The determination of upper and lower bounds for topological indices in molecular graphs provides critical insights into the structural properties of chemical compounds. These bounds facilitate the estimation of the ranges of topological indices based on molecular structural parameters. This study presents novel inequalities for the Gutman-Milovanović index, which generalizes several significant indices such as the first and second Zagreb indices, the Randić index, the harmonic index, the geometric-arithmetic index, the general second Zagreb index, and the general sum-connectivity index. Moreover, we derive and characterize extremal graphs for many of these inequalities. Additionally, we explore the application of the Gutman-Milovanović index in modeling the physicochemical properties of 22 polycyclic aromatic hydrocarbons. Our results demonstrate that the topological index $ M_{\alpha, \beta} $ provides accurate predictions for these properties, with $ R^2 $ values ranging from 0.9406 to 0.9983, indicating a strong correlation between the index and experimental data. The findings underscore the versatility of $ M_{\alpha, \beta} $ in chemical applications.
Citation: Edil D. Molina, José M. Rodríguez-García, José M. Sigarreta, Sergio J. Torralbas Fitz. On the Gutman-Milovanović index and chemical applications[J]. AIMS Mathematics, 2025, 10(2): 1998-2020. doi: 10.3934/math.2025094
The determination of upper and lower bounds for topological indices in molecular graphs provides critical insights into the structural properties of chemical compounds. These bounds facilitate the estimation of the ranges of topological indices based on molecular structural parameters. This study presents novel inequalities for the Gutman-Milovanović index, which generalizes several significant indices such as the first and second Zagreb indices, the Randić index, the harmonic index, the geometric-arithmetic index, the general second Zagreb index, and the general sum-connectivity index. Moreover, we derive and characterize extremal graphs for many of these inequalities. Additionally, we explore the application of the Gutman-Milovanović index in modeling the physicochemical properties of 22 polycyclic aromatic hydrocarbons. Our results demonstrate that the topological index $ M_{\alpha, \beta} $ provides accurate predictions for these properties, with $ R^2 $ values ranging from 0.9406 to 0.9983, indicating a strong correlation between the index and experimental data. The findings underscore the versatility of $ M_{\alpha, \beta} $ in chemical applications.
| [1] |
A. S. Alali, S. Ali, N. Hassan, A. M. Mahnashi, Y. Shang, A. Assiry, Algebraic structure graphs over the commutative ring $\mathbb{Z}_m $: exploring topological indices and entropies using $\mathbb{M}$-polynomials, Mathematics, 11 (2023), 3833. https://doi.org/10.3390/math11183833 doi: 10.3390/math11183833
|
| [2] |
A. Ali, E. Milovanović, S. Stankov, M. Matejić, I. Milovanović, Inequalities involving the harmonic-arithmetic index, Afr. Mat., 35 (2024), 46. https://doi.org/10.1007/s13370-024-01183-8 doi: 10.1007/s13370-024-01183-8
|
| [3] |
A. Ali, S. Sekar, S. Balachandran, S. Elumalai, A. M. Alanazi, T. S. Hassan, et al., Graphical edge-weight-function indices of trees, AIMS Math., 9 (2024), 32552–32570. https://doi.org/10.3934/math.20241559 doi: 10.3934/math.20241559
|
| [4] |
R. Aguilar-Sánchez, I. F. Herrera-González, J. A. Méndez-Bermúdez, J. M. Sigarreta, Computational properties of general indices on random networks, Symmetry, 12 (2020), 1341. https://doi.org/10.3390/sym12081341 doi: 10.3390/sym12081341
|
| [5] |
G. Britto Antony Xavier, E. Suresh, I. Gutman, Counting relations for general Zagreb indices, Kragujevac J. Math., 38 (2014), 95–103. https://doi.org/10.5937/KGJMATH1401095X doi: 10.5937/KGJMATH1401095X
|
| [6] |
W. Carballosa, A. Granados, J. A. Méndez-Bermúdez, D. Pestana, A. Portilla, Computational properties of the arithmetic-geometric index, J. Math. Chem., 60 (2022), 1854–1871. https://doi.org/10.1007/s10910-022-01390-3 doi: 10.1007/s10910-022-01390-3
|
| [7] | K. C. Das, On geometric–arithmetic index of graphs, MATCH Commun. Math. Comput. Chem., 64 (2010), 619–630. |
| [8] | K. C. Das, I. Gutman, B. Furtula, Survey on geometric-arithmetic indices of graphs, MATCH Commun. Math. Comput. Chem., 65 (2011), 595–644. |
| [9] |
K. C. Das, I. Gutman, B. Furtula, On first geometric-arithmetic index of graphs, Discrete Appl. Math., 159 (2011), 2030–2037. https://doi.org/10.1016/j.dam.2011.06.020 doi: 10.1016/j.dam.2011.06.020
|
| [10] |
M. Eliasi, A. Iranmanesh, On ordinary generalized geometric-arithmetic index, Appl. Math. Lett., 24 (2011), 582–587. https://doi.org/10.1016/j.aml.2010.11.021 doi: 10.1016/j.aml.2010.11.021
|
| [11] |
F. Falahati-Nezhad, M. Azari, T. Došlić, Sharp bounds on the inverse sum indeg index, Discrete Appl. Math., 217 (2017), 185–195. https://doi.org/10.1016/j.dam.2016.09.014 doi: 10.1016/j.dam.2016.09.014
|
| [12] | S. Fajtlowicz, On conjectures of Graffiti–Ⅱ, Congr. Numer. 60 (1987), 187–197. |
| [13] |
A. Granados, A. Portilla, Y. Quintana, E. Tourís, New bounds for variable topological indices and applications, J. Math. Chem., 62 (2024), 1435–1453. https://doi.org/10.1007/s10910-024-01593-w doi: 10.1007/s10910-024-01593-w
|
| [14] | A. Granados, A. Portilla, Y. Quintana, E. Tourís, Bounds for the Gutman-Milovanović index and applications, J. Math. Chem., In press, 2024. https://doi.org/10.1007/s10910-024-01677-7 |
| [15] | I. Gutman, M. Matejić, E. Milovanović, I. Milovanović, Lower bounds for inverse sum indeg index of graphs, Kragujevac J. Math., 44 (2020), 551–562. |
| [16] |
I. Gutman, E. Milovanović, I. Milovanović, Beyond the Zagreb indices, AKCE Int. J. Graphs Comb., 17 (2020), 74–85. https://doi.org/10.1016/j.akcej.2018.05.002 doi: 10.1016/j.akcej.2018.05.002
|
| [17] |
I. Gutman, J. M. Rodríguez, J. M. Sigarreta, Linear and non-linear inequalities on the inverse sum indeg index, Discr. Appl. Math., 258 (2019), 123–134. https://doi.org/10.1016/j.dam.2018.10.041 doi: 10.1016/j.dam.2018.10.041
|
| [18] |
I. Gutman, N. Trinajstić, Graph theory and molecular orbitals. Total $\pi$-electron energy of alternant hydrocarbons, Chem. Phys. Lett., 17 (1972), 535–538. https://doi.org/10.1016/0009-2614(72)85099-1 doi: 10.1016/0009-2614(72)85099-1
|
| [19] | V. P. Kulli, On hyper Gourava indices and coindices, Int. J. Math. Arch., 8 (2017), 116–120. |
| [20] |
V. P. Kulli, The Gourava indices and coindices of graphs, Ann. Pure Appl. Math., 14 (2017), 33–38. http://dx.doi.org/10.22457/apam.v14n1a4 doi: 10.22457/apam.v14n1a4
|
| [21] | V. P. Kulli, The product connectivity Gourava index, J. Comput. Math. Sci., 8 (2017), 235–242. |
| [22] |
S. Kumar, P. Sarkar, A. Pal, A study on the energy of graphs and its applications, Polycycl. Aromat. Comp., 44 (2023), 41270–4136. https://doi.org/10.1080/10406638.2023.2245104 doi: 10.1080/10406638.2023.2245104
|
| [23] | X. Li, J. Zheng, A unified approach to the extremal trees for different indices, MATCH Commun. Math. Comput. Chem., 54 (2005), 195–208. |
| [24] |
B. Lučić, N. Trinajstić, B. Zhou, Comparison between the sum-connectivity index and product-connectivity index for benzenoid hydrocarbons, Chem. Phys. Lett., 475 (2009), 146–148. https://doi.org/10.1016/j.cplett.2009.05.022 doi: 10.1016/j.cplett.2009.05.022
|
| [25] | B. Lučić, S. Nikolić, N. Trinajstić, B. Zhou, S. Ivaniš Turk, Sum-connectivity index, In: I. Gutman, B. Furtula, Novel molecular structure descriptors-theory and applications I, Kragujevac, University Kragujevac, 2010,101–136. |
| [26] |
A. Martínez-Pérez, J. M. Rodríguez, J. M. Sigarreta, A new approximation to the geometric-arithmetic index, J. Math. Chem., 56 (2018), 1865–1883. https://doi.org/10.1007/s10910-017-0811-3 doi: 10.1007/s10910-017-0811-3
|
| [27] | A. Miličević, S. Nikolić, On variable Zagreb indices, Croat. Chem. Acta, 77 (2004), 97–101. |
| [28] | S. Noureen, R. Batool, A. M. Albalahi, Y. Shang, T. Alraqad, A. Ali, On tricyclic graphs with maximum atom–bond sum–connectivity index, Heliyon, 10 (2024), e33841. |
| [29] | S. Nikolić, G. Kovačević, A. Miličević, N. Trinajstić, The Zagreb indices 30 years after, Croat. Chem. Acta, 76 (2003), 113–124. |
| [30] |
K. Pattabiraman, Inverse sum indeg index of graphs, AKCE Int. J. Graphs Combin., 15 (2018), 155–167. https://doi.org/10.1016/j.akcej.2017.06.001 doi: 10.1016/j.akcej.2017.06.001
|
| [31] |
J. A. Paz Moyado, Y. Quintana, J. M. Rodríguez, J. M. Sigarreta, New reverse Holder-type inequalities and applications, J. Inequal. Appl., 26 (2023), 1021–1038. https://doi.org/10.7153/mia-2023-26-63 doi: 10.7153/mia-2023-26-63
|
| [32] |
M. Randić, Novel graph theoretical approach to heteroatoms in quantitative structure—activity relationships, Chemometri. Intell. Lab. Syst., 10 (1991), 213–227. https://doi.org/10.1016/0169-7439(91)80051-Q doi: 10.1016/0169-7439(91)80051-Q
|
| [33] |
M. Randić, On computation of optimal parameters for multivariate analysis of structure-property relationship, J. Conput. Chem., 12 (1991), 970–980. https://doi.org/10.1002/jcc.540120810 doi: 10.1002/jcc.540120810
|
| [34] |
M. Randić, D. Plavšić, N. Lerš, Variable connectivity index for cycle-containing structures, J. Chem. Inf. Comput. Sci., 41 (2001), 657–662. https://doi.org/10.1021/ci000118z doi: 10.1021/ci000118z
|
| [35] | J. M. Rodríguez, J. M. Sigarreta, On the geometric-arithmetic index, MATCH Commun. Math. Comput. Chem., 74 (2015), 103–120. |
| [36] |
J. M. Rodríguez, J. M. Sigarreta, Spectral properties of geometric-arithmetic index, Appl. Math. Comput., 277 (2016), 142–153. https://doi.org/10.1016/j.amc.2015.12.046 doi: 10.1016/j.amc.2015.12.046
|
| [37] |
J. M. Sigarreta, Mathematical properties of variable topological indices, Symmetry, 13 (2021), 43. https://doi.org/10.3390/sym13010043 doi: 10.3390/sym13010043
|
| [38] | W. Specht, Zer Theorie der elementaren Mittel, Math. Z., 74 (1960), 91–98. |
| [39] | M. Tominaga, Specht's ratio in the Young inequality, Sci. Math. Japan, 55 (2002), 583–588. |
| [40] | D. Vukičević, M. Gašperov, Bond additive modeling 1. Adriatic indices, Croat. Chem. Acta, 83 (2010), 243–260. |
| [41] | D. Vukičević, Bond additive modeling 2. Mathematical properties of max-min rodeg index, Croat. Chem. Acta, 83 (2010), 261–273. |
| [42] |
H. Wiener, Structural determination of paraffin boiling points, J. Am. Chem. Soc., 69 (1947), 17–20. https://doi.org/10.1021/ja01193a005 doi: 10.1021/ja01193a005
|
| [43] |
B. Zhou, N. Trinajstić, On a novel connectivity index, J. Math. Chem., 46 (2009), 1252–1270. https://doi.org/10.1007/s10910-008-9515-z doi: 10.1007/s10910-008-9515-z
|
| [44] |
B. Zhou, N. Trinajstić, On general sum-connectivity index, J. Math. Chem., 47 (2010), 210–218. https://doi.org/10.1007/s10910-009-9542-4 doi: 10.1007/s10910-009-9542-4
|