Research article Special Issues

On the composition operator with variable integrability

  • Received: 30 October 2024 Revised: 20 January 2025 Accepted: 22 January 2025 Published: 08 February 2025
  • MSC : 47B33, 46BE30

  • In this article, we considered a class of composition operators on Lebesgue spaces with variable exponents over metric measure spaces. Taking advantage of the compatibility between the metric-measurable structure and the regularity properties of the variable exponent, we provided necessary and sufficient conditions for this class of operators to be bounded and compact, respectively. In addition, we showed the usefulness of the variable change to study weak compactness properties in the framework of non-standard spaces.

    Citation: Carlos F. Álvarez, Javier Henríquez-Amador, John Millán G., Eiver Rodríguez. On the composition operator with variable integrability[J]. AIMS Mathematics, 2025, 10(2): 2021-2041. doi: 10.3934/math.2025095

    Related Papers:

  • In this article, we considered a class of composition operators on Lebesgue spaces with variable exponents over metric measure spaces. Taking advantage of the compatibility between the metric-measurable structure and the regularity properties of the variable exponent, we provided necessary and sufficient conditions for this class of operators to be bounded and compact, respectively. In addition, we showed the usefulness of the variable change to study weak compactness properties in the framework of non-standard spaces.



    加载中


    [1] S. C. Arora, G. Datt, S. Verma, Composition operators on Lorentz spaces, Bull. Austral. Math. Soc., 76 (2007), 205–214. https://doi.org/10.1017/S0004972700039599 doi: 10.1017/S0004972700039599
    [2] D. Bajaj, G. Datt, Composition operators on variable exponent Lebesgue spaces, Anal. Math., 50 (2024), 345–366. https://doi.org/10.1007/s10476-024-00015-y doi: 10.1007/s10476-024-00015-y
    [3] P. Bevanda, S. Sosnowski, S. Hirche, Koopman operator dynamical models: Learning, analysis and control, Annu. Rev. Control, 52 (2021), 197–212. https://doi.org/10.1016/j.arcontrol.2021.09.002 doi: 10.1016/j.arcontrol.2021.09.002
    [4] A. Björn, J. Björn, Nonlinear potential theory on metric spaces, European Mathematical Society, 2011. https://doi.org/10.4171/099
    [5] G. Bourdaud, Changes of variable in Besov spaces. Ⅱ, Forum Math., 12 (2000), 545–563. https://doi.org/10.1515/form.2000.018 doi: 10.1515/form.2000.018
    [6] G. Bourdaud, M. Moussai, Continuity of composition operators in Sobolev spaces, Ann. I. H. Poincaré C Anal. Non Linéaire, 36 (2019), 2053–2063. https://doi.org/10.1016/J.ANIHPC.2019.07.002 doi: 10.1016/J.ANIHPC.2019.07.002
    [7] C. C. Cowen, B. D. MacCluer, Composition operators on spaces of analytic functions, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1995. https://doi.org/10.1201/9781315139920
    [8] N. Črnjarić-Žic, S. Maćešić, I. Mezić, Koopman operator spectrum for random dynamical systems, J. Nonlinear Sci., 30 (2020), 2007–2056. https://doi.org/10.1007/s00332-019-09582-z doi: 10.1007/s00332-019-09582-z
    [9] D. V. Cruz-Uribe, A. Fiorenza, Variable Lebesgue spaces, Applied and Numerical Harmonic Analysis, Birkhäuser/Springer, Heidelberg, 2013. https://doi.org/10.1007/978-3-0348-0548-3
    [10] G. Datt, D. S. Bajaj, A. Fiorenza, Weighted composition operators on variable exponent Lebesgue spaces, Adv. Oper. Theory, 9 (2024), 68. https://doi.org/10.1007/s43036-024-00366-1 doi: 10.1007/s43036-024-00366-1
    [11] L. Diening, P. Harjulehto, P. Hästö, M. Růžička, Lebesgue and Sobolev spaces with variable exponents, Lecture Notes in Mathematics, Springer, Heidelberg, 2011. https://doi.org/10.1007/978-3-642-18363-8
    [12] L. Diening, P. Hästö, A. Nekvinda, Open problems in variable exponent Lebesgue and Sobolev spaces, in FSDONA04 Proceedings, Milovy, Czech Republic, 66 (2004), 38–58. Available from: https://www.problemsolving.fi/pp/opFinal.pdf.
    [13] V. Gol'dshtein, A. Ukhlov, About homeomorphisms that induce composition operators on Sobolev spaces, Complex Var. Elliptic, 55 (2010), 833–845. https://doi.org/10.1080/17476930903394705 doi: 10.1080/17476930903394705
    [14] P. Górka, A. Macios, Almost everything you need to know about relatively compact sets in variable Lebesgue spaces, J. Funct. Anal., 269 (2015), 1925–1949. https://doi.org/10.1016/j.jfa.2015.06.024 doi: 10.1016/j.jfa.2015.06.024
    [15] P. Harjulehto, P. Hästö, M. Pere, Variable exponent Lebesgue spaces on metric spaces: The Hardy-Littlewood maximal operator, Real Anal. Exch., 30 (2004), 87–104.
    [16] R. Hataya, Y. Kawahara, Glocal hypergradient estimation with Koopman operator, arXiv preprint, 2024. https://doi.org/10.48550/arXiv.2402.02741
    [17] J. Heinonen, P. Koskela, N. Shanmugalingam, J. T. Tyson, Sobolev spaces on metric measure spaces, Cambridge University Press, 27 (2015). https://doi.org/10.1017/CBO9781316135914
    [18] F. L. Hernández, C. Ruiz, M. Sanchiz, Weak compactness in variable exponent spaces, J. Funct. Anal., 281 (2021), 109087. https://doi.org/10.1016/j.jfa.2021.109087 doi: 10.1016/j.jfa.2021.109087
    [19] F. L. Hernández, C. Ruiz, M. Sanchiz, Weak compactness and representation in variable exponent Lebesgue spaces on infinite measure spaces, RACSAM Rev. R. Acad. A, 116 (2022), 152. https://doi.org/10.1007/s13398-022-01298-2 doi: 10.1007/s13398-022-01298-2
    [20] M. Ikeda, I. Ishikawa, K. Taniguchi, Boundedness of composition operators on higher order Besov spaces in one dimension, Math. Ann., 388 (2024), 4487–4510. https://doi.org/10.1007/s00208-023-02637-3 doi: 10.1007/s00208-023-02637-3
    [21] A. Karapetyants, J. E. Restrepo, Composition operators on holomorphic variable exponent spaces, Math. Method. Appl. Sci., 45 (2022), 8566–8577. https://doi.org/10.1002/mma.7307 doi: 10.1002/mma.7307
    [22] V. M. Kokilashvili, A. Meskhi, H. Rafeiro, S. G. Samko, Integral operators in non-standard function spaces, Springer, 248 (2016). https://doi.org/10.1007/978-3-319-21018-6
    [23] B. O. Koopman, Hamiltonian systems and transformation in Hilbert space, Proc. Natl. Acad. Sci., 17 (1931), 315–318. https://doi.org/10.1073/pnas.17.5.315 doi: 10.1073/pnas.17.5.315
    [24] B. O. Koopman, J. von Neumann, Dynamical systems of continuous spectra, Proc. Natl. Acad. Sci., 18 (1932), 255–263. https://doi.org/10.1073/pnas.18.3.255 doi: 10.1073/pnas.18.3.255
    [25] L. Maligranda, Hidegoro Nakano (1909–1974)—On the centenary of his birth, In: International Symposium on Banach and Function Spaces, Yokohama Publishers, 2011, 99–171.
    [26] A. Morovatpoor, A. Abkar, Boundedness and compactness of composition operators on variable exponent Bergman spaces, Mediterr. J. Math., 17 (2020), 9. https://doi.org/10.1007/s00009-019-1441-8 doi: 10.1007/s00009-019-1441-8
    [27] P. Rosenthal, Composition operators and classical function theory, Composition operators on function spaces, Bull. Amer. Math. Soc. (N.S.), 1995,150–153. https://doi.org/10.1090/S0273-0979-1995-00562-8
    [28] R. K. Singh, J. S. Manhas, Composition operators on function spaces, North-Holland Mathematics Studies, North-Holland, Amsterdam, 179 (1993). https://doi.org/10.1016/s0304-0208(08)x7086-0
    [29] H. Takagi, Compact weighted composition operators on $ L^p $, Proc. Amer. Math. Soc., 116 (1992), 505–511. https://doi.org/10.2307/2159759 doi: 10.2307/2159759
    [30] S. K. Vodopyanov, Mappings of homogeneous groups and imbeddings of functional spaces, Siberian Math. J., 30 (1989), 685–698. https://doi.org/10.1007/BF00971258 doi: 10.1007/BF00971258
    [31] S. K. Vodopyanov, Composition operators on Sobolev spaces, Contemp. Math., 382 (2005), 401.
    [32] C. Zhang, E. Zuazua, A quantitative analysis of Koopman operator methods for system identification and predictions, Comptes Rendus. Mécanique, 351 (2023), 1–31. https://doi.org/10.5802/crmeca.138 doi: 10.5802/crmeca.138
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1190) PDF downloads(68) Cited by(0)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog