In this paper, our main objective was to establish new refinements of Jensen's inequality. We focused on the class of convex and harmonic convex functions. In addition, we extended these results to the generalized Caputo-type fractional integral and the generalized local fractional derivative.
Citation: Paul Bosch, Jorge A. Paz Moyado, José M. Rodríguez-García, José M. Sigarreta. Refinement of Jensen-type inequalities: fractional extensions (global and local)[J]. AIMS Mathematics, 2025, 10(3): 6574-6588. doi: 10.3934/math.2025301
In this paper, our main objective was to establish new refinements of Jensen's inequality. We focused on the class of convex and harmonic convex functions. In addition, we extended these results to the generalized Caputo-type fractional integral and the generalized local fractional derivative.
| [1] |
T. Abdeljawad, On conformable fractional calculus, J. Comput. Appl. Math., 279 (2015), 57–66. https://doi.org/10.1016/j.cam.2014.10.016 doi: 10.1016/j.cam.2014.10.016
|
| [2] |
R. Abreu-Blaya, A. Fleitas, J. E. Nápoles Valdés, R. Reyes, J. M. Rodríguez, J. M. Sigarreta, On the conformable fractional logistic models, Math. Methods Appl. Sci., 43 (2020), 4156–4167. https://doi.org/10.1002/mma.6180 doi: 10.1002/mma.6180
|
| [3] |
A. Atangana, D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model, Therm. Sci., 20 (2016), 763–769. https://doi.org/10.2298/TSCI160111018A doi: 10.2298/TSCI160111018A
|
| [4] | D. Baleanu, K. Diethelm, E. Scalas, J. J. Trujillo, Fractional calculus: models and numerical methods, Series on Complexity, Nonlinearity and Chaos, Vol. 3, World Scientific Pub. Co. Inc., 2012. |
| [5] |
P. Bosch, H. J. Carmenate, J. M. Rodríguez, J. M. Sigarreta, Generalized inequalities involving fractional operators of the Riemann-Liouville type, AIMS Math., 7 (2022), 1470–1485. https://doi.org/10.3934/math.2022087 doi: 10.3934/math.2022087
|
| [6] |
P. Bosch, J. F. Gómez-Aguilar, J. M. Rodríguez, J. M. Sigarreta, Analysis of dengue fever outbreak by generalized fractional derivative, Fractals, 28 (2020), 2040038. https://doi.org/10.1142/S0218348X20400381 doi: 10.1142/S0218348X20400381
|
| [7] |
P. Bosch, Y. Quintana, J. M. Rodríguez, J. M. Sigarreta, Jensen-type inequalities for $m$-convex functions, Open Math., 20 (2022), 946–958. https://doi.org/10.1515/math-2022-0061 doi: 10.1515/math-2022-0061
|
| [8] |
P. Bosch, J. M. Rodríguez, J. M. Sigarreta, On Jensen-type inequalities for harmonic convex functions, J. Math. Inequal., 18 (2024), 1399–1413. https://doi.org/10.7153/jmi-2024-18-82 doi: 10.7153/jmi-2024-18-82
|
| [9] |
M. Caputo, Linear model of dissipation whose $Q$ is almost frequency independent Ⅱ, Geophys. J. Int., 13 (1967), 529–539. https://doi.org/10.1111/j.1365-246X.1967.tb02303.x doi: 10.1111/j.1365-246X.1967.tb02303.x
|
| [10] | M. Caputo, Elasticitàe dissipazione, Bologna: Zanichelli, 1969. |
| [11] |
M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 1 (2015), 73–85. https://doi.org/10.12785/pfda/010201 doi: 10.12785/pfda/010201
|
| [12] |
Z. Dahmani, On Minkowski and Hermite-Hadamard integral inequalities via fractional integration, Ann. Funct. Anal., 1 (2010), 51–58. https://doi.org/10.15352/afa/1399900993 doi: 10.15352/afa/1399900993
|
| [13] | S. S. Dragomir, Inequalities of Jensen type for HA-convex functions, An. Univ. Oradea Fasc. Mat., 27 (2020), 103–124. |
| [14] |
A. Fleitas, J. F. Gómez-Aguilar, J. E. Nápoles Valdés, J. M. Rodríguez, J. M. Sigarreta, Analysis of the local Drude model involving the generalized fractional derivative, Optik, 193 (2019), 163008. https://doi.org/10.1016/j.ijleo.2019.163008 doi: 10.1016/j.ijleo.2019.163008
|
| [15] |
A. Fleitas, J. E. Nápoles Valdés, J. M. Rodríguez, J. M. Sigarreta, Note on the generalized conformable derivative, Rev. Uni. Mat. Argen., 62 (2021), 443–457. https://doi.org/10.33044/revuma.1930 doi: 10.33044/revuma.1930
|
| [16] |
J. Han, P. O. Mohammed, H. Zeng, Generalized fractional integral inequalities of Hermite-Hadamard-type for a convex function, Open Math., 18 (2020), 794–806. https://doi.org/10.1515/math-2020-0038 doi: 10.1515/math-2020-0038
|
| [17] |
F. Jarad, E. Uǧurlu, T. Abdeljawad, D. Baleanu, On a new class of fractional operators, Adv. Differ. Equ., 2017 (2017), 247. https://doi.org/10.1186/s13662-017-1306-z doi: 10.1186/s13662-017-1306-z
|
| [18] |
J. L. W. V. Jensen, Sur les fonctions convexes et les inégalités entre les valeurs moyennes, Acta Math., 30 (1906), 175–193. https://doi.org/10.1007/BF02418571 doi: 10.1007/BF02418571
|
| [19] | U. N. Katugampola, A new fractional derivative with classical properties, arXiv, 2014. https://doi.org/10.48550/arXiv.1410.6535 |
| [20] |
R. Khalil, M. Al Horani, A. Yousef, M. Sababheh, A new definition of fractional derivative, J. Comput. Appl. Math., 264 (2014), 65–70. https://doi.org/10.1016/j.cam.2014.01.002 doi: 10.1016/j.cam.2014.01.002
|
| [21] |
Z. M. M. Mahdi Sayed, M. Adil Khan, S. Khan, J. Pečarić, A refinement of the integral Jensen inequality pertaining certain functions with applications, J. Funct. Spaces, 2022 (2022), 8396644. https://doi.org/10.1155/2022/8396644 doi: 10.1155/2022/8396644
|
| [22] |
S. Mubeen, S. Habib, M. N. Naeem, The Minkowski inequality involving generalized $k$-fractional conformable integral, J. Inequal. Appl., 2019 (2019), 81. https://doi.org/10.1186/s13660-019-2040-8 doi: 10.1186/s13660-019-2040-8
|
| [23] |
K. S. Nisar, F. Qi, G. Rahman, S. Mubeen, M. Arshad, Some inequalities involving the extended gamma function and the Kummer confluent hypergeometric $K$-function, J. Inequal. Appl., 2018 (2018), 135, https://doi.org/10.1186/s13660-018-1717-8 doi: 10.1186/s13660-018-1717-8
|
| [24] |
G. Rahman, T. Abdeljawad, F. Jarad, A. Khan, K. S. Nisar, Certain inequalities via generalized proportional Hadamard fractional integral operators, Adv. Differ. Equ., 2019 (2019), 454. https://doi.org/10.1186/s13662-019-2381-0 doi: 10.1186/s13662-019-2381-0
|
| [25] |
G. Rahman, K. S. Nisar, B. Ghanbari, T. Abdeljawad, On generalized fractional integral inequalities for the monotone weighted Chebyshev functionals, Adv. Differ. Equ., 2020 (2020), 368. https://doi.org/10.1186/s13662-020-02830-7 doi: 10.1186/s13662-020-02830-7
|
| [26] |
S. Rashid, M. A. Noor, K. I. Noor, Y. M. Chu, Ostrowski type inequalities in the sense of generalized $K$-fractional integral operator for exponentially convex functions, AIMS Math., 5 (2020), 2629–2645. https://doi.org/10.3934/math.2020171 doi: 10.3934/math.2020171
|
| [27] |
Z. M. M. M. Sayed, M. A. Khan, S. Khan, J. Pečarić, Refinement of the classical Jensen inequality using finite sequences, Hacettepe J. Math. Stat., 53 (2024), 608–627. https://doi.org/10.15672/hujms.1270585 doi: 10.15672/hujms.1270585
|
| [28] |
Y. Sawano, H. Wadade, On the Gagliardo-Nirenberg type inequality in the critical Sobolev-Morrey space, J. Fourier Anal. Appl., 19 (2013), 20–47. https://doi.org/10.1007/s00041-012-9223-8 doi: 10.1007/s00041-012-9223-8
|
| [29] |
E. Set, M. Tomar, M. Z. Sarikaya, On generalized Grüss type inequalities for $k$-fractional integrals, Appl. Math. Comput., 269 (2015), 29–34. https://doi.org/10.1016/j.amc.2015.07.026 doi: 10.1016/j.amc.2015.07.026
|