Research article

Supra soft Omega-open sets and supra soft Omega-regularity

  • Correction on: AIMS Mathematics 10: 10624-10625.
  • Received: 05 February 2025 Revised: 12 March 2025 Accepted: 19 March 2025 Published: 25 March 2025
  • MSC : 05C72, 54A40

  • This paper introduces a novel concept of supra-soft topology generated from a specific family of supra-topologies. We define supra-soft $ \omega $-open sets as a new class of soft sets that create a finer topology than the original. We explore the properties of these supra-soft $ \omega $-open sets and assess the validity of related results from ordinary supra-topological spaces within the framework of supra-soft topological spaces. Additionally, we present two new separation axioms: supra-soft $ \omega $-local indiscreteness and supra-soft $ \omega $ -regularity, demonstrating that both are stronger than traditional supra-soft $ \omega $-regularity. We also provide subspace and product theorems for supra-soft $ \omega $-regularity and examine the correspondence between our new supra-soft concepts and their classical counterparts in supra-topology.

    Citation: Dina Abuzaid, Samer Al-Ghour. Supra soft Omega-open sets and supra soft Omega-regularity[J]. AIMS Mathematics, 2025, 10(3): 6636-6651. doi: 10.3934/math.2025303

    Related Papers:

  • This paper introduces a novel concept of supra-soft topology generated from a specific family of supra-topologies. We define supra-soft $ \omega $-open sets as a new class of soft sets that create a finer topology than the original. We explore the properties of these supra-soft $ \omega $-open sets and assess the validity of related results from ordinary supra-topological spaces within the framework of supra-soft topological spaces. Additionally, we present two new separation axioms: supra-soft $ \omega $-local indiscreteness and supra-soft $ \omega $ -regularity, demonstrating that both are stronger than traditional supra-soft $ \omega $-regularity. We also provide subspace and product theorems for supra-soft $ \omega $-regularity and examine the correspondence between our new supra-soft concepts and their classical counterparts in supra-topology.



    加载中


    [1] D. Molodtsov, Soft set theory–first results, Comput. Math. Appl., 37 (1999), 19–31. https://doi.org/10.1016/S0898-1221(99)00056-5 doi: 10.1016/S0898-1221(99)00056-5
    [2] O. Dalkılıc, N. Demirtas, Algorithms for covid-19 outbreak using soft set theory: estimation and application, Soft Comput., 27 (2023), 3203–3211. https://doi.org/10.1007/s00500-022-07519-5 doi: 10.1007/s00500-022-07519-5
    [3] G. Santos-Garcıa, J. C. R. Alcantud, Ranked soft sets, Expert Syst., 40 (2023), e13231. https://doi.org/10.1111/exsy.13231 doi: 10.1111/exsy.13231
    [4] M. Shabir, M. Naz, On soft topological spaces, Comput. Math. Appl., 61 (2011), 1786–1799. https://doi.org/10.1016/j.camwa.2011.02.006 doi: 10.1016/j.camwa.2011.02.006
    [5] A. Aygunoglu, H. Aygun, Some notes on soft topological spaces, Neural Comput. Applic., 21 (2012) 113–119. https://doi.org/10.1007/s00521-011-0722-3 doi: 10.1007/s00521-011-0722-3
    [6] D. N. Georgiou, A. C. Mergaritis, Soft set theory and topology, Appl. Gen. Topol., 15 (2014), 93–109. https://doi.org/10.4995/agt.2014.2268 doi: 10.4995/agt.2014.2268
    [7] W. K. Min, A note on soft topological spaces, Comput. Math. Appl., 62 (2011), 3524–3528. https://doi.org/10.1016/j.camwa.2011.08.068 doi: 10.1016/j.camwa.2011.08.068
    [8] S. Saleh, K. Hur, On some lower soft separation axioms, Annals of Fuzzy Mathematics and Informatics, 19 (2020), 61–72. https://doi.org/10.30948/afmi.2020.19.1.61 doi: 10.30948/afmi.2020.19.1.61
    [9] O. Tantawy, S. A. El-Sheikh, S. Hamde, Separation axioms on soft topological spaces, Annals of Fuzzy Mathematics and Informatics, 11 (2016), 511–525.
    [10] S. Al Ghour, Weaker forms of soft regular and soft $T_{2}$ soft topological spaces, Mathematics, 9 (2021), 2153. https://doi.org/10.3390/math9172153 doi: 10.3390/math9172153
    [11] T. M. Al-shami, Z. A. Ameen, A. A. Azzam, M. E. El-Shafei, Soft separation axioms via soft topological operators, AIMS Mathematics, 7 (2022), 15107–15119. https://doi.org/10.3934/math.2022828 doi: 10.3934/math.2022828
    [12] T. M. Al-shami, Z. A. Ameen, B. A. Asaad, A. Mhemdi, Soft bi-continuity and related soft functions, J. Math. Comput. Sci., 30 (2023), 19–29. https://doi.org/10.22436/jmcs.030.01.03 doi: 10.22436/jmcs.030.01.03
    [13] B. A. Asaad, T. M. Al-shami, Z. A. Ameen, On soft somewhere dense open functions and soft baire spaces, Iraqi Journal of Science, 64 (2023), 373–384. https://doi.org/10.24996/ijs.2023.64.1.35 doi: 10.24996/ijs.2023.64.1.35
    [14] Z. A. Ameen, O. F. Alghamdi, B. A. Asaad, R. A. Mohammed, Methods of generating soft topologies and soft separation axioms, Eur. J. Pure Appl. Math., 17 (2024), 1168–1182. https://doi.org/10.29020/nybg.ejpam.v17i2.5161 doi: 10.29020/nybg.ejpam.v17i2.5161
    [15] D. Abuzaid, S. Al Ghour, Three new soft separation axioms in soft topological spaces, AIMS Mathematics, 9 (2024), 4632–4648. https://doi.org/10.3934/math.2024223 doi: 10.3934/math.2024223
    [16] T. M. Al-shami, I. Alshammari, B. A. Asaad, Soft maps via soft somewhere dense sets, Filomat, 34 (2020), 3429–3440. https://doi.org/10.2298/FIL2010429A doi: 10.2298/FIL2010429A
    [17] T. M. Al-shami, B. A. Asaad, M. A. El-Gayar, Various types of supra pre-compact and supra pre-Lindelof spaces, Missouri J. Math. Sci., 32 (2020), 1–20. https://doi.org/10.35834/2020/3201001 doi: 10.35834/2020/3201001
    [18] S. Das, S. K. Samanta, Soft matric, Annals of Fuzzy Mathematics and Informatics, 6 (2013), 77–94.
    [19] B. Chen, Soft semi-open sets and related properties in soft topological spaces, Appl. Math. Inf. Sci., 7 (2013), 287–294. http://doi.org/10.12785/amis/070136 doi: 10.12785/amis/070136
    [20] Z. A. Ameen, B. A. Asaad, T. M. Al-shami, Soft somewhat continuous and soft somewhat open functions, TWMS J. App. and Eng. Math., 13 (2023), 792–806. https://doi.org/10.48550/arXiv.2112.15201 doi: 10.48550/arXiv.2112.15201
    [21] S. Al-Ghour, Boolean algebra of soft $Q$-Sets in soft topological spaces, Appl. Comput. Intell. S., 2022 (2022), 5200590. https://doi.org/10.1155/2022/5200590 doi: 10.1155/2022/5200590
    [22] Z. A. Ameen, M. H. Alqahtani, O. F. Alghamdi, Lower density soft operators and density soft topologies, Heliyon, 10 (2024), e35280. https://doi.org/10.1016/j.heliyon.2024.e35280 doi: 10.1016/j.heliyon.2024.e35280
    [23] A. S. Mashhour, A. A. Allam, F. S. Mahmoud, F. H. Khedr, Supra topological spaces, Indian Journal of Pure and Applied Mathematics, 14 (1990), 502–510.
    [24] M. E. El-Shafei, A. H. Zakari, T. M. Al-shami, Some applications of supra preopen sets, J. Math., 2020 (2020), 9634206. https://doi.org/10.1155/2020/9634206 doi: 10.1155/2020/9634206
    [25] T. M. Al-Shami, E. A. Abo-Tabl, B. A. Asaad, Investigation of limit points and separation axioms using supra $\beta $-open sets, Missouri J. Math. Sci., 32 (2020), 171–187. https://doi.org/10.35834/2020/3202171 doi: 10.35834/2020/3202171
    [26] T. M. Al-shami, Complete Hausdorffness and complete regularity on supra topological spaces, J. Appl. Math., 2021 (2021), 5517702. https://doi.org/10.1155/2021/5517702 doi: 10.1155/2021/5517702
    [27] E. A. Ghaloob, A. R. Sadek, On $\beta ^{\ast }$-supra topological spaces, Journal of Discrete Mathematical Sciences and Cryptography, 26 (2023), 1835–1841. https://doi.org/10.47974/JDMSC-1632 doi: 10.47974/JDMSC-1632
    [28] T. M. Al-shami, I. Alshammari, Rough sets models inspired by supra-topology structures, Artif. Intell. Rev., 56 (2023), 6855–6883. https://doi.org/10.1007/s10462-022-10346-7 doi: 10.1007/s10462-022-10346-7
    [29] A. M. Kozae, M. Shokry, M. Zidan, Supra topologies for digital plane, AASCIT Communications, 3 (2016), 1–10.
    [30] S. A. El-Sheikh, A. M. A. El-Latif, Decompositions of some types of supra soft sets and soft continuity, International Journal of Mathematics Trends and Technology, 9 (2014), 37–56.
    [31] M. E. El-Shafei, M. A. Elhamayel, T. M. Al-shami, Further notions related to new operators and compactness via supra soft topological spaces, International Journal of Advances in Mathematics, 2019 (2019), 44–60.
    [32] A. M. A. El-Latif, R. A. Hosny, Supra semi open soft sets and associated soft separation axioms, Appl. Math. Inf. Sci., 10 (2016), 2207–2215. https://doi.org/10.18576/amis/100623 doi: 10.18576/amis/100623
    [33] A. M. A. El-Latif, R. A. Hosny, Supra open soft sets and associated soft separation axioms, International Journal of Advances in Mathematics, 2017 (2017), 68–81.
    [34] C. G. Aras, S. Bayramov, Separation axioms in supra soft bitopological spaces, Filomat, 32 (2018), 3479–3486. https://doi.org/10.2298/FIL1810479G doi: 10.2298/FIL1810479G
    [35] T. M. Al-shami, M. E. El-Shafei, Two types of separation axioms on supra soft separation spaces, Demonstr. Math., 52 (2019), 147–165. https://doi.org/10.1515/dema-2019-0016 doi: 10.1515/dema-2019-0016
    [36] T. M. Al-shami, J. C. R. Alcantud, A. A. Azzam, Two new families of supra-soft topological spaces defined by separation axioms, Mathematics, 10 (2022), 4488. https://doi.org/10.3390/math10234488 doi: 10.3390/math10234488
    [37] A. M. Khattak, M. Younas, G. A. Khan, M. Ur-Rehman, S. Nadeem, M. Safeer, $P$-Separation axioms in supra soft topological spaces, Matrix Science Mathematic (MSMK), 2 (2018), 7–10. https://doi.org/10.26480/msmk.02.2018.07.10 doi: 10.26480/msmk.02.2018.07.10
    [38] C. G. Aras, S. Bayramov, Results of some separation axioms in supra soft topological spaces, TWMS J. Appl. Eng. Math., 9 (2019), 58–63.
    [39] A. M. Abd El-latif, S. Karatas, Supra $b$-open soft sets and supra $b$-soft continuity on soft topological spaces, Journal of Mathematics and Computer Applications Research, 5 (2015), 1–18.
    [40] A. Kandil, O. A. E. Tantawy, S. A. El-Sheikh, A. M. A. El-latif, Notes on $\gamma $-soft operator and some counterexamples on (supra) soft continuity, Annals of Fuzzy Mathematics and Informatics, 10 (2015), 203–213.
    [41] F. A. A. Shaheena, T. M. Al-shami, M. Arard, O. G. El-Barbarye, Supra finite soft-open sets and applications to operators and continuity, J. Math. Comput. Sci., 35 (2024), 120–135. https://doi.org/10.22436/jmcs.035.02.01 doi: 10.22436/jmcs.035.02.01
    [42] S. Al Ghour, A. Bin-Saadon, On some generated soft topological spaces and soft homogeneity, Heliyon, 5 (2019), e02061. https://doi.org/10.1016/j.heliyon.2019.e02061 doi: 10.1016/j.heliyon.2019.e02061
    [43] S. Al Ghour, W. Hamed, On two classes of soft sets in soft topological spaces, Symmetry, 12 (2020), 265. https://doi.org/10.3390/sym12020265 doi: 10.3390/sym12020265
    [44] T. M. Al-shami, Some results related to supra topological spaces, Journal of Advanced Studies in Topology, 7 (2016), 283–294.
    [45] A. M. A. El-latif, On soft supra compactness in supra soft topological spaces, Tbilisi Math. J., 11 (2018), 169–178. https://doi.org/10.32513/tbilisi/1524276038 doi: 10.32513/tbilisi/1524276038
    [46] S. Al Ghour, W. Zareer, Omega open sets in generalized topological spaces, J. Nonlinear Sci. Appl., 9 (2016), 3010–3017. http://doi.org/10.22436/jnsa.009.05.93 doi: 10.22436/jnsa.009.05.93
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(891) PDF downloads(43) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog