of Hermite-Hadamard type Inequality with exp-convexity involving non-singular fractional operator, 2022, 7, 2473-6988, 7040, 10.3934/math.2022392 | |
25. | Miguel Vivas-Cortez, Muhammad Shoaib Saleem, Sana Sajid, Muhammad Sajid Zahoor, Artion Kashuri, Hermite–Jensen–Mercer-Type Inequalities via Caputo–Fabrizio Fractional Integral for h-Convex Function, 2021, 5, 2504-3110, 269, 10.3390/fractalfract5040269 | |
26. | Yan Zhao, M. Shoaib Saleem, Shahid Mehmood, Zabidin Salleh, Sibel Yalçın, On Extended Convex Functions via Incomplete Gamma Functions, 2021, 2021, 2314-8888, 1, 10.1155/2021/1924242 | |
27. | Chahn Yong Jung, Ghulam Farid, Hafsa Yasmeen, Yu-Pei Lv, Josip Pečarić, Refinements of some fractional integral inequalities for refined (α,h−m)-convex function, 2021, 2021, 1687-1847, 10.1186/s13662-021-03544-0 | |
28. | WENGUI YANG, CERTAIN NEW WEIGHTED YOUNG- AND PÓLYA–SZEGÖ-TYPE INEQUALITIES FOR UNIFIED FRACTIONAL INTEGRAL OPERATORS VIA AN EXTENDED GENERALIZED MITTAG-LEFFLER FUNCTION WITH APPLICATIONS, 2022, 30, 0218-348X, 10.1142/S0218348X22501067 | |
29. | Kamsing Nonlaopon, Ghulam Farid, Ammara Nosheen, Muhammad Yussouf, Ebenezer Bonyah, Mawardi Bahri, New Generalized Riemann–Liouville Fractional Integral Versions of Hadamard and Fejér–Hadamard Inequalities, 2022, 2022, 2314-4785, 1, 10.1155/2022/8173785 | |
30. | Ghulam Farid, Muhammad Yussouf, Kamsing Nonlaopon, Fejér–Hadamard Type Inequalities for (α, h-m)-p-Convex Functions via Extended Generalized Fractional Integrals, 2021, 5, 2504-3110, 253, 10.3390/fractalfract5040253 | |
31. | Wenyan Jia, Muhammad Yussouf, Ghulam Farid, Khuram Ali Khan, Rafael Morales, Hadamard and Fejér–Hadamard Inequalities for α , h − m − p -Convex Functions via Riemann–Liouville Fractional Integrals, 2021, 2021, 1563-5147, 1, 10.1155/2021/9945114 | |
32. | Aqeel Ahmad Mughal, Deeba Afzal, Thabet Abdeljawad, Aiman Mukheimer, Imran Abbas Baloch, Refined estimates and generalization of some recent results with applications, 2021, 6, 2473-6988, 10728, 10.3934/math.2021623 | |
33. | Waewta Luangboon, Kamsing Nonlaopon, Jessada Tariboon, Sotiris K. Ntouyas, Simpson- and Newton-Type Inequalities for Convex Functions via (p,q)-Calculus, 2021, 9, 2227-7390, 1338, 10.3390/math9121338 | |
34. | Xue Wang, Absar ul Haq, Muhammad Shoaib Saleem, Sami Ullah Zakir, Mohsan Raza, The Strong Convex Functions and Related Inequalities, 2022, 2022, 2314-8888, 1, 10.1155/2022/4056201 | |
35. | Muhammad Samraiz, Maria Malik, Kanwal Saeed, Saima Naheed, Sina Etemad, Manuel De la Sen, Shahram Rezapour, A Study on the Modified Form of Riemann-Type Fractional Inequalities via Convex Functions and Related Applications, 2022, 14, 2073-8994, 2682, 10.3390/sym14122682 | |
36. | Muzammil Mukhtar, Muhammad Yaqoob, Muhammad Samraiz, Iram Shabbir, Sina Etemad, Manuel De la Sen, Shahram Rezapour, Novel Mean-Type Inequalities via Generalized Riemann-Type Fractional Integral for Composite Convex Functions: Some Special Examples, 2023, 15, 2073-8994, 479, 10.3390/sym15020479 | |
37. | Miguel Vivas-Cortez, Muzammil Mukhtar, Iram Shabbir, Muhammad Samraiz, Muhammad Yaqoob, On Fractional Integral Inequalities of Riemann Type for Composite Convex Functions and Applications, 2023, 7, 2504-3110, 345, 10.3390/fractalfract7050345 | |
38. | Shahid Mubeen, Rana Safdar Ali, Yasser Elmasry, Ebenezer Bonyah, Artion Kashuri, Gauhar Rahman, Çetin Yildiz, A. Hussain, On Novel Fractional Integral and Differential Operators and Their Properties, 2023, 2023, 2314-4785, 1, 10.1155/2023/4165363 | |
39. | Iqra Nayab, Shahid Mubeen, Rana Safdar Ali, Faisal Zahoor, Muath Awadalla, Abd Elmotaleb A. M. A. Elamin, Novel fractional inequalities measured by Prabhakar fuzzy fractional operators pertaining to fuzzy convexities and preinvexities, 2024, 9, 2473-6988, 17696, 10.3934/math.2024860 | |
40. | HUMAIRA KALSOOM, ZAREEN A. KHAN, NEW INEQUALITIES OF HERMITE–HADAMARD TYPE FOR n-POLYNOMIAL s-TYPE CONVEX STOCHASTIC PROCESSES, 2023, 31, 0218-348X, 10.1142/S0218348X23401953 | |
41. | Wali Haider, Abdul Mateen, Hüseyin Budak, Asia Shehzadi, Loredana Ciurdariu, Novel Fractional Boole’s-Type Integral Inequalities via Caputo Fractional Operator and Their Implications in Numerical Analysis, 2025, 13, 2227-7390, 551, 10.3390/math13040551 | |
42. | Moquddsa Zahra, Muhammad Ashraf, Ghulam Farid, Nawab Hussain, Fractional Hadamard-type inequalities for refined (α, h-m)-p-convex functions and their consequences, 2024, 38, 0354-5180, 5463, 10.2298/FIL2415463Z |