Research article Special Issues

Geometric convolution characteristics of $ q $-Janowski type functions related to $ (j, k) $-symmetrical functions

  • Received: 17 January 2025 Revised: 04 March 2025 Accepted: 11 March 2025 Published: 25 March 2025
  • MSC : 30C45, 30C50

  • In this paper, we investigate the properties of functions belonging to the classes $ \psi(\eta)\in\mathcal{\overline{T}}^{j, k}_q(A, B) $ and $ \psi(\eta)\in\mathcal{\overline{K}}^{j, k}_q(A, B) $, these functions are defined within the context of $ q $-calculus and $ (j, k) $-symmetrical functions. We employ convolution techniques and quantum calculus to explore the convolution conditions, which will serve as foundational results for further studies in our work Furthermore, we establish conditions for membership in $ \psi(\eta)\in\mathcal{\overline{T}}^{j, k}_q(A, B) $ and present an example demonstrating the application of these results to rational functions.

    Citation: Faizah D Alanazi, Fuad Alsarari. Geometric convolution characteristics of $ q $-Janowski type functions related to $ (j, k) $-symmetrical functions[J]. AIMS Mathematics, 2025, 10(3): 6652-6663. doi: 10.3934/math.2025304

    Related Papers:

  • In this paper, we investigate the properties of functions belonging to the classes $ \psi(\eta)\in\mathcal{\overline{T}}^{j, k}_q(A, B) $ and $ \psi(\eta)\in\mathcal{\overline{K}}^{j, k}_q(A, B) $, these functions are defined within the context of $ q $-calculus and $ (j, k) $-symmetrical functions. We employ convolution techniques and quantum calculus to explore the convolution conditions, which will serve as foundational results for further studies in our work Furthermore, we establish conditions for membership in $ \psi(\eta)\in\mathcal{\overline{T}}^{j, k}_q(A, B) $ and present an example demonstrating the application of these results to rational functions.



    加载中


    [1] P. Liczberski, J. Połubiński, On $(j, k)$-symmetrical functions, Math. Bohem., 120 (1995), 13–28. https://doi.org/10.21136/MB.1995.125897 doi: 10.21136/MB.1995.125897
    [2] S. S. Miller, P. T. Mocanu, Differential subordinations: Theory and applications, CRC Press, 2000.
    [3] P. L. Duren, Univalent functions, New York, NY: Springer, 1983.
    [4] W. Janowski Some extremal problems for certain families of analytic functions Ⅰ, Annales Polonici Mathematici, 28 (1973), 297–326. https://doi.org/10.4064/ap-28-3-297-326 doi: 10.4064/ap-28-3-297-326
    [5] F. H. Jackson, On $q$-functions and a certain difference operator, Earth Env. Sci. T. R. So., 46 (1909), 253–281.
    [6] F. H. Jackson, On $q$-definite integrals, Quart. J. Pure Appl. Math., 41 (1910,) 193–203.
    [7] M. E. H. Ismail, E. Merkes, D. Styer, A generalization of starlike functions, Complex Var. Theory Appl., 14 (1990), 77–84. https://doi.org/10.1080/17476939008814407 doi: 10.1080/17476939008814407
    [8] H. M. Srivastava, M. Tahir, B. Khan, Q. Z. Ahmad, N. Khan, Some general classes of $q$-starlike functions associated with the Janowski functions, Symmetry, 11 (2019), 292. https://doi.org/10.3390/sym11020292 doi: 10.3390/sym11020292
    [9] M. Naeem, S. Hussain, S. Khan, T. Mahmood, M. Darus, Z. Shareef, Janowski type $q$-convex and $q$-close-to-convex functions associated with $q$-conic domain, Mathematics, 8 (2020), 440. https://doi.org/10.3390/math8030440 doi: 10.3390/math8030440
    [10] A. Mohammed, M. Darus, Ageneralized operator involving the $q$-hypergeometric function, Mat. Vestn., 65 (2013), 454–465.
    [11] F. Alsarari, A. Alkhammash, E. Deniz, Some properties of Janowski symmetrical functions, Symmetry, 14 (2022), 2526. https://doi.org/10.3390/sym14122526 doi: 10.3390/sym14122526
    [12] S. Mahmood, J. Sokół, New subclass of analytic functions in conical domain associated with Ruscheweyh $q$-differential operator, Results Math., 71 (2017), 1345–1357. https://doi.org/10.1007/s00025-016-0592-1 doi: 10.1007/s00025-016-0592-1
    [13] B. Khan, Z. Liu, T. G. Shaba, S. Araci, N. Khan, M. G. Khan, Applications of $q$-derivative operator to the subclass of bi-univalent functions involving $q$-Chebyshev polynomials, J. Math., 2022 (2022), 8162182. https://doi.org/10.1155/2022/8162182 doi: 10.1155/2022/8162182
    [14] F. Alsarari, S. Latha, T. Bulboac$\check{a}$, On Janowski functions associated with $(n, m)$-symmetrical functions, J. Taibah Univ. Sci., 13 (2019), 972–978. https://doi.org/10.1080/16583655.2019.1665487 doi: 10.1080/16583655.2019.1665487
    [15] F. Al-Sarari, S. Latha, B. A. Frasin, A note on starlike functions associated with symmetric points, Afr. Mat., 29 (2018), 945–953. https://doi.org/10.1007/s13370-018-0593-1 doi: 10.1007/s13370-018-0593-1
    [16] H. M. Srivastava, Operators of basic (or $q-$) calculus and fractional $q$-calculus and their applications in geometric function theory of complex analysis, Iran. J. Sci. Technol. Trans. Sci., 44 (2020), 327–344. https://doi.org/10.1007/s40995-019-00815-0 doi: 10.1007/s40995-019-00815-0
    [17] H. M. Srivastava, B. Khan, N. Khan, Q. Z. Ahmad, Coefficient inequalities for $q$-starlike functions associated with the Janowski functions, Hokkaido Math. J., 48 (2019), 407–425. https://doi.org/10.14492/hokmj/1562810517 doi: 10.14492/hokmj/1562810517
    [18] F. S. M. Al Sarari, B. A. Frasin, T. Al-Hawary, S. Latha, A few results on generalized Janowski type functions associated with $(j, k)$-symmetrical functions, Acta U. Sapientiae Ma., 8 (2016), 195–205. https://doi.org/10.1515/ausm-2016-0012 doi: 10.1515/ausm-2016-0012
    [19] F. S. Al-Sarari, S. Latha, M. Darus, A few results on Janowski functions associated with $k$-symmetric points, Korean J. Math., 25 (2017), 389–403. https://doi.org/10.11568/kjm.2017.25.3.389 doi: 10.11568/kjm.2017.25.3.389
    [20] S. Agrawal, S. K. Sahoo, A generalization of starlike functions of order alpha, Hokkaido Math. J., 46 (2017), 15–27. https://doi.org/10.14492/hokmj/1498788094 doi: 10.14492/hokmj/1498788094
    [21] M. I. S. Robertson, On the theory of univalent functions, Ann. Math., 37 (1936), 374–408. https://doi.org/10.2307/1968451 doi: 10.2307/1968451
    [22] K. Sakaguchi, On a certain univalent mapping, J. Math. Soc. Japan, 11 (1959), 72–75. https://doi.org/10.2969/jmsj/01110072 doi: 10.2969/jmsj/01110072
    [23] R. H. Nevanlinna, Über die konforme Abbildung von Sterngebieten, Översikt av Vetenskaps-Societetens förhandlingar/A, 63 (1921), 1–21.
    [24] K. S. Padmanabhan, M. S. Ganesan, Convolution conditions for certain classes of analytic functions. Indian J. Pure Appl. Math, 15 (1984), 777–780.
    [25] H. Silverman, E. M. Silvia, Telage D. Convolution conditions for convexity, starlikeness and spiral-likeness, Math. Z., 162 (1978), 125–130. https://doi.org/10.1007/BF01215069 doi: 10.1007/BF01215069
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1057) PDF downloads(34) Cited by(0)

Article outline

Figures and Tables

Figures(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog