Research article

Refinement of Jensen-type inequalities: fractional extensions (global and local)

  • Received: 26 November 2024 Revised: 29 January 2025 Accepted: 12 February 2025 Published: 25 March 2025
  • MSC : 26A33, 26A51, 26D15

  • In this paper, our main objective was to establish new refinements of Jensen's inequality. We focused on the class of convex and harmonic convex functions. In addition, we extended these results to the generalized Caputo-type fractional integral and the generalized local fractional derivative.

    Citation: Paul Bosch, Jorge A. Paz Moyado, José M. Rodríguez-García, José M. Sigarreta. Refinement of Jensen-type inequalities: fractional extensions (global and local)[J]. AIMS Mathematics, 2025, 10(3): 6574-6588. doi: 10.3934/math.2025301

    Related Papers:

  • In this paper, our main objective was to establish new refinements of Jensen's inequality. We focused on the class of convex and harmonic convex functions. In addition, we extended these results to the generalized Caputo-type fractional integral and the generalized local fractional derivative.



    加载中


    [1] T. Abdeljawad, On conformable fractional calculus, J. Comput. Appl. Math., 279 (2015), 57–66. https://doi.org/10.1016/j.cam.2014.10.016 doi: 10.1016/j.cam.2014.10.016
    [2] R. Abreu-Blaya, A. Fleitas, J. E. Nápoles Valdés, R. Reyes, J. M. Rodríguez, J. M. Sigarreta, On the conformable fractional logistic models, Math. Methods Appl. Sci., 43 (2020), 4156–4167. https://doi.org/10.1002/mma.6180 doi: 10.1002/mma.6180
    [3] A. Atangana, D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model, Therm. Sci., 20 (2016), 763–769. https://doi.org/10.2298/TSCI160111018A doi: 10.2298/TSCI160111018A
    [4] D. Baleanu, K. Diethelm, E. Scalas, J. J. Trujillo, Fractional calculus: models and numerical methods, Series on Complexity, Nonlinearity and Chaos, Vol. 3, World Scientific Pub. Co. Inc., 2012.
    [5] P. Bosch, H. J. Carmenate, J. M. Rodríguez, J. M. Sigarreta, Generalized inequalities involving fractional operators of the Riemann-Liouville type, AIMS Math., 7 (2022), 1470–1485. https://doi.org/10.3934/math.2022087 doi: 10.3934/math.2022087
    [6] P. Bosch, J. F. Gómez-Aguilar, J. M. Rodríguez, J. M. Sigarreta, Analysis of dengue fever outbreak by generalized fractional derivative, Fractals, 28 (2020), 2040038. https://doi.org/10.1142/S0218348X20400381 doi: 10.1142/S0218348X20400381
    [7] P. Bosch, Y. Quintana, J. M. Rodríguez, J. M. Sigarreta, Jensen-type inequalities for $m$-convex functions, Open Math., 20 (2022), 946–958. https://doi.org/10.1515/math-2022-0061 doi: 10.1515/math-2022-0061
    [8] P. Bosch, J. M. Rodríguez, J. M. Sigarreta, On Jensen-type inequalities for harmonic convex functions, J. Math. Inequal., 18 (2024), 1399–1413. https://doi.org/10.7153/jmi-2024-18-82 doi: 10.7153/jmi-2024-18-82
    [9] M. Caputo, Linear model of dissipation whose $Q$ is almost frequency independent Ⅱ, Geophys. J. Int., 13 (1967), 529–539. https://doi.org/10.1111/j.1365-246X.1967.tb02303.x doi: 10.1111/j.1365-246X.1967.tb02303.x
    [10] M. Caputo, Elasticitàe dissipazione, Bologna: Zanichelli, 1969.
    [11] M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 1 (2015), 73–85. https://doi.org/10.12785/pfda/010201 doi: 10.12785/pfda/010201
    [12] Z. Dahmani, On Minkowski and Hermite-Hadamard integral inequalities via fractional integration, Ann. Funct. Anal., 1 (2010), 51–58. https://doi.org/10.15352/afa/1399900993 doi: 10.15352/afa/1399900993
    [13] S. S. Dragomir, Inequalities of Jensen type for HA-convex functions, An. Univ. Oradea Fasc. Mat., 27 (2020), 103–124.
    [14] A. Fleitas, J. F. Gómez-Aguilar, J. E. Nápoles Valdés, J. M. Rodríguez, J. M. Sigarreta, Analysis of the local Drude model involving the generalized fractional derivative, Optik, 193 (2019), 163008. https://doi.org/10.1016/j.ijleo.2019.163008 doi: 10.1016/j.ijleo.2019.163008
    [15] A. Fleitas, J. E. Nápoles Valdés, J. M. Rodríguez, J. M. Sigarreta, Note on the generalized conformable derivative, Rev. Uni. Mat. Argen., 62 (2021), 443–457. https://doi.org/10.33044/revuma.1930 doi: 10.33044/revuma.1930
    [16] J. Han, P. O. Mohammed, H. Zeng, Generalized fractional integral inequalities of Hermite-Hadamard-type for a convex function, Open Math., 18 (2020), 794–806. https://doi.org/10.1515/math-2020-0038 doi: 10.1515/math-2020-0038
    [17] F. Jarad, E. Uǧurlu, T. Abdeljawad, D. Baleanu, On a new class of fractional operators, Adv. Differ. Equ., 2017 (2017), 247. https://doi.org/10.1186/s13662-017-1306-z doi: 10.1186/s13662-017-1306-z
    [18] J. L. W. V. Jensen, Sur les fonctions convexes et les inégalités entre les valeurs moyennes, Acta Math., 30 (1906), 175–193. https://doi.org/10.1007/BF02418571 doi: 10.1007/BF02418571
    [19] U. N. Katugampola, A new fractional derivative with classical properties, arXiv, 2014. https://doi.org/10.48550/arXiv.1410.6535
    [20] R. Khalil, M. Al Horani, A. Yousef, M. Sababheh, A new definition of fractional derivative, J. Comput. Appl. Math., 264 (2014), 65–70. https://doi.org/10.1016/j.cam.2014.01.002 doi: 10.1016/j.cam.2014.01.002
    [21] Z. M. M. Mahdi Sayed, M. Adil Khan, S. Khan, J. Pečarić, A refinement of the integral Jensen inequality pertaining certain functions with applications, J. Funct. Spaces, 2022 (2022), 8396644. https://doi.org/10.1155/2022/8396644 doi: 10.1155/2022/8396644
    [22] S. Mubeen, S. Habib, M. N. Naeem, The Minkowski inequality involving generalized $k$-fractional conformable integral, J. Inequal. Appl., 2019 (2019), 81. https://doi.org/10.1186/s13660-019-2040-8 doi: 10.1186/s13660-019-2040-8
    [23] K. S. Nisar, F. Qi, G. Rahman, S. Mubeen, M. Arshad, Some inequalities involving the extended gamma function and the Kummer confluent hypergeometric $K$-function, J. Inequal. Appl., 2018 (2018), 135, https://doi.org/10.1186/s13660-018-1717-8 doi: 10.1186/s13660-018-1717-8
    [24] G. Rahman, T. Abdeljawad, F. Jarad, A. Khan, K. S. Nisar, Certain inequalities via generalized proportional Hadamard fractional integral operators, Adv. Differ. Equ., 2019 (2019), 454. https://doi.org/10.1186/s13662-019-2381-0 doi: 10.1186/s13662-019-2381-0
    [25] G. Rahman, K. S. Nisar, B. Ghanbari, T. Abdeljawad, On generalized fractional integral inequalities for the monotone weighted Chebyshev functionals, Adv. Differ. Equ., 2020 (2020), 368. https://doi.org/10.1186/s13662-020-02830-7 doi: 10.1186/s13662-020-02830-7
    [26] S. Rashid, M. A. Noor, K. I. Noor, Y. M. Chu, Ostrowski type inequalities in the sense of generalized $K$-fractional integral operator for exponentially convex functions, AIMS Math., 5 (2020), 2629–2645. https://doi.org/10.3934/math.2020171 doi: 10.3934/math.2020171
    [27] Z. M. M. M. Sayed, M. A. Khan, S. Khan, J. Pečarić, Refinement of the classical Jensen inequality using finite sequences, Hacettepe J. Math. Stat., 53 (2024), 608–627. https://doi.org/10.15672/hujms.1270585 doi: 10.15672/hujms.1270585
    [28] Y. Sawano, H. Wadade, On the Gagliardo-Nirenberg type inequality in the critical Sobolev-Morrey space, J. Fourier Anal. Appl., 19 (2013), 20–47. https://doi.org/10.1007/s00041-012-9223-8 doi: 10.1007/s00041-012-9223-8
    [29] E. Set, M. Tomar, M. Z. Sarikaya, On generalized Grüss type inequalities for $k$-fractional integrals, Appl. Math. Comput., 269 (2015), 29–34. https://doi.org/10.1016/j.amc.2015.07.026 doi: 10.1016/j.amc.2015.07.026
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(938) PDF downloads(37) Cited by(0)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog