Processing math: 100%
Research article Special Issues

Some new generalizations of reversed Minkowski's inequality for several functions via time scales

  • In this paper, we introduce novel extensions of the reversed Minkowski inequality for various functions defined on time scales. Our approach involves the application of Jensen's and Hölder's inequalities on time scales. Our results encompass the continuous inequalities established by Benaissa as special cases when the time scale T corresponds to the real numbers (when T=R). Additionally, we derive distinct inequalities within the realm of time scale calculus, such as cases T=N and qN for q>1. These findings represent new and significant contributions for the reader.

    Citation: Elkhateeb S. Aly, A. I. Saied, I. Ibedou, Mohamed S. Algolam, Wael W. Mohammed. Some new generalizations of reversed Minkowski's inequality for several functions via time scales[J]. AIMS Mathematics, 2024, 9(5): 11156-11179. doi: 10.3934/math.2024547

    Related Papers:

    [1] Haytham M. Rezk, Mohammed Zakarya, Amirah Ayidh I Al-Thaqfan, Maha Ali, Belal A. Glalah . Unveiling new reverse Hilbert-type dynamic inequalities within the framework of Delta calculus on time scales. AIMS Mathematics, 2025, 10(2): 2254-2276. doi: 10.3934/math.2025104
    [2] Ahmed A. El-Deeb, Dumitru Baleanu, Nehad Ali Shah, Ahmed Abdeldaim . On some dynamic inequalities of Hilbert's-type on time scales. AIMS Mathematics, 2023, 8(2): 3378-3402. doi: 10.3934/math.2023174
    [3] Ahmed A. El-Deeb, Samer D. Makharesh, Sameh S. Askar, Dumitru Baleanu . Bennett-Leindler nabla type inequalities via conformable fractional derivatives on time scales. AIMS Mathematics, 2022, 7(8): 14099-14116. doi: 10.3934/math.2022777
    [4] Marwa M. Ahmed, Wael S. Hassanein, Marwa Sh. Elsayed, Dumitru Baleanu, Ahmed A. El-Deeb . On Hardy-Hilbert-type inequalities with $ \alpha $-fractional derivatives. AIMS Mathematics, 2023, 8(9): 22097-22111. doi: 10.3934/math.20231126
    [5] Saad Ihsan Butt, Erhan Set, Saba Yousaf, Thabet Abdeljawad, Wasfi Shatanawi . Generalized integral inequalities for ABK-fractional integral operators. AIMS Mathematics, 2021, 6(9): 10164-10191. doi: 10.3934/math.2021589
    [6] Soubhagya Kumar Sahoo, Fahd Jarad, Bibhakar Kodamasingh, Artion Kashuri . Hermite-Hadamard type inclusions via generalized Atangana-Baleanu fractional operator with application. AIMS Mathematics, 2022, 7(7): 12303-12321. doi: 10.3934/math.2022683
    [7] Jian-Mei Shen, Saima Rashid, Muhammad Aslam Noor, Rehana Ashraf, Yu-Ming Chu . Certain novel estimates within fractional calculus theory on time scales. AIMS Mathematics, 2020, 5(6): 6073-6086. doi: 10.3934/math.2020390
    [8] Elkhateeb S. Aly, Y. A. Madani, F. Gassem, A. I. Saied, H. M. Rezk, Wael W. Mohammed . Some dynamic Hardy-type inequalities with negative parameters on time scales nabla calculus. AIMS Mathematics, 2024, 9(2): 5147-5170. doi: 10.3934/math.2024250
    [9] Ahmed A. El-Deeb, Osama Moaaz, Dumitru Baleanu, Sameh S. Askar . A variety of dynamic $ \alpha $-conformable Steffensen-type inequality on a time scale measure space. AIMS Mathematics, 2022, 7(6): 11382-11398. doi: 10.3934/math.2022635
    [10] Elkhateeb S. Aly, Ali M. Mahnashi, Abdullah A. Zaagan, I. Ibedou, A. I. Saied, Wael W. Mohammed . N-dimension for dynamic generalized inequalities of Hölder and Minkowski type on diamond alpha time scales. AIMS Mathematics, 2024, 9(4): 9329-9347. doi: 10.3934/math.2024454
  • In this paper, we introduce novel extensions of the reversed Minkowski inequality for various functions defined on time scales. Our approach involves the application of Jensen's and Hölder's inequalities on time scales. Our results encompass the continuous inequalities established by Benaissa as special cases when the time scale T corresponds to the real numbers (when T=R). Additionally, we derive distinct inequalities within the realm of time scale calculus, such as cases T=N and qN for q>1. These findings represent new and significant contributions for the reader.



    In 1889, Hölder [1] proved that

    ξk=1xkyk(ξk=1xpk)1p(ξk=1yqk)1q, (1.1)

    where {xk}ξk=1 and {yk}ξk=1 are positive sequences and p>1 and 1/p+1/q=1. The inequality (1.1) is reversed if p<0 or q<0. The integral form of (1.1) is

    ιϵλ(ξ)ω(ξ)dξ[ιϵλγ(ξ)dξ]1γ[ιϵων(ξ)dξ]1ν, (1.2)

    where ϵ, ιR, γ>1, 1/γ+1/ν=1, and λ, ωC([a,b],R). If 0<γ<1, then (1.2) is reversed. For more informations about the applications of Hölder's inequality, see [2,3,4,5,6,7,8].

    In particular, Minkowski's inequality is considered as an application of H ölder's inequality, which states that, for δ1, if G, W are nonnegative continuous functions on [ˇc,˘a] such that

    0<˘aˇcGδ(τ)dτ< and 0<˘aˇcWδ(τ)dτ<,

    then

    (˘aˇc(G(τ)+W(τ))δdτ)1δ(˘aˇcGδ(τ)dτ)1δ+(˘aˇcWδ(τ)dτ)1δ. (1.3)

    Sulaiman [9] introduced the following outcome pertaining to the reversed Minkowski inequality: If G,W>0, δ1, and

    1<BG(ζ)W(ζ),

    for all ζ[ˇc,˘a], then

    +11(˘aˇc(G(ζ)W(ζ))δdζ)1δ(˘aˇcGδ(ζ)dζ)1δ+(˘aˇcWδ(ζ)dζ)1δB+1B1(˘aˇc(G(ζ)W(ζ))δdζ)1δ. (1.4)

    Sroysang [10] showed that, if δ1 and G,W>0 with

    0<E<BG(ζ)W(ζ),

    for all ζ[ˇc,˘a], then

    +1E(˘aˇc(G(ζ)EW(ζ))δdζ)1δ(˘aˇcGδ(ζ)dζ)1δ+(˘aˇcWδ(ζ)dζ)1δB+1BE(˘aˇc(G(ζ)EW(ζ))δdζ)1δ.

    Benaissa [11] introduced a novel finding concerning the inverse Minkowski inequality, proposing the following: If G,W>0, α>0,and δ1 such that

    0<E<BαG(ζ)W(ζ),

    for all ζ[ˇc,˘a], then

    +αα(E)(˘aˇc(αG(ζ)EW(ζ))δdζ)1δ(˘aˇcGδ(ζ)dζ)1δ+(˘aˇcWδ(ζ)dζ)1δB+αα(BE)(˘aˇc(αG(ζ)EW(ζ))δdζ)1δ. (1.5)

    In [12], Benaissa showed that, if α>0, 0<pη, G, W>0, U is a weight function, and

    0<E<BαG(ζ)W(ζ)   for all ζ[ˇc,˘a], (1.6)

    then

    +αα(E)(˘aˇcU(ζ)dζ)pηpη(˘aˇc(αG(ζ)EW(ζ))pU(ζ)dζ)1p(˘aˇcU(ζ)Gη(ζ)dζ)1η+(˘aˇcU(ζ)Wη(ζ)dζ)1ηB+αα(BE)(˘aˇc(αG(ζ)EW(ζ))ηU(ζ)dζ)1η. (1.7)

    Also, the author of [12] proved that, if 1<pη, α>0, G, W>0, and (1.6) holds, then

    +αα(E)(˘aˇc)1pη(˘aˇc(αG(ζ)EW(ζ))ηpU(ζ)dζ)pη(˘aˇcU(ζ)Gη(ζ)dζ)1η+(˘aˇcU(ζ)Wη(ζ)dζ)1ηB+αα(BE)(˘aˇc(αG(ζ)EW(ζ))ηU(ζ)dζ)1η. (1.8)

    Time scale calculus is a unification of continuous calculus and discrete calculus. Many authors have proved inequalities on time scales. For example, in 2001, Bohner and Peterson [13] presented Hölder's inequality on time scales, stating that if T is a time scale, ˇc, ˘aT, λ, ωCrd([ˇc,˘a]T, R+) and γ>1 with 1/γ+1/ν=1, then

    ˘aˇcλ(τ)ω(τ)Δτ[˘aˇcλγ(τ)Δτ]1γ[˘aˇcων(τ)Δτ]1ν. (1.9)

    The inequality (1.9) is reversed for 0<γ<1 or γ<0. In addition the authors of [13] presented Minkowski's inequality (1.3) on time scales, stating that if a, bT, ψ, ϖCrd([a,b]T,R+) and α>1, then

    (ba[ψ(ξ)+ϖ(ξ)]αΔξ)1α(ba(ψ(ξ))αΔξ)1α+(ba(ϖ(ξ))αΔξ)1α. (1.10)

    The inequality (1.10) is reversed with the reversed sign when α<0 or 0<α<1. In [14], Lütfi proved that if g,h:IR are Δ-integrable functions on I=[a,b]T with 1<lgp, hpL< and p>1, then

    (ba|g(ξ)|pΔξ)1p+(ba|h(ξ)|pΔξ)1p2(L/l)1/p(ba|g(ξ)+h(ξ)|pΔξ)1p.

    Here, we aim to extend the inequality (1.7) and rectify (1.8) in time scale calculus which is defined in Section 2. Also, we can get some new inequalities in (continuous, discrete, and quantum) calculus.

    In 2001, Bohner and Peterson introduced the backward jump and forward jump operators, denoted by σ(ζ):=inf{ϱT:ϱ>ζ} and ρ(ζ):=sup{ϱT:ϱ<ζ}, respectively [13]. For any function G:TR, the notations Gσ(ζ) and Gρ(ζ) denote G(σ(ζ)) and G(ρ(ζ)), respectively. The time scale interval [ˇc,˘a]T is denoted by [ˇc,˘a]T. For more information about dynamic inequalities, see for instance [15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35].

    Theorem 2.1. [13] Let G, W:TR be Δ-differentiable at τT. Then we have the following at τ:

    (1) The sum G+W:TR is differentiable with

    (G+W)Δ(τ)=GΔ(τ)+WΔ(τ).

    (2) αG:TR is differentiable for any constant α with

    (αG)Δ(τ)=αGΔ(τ).

    (3) The product GW :TR is differentiable and the product rule is defined by

    (GW)Δ(τ)=GΔ(τ)W(τ)+G(σ(τ))WΔ(τ)=G(τ)WΔ(τ)+GΔ(τ)W(σ(τ)).

    (4) If G(τ)G(σ(τ))0, then 1/G:TR is differentiable and

    (1G)Δ(τ)=GΔ(τ)G(τ)G(σ(τ)).

    (5) If W(τ)W(σ(τ))0, then the quotient G/W:TR is differentiable and the quotient rule is defined as

    (GW)Δ(τ)=GΔ(τ)W(τ)G(τ)WΔ(τ)W(τ)W(σ(τ)).

    Definition 2.1. [13] A function F:TR is said to an antiderivative of G:TR if

    FΔ(τ)=G(τ),  τT.

    In this case, the Cauchy integral of G is defined as

    xrG(τ)Δτ=F(x)F(r), r, xT.

    Definition 2.2. [13] A function f:TR is called rd-continuous provided that it is continuous at right-dense points in T and its left-sided limits exist (finite) at left-dense points in T. The set of rd-continuous functions f:TR is denoted by Crd(T, R).

    Theorem 2.2. [36] Assume that ˇc, ˘aT and GCrd(T, R). Then the next features satisfy the following conditions:

    (1) If T=R, then

    ˘aˇcG(τ)Δτ=˘aˇcG(τ)dτ.

    (2) If [ˇc,˘a] consists of only isolated points, then

    ˘aˇcG(τ)Δτ=τ[ˇc,˘a)μ(τ)G(τ).

    (3) If T=Z, then

    ˘aˇcG(τ)Δτ=˘a1τ=ˇcG(τ).

    (4) If T=δZ, δ>0, then

    ˘aˇcG(τ)Δτ=˘aˇcδδx=0G(ˇc+xδ)δ.

    The AM-GM inequality yields that

    (ϱi=1ψi(ξ))1ϱϱi=1ψi(ξ)ϱ, (2.1)

    where ψi(ξ), i=1,2,...,ϱ are nonnegative functions.

    Lemma 2.1. Assume that ˇc, ˘aT, ˘a>ˇc, 0<pδ, and h, λCrd([ˇc,˘a]T, R+). Then,

    (˘aˇcλ(ς)hp(ς)Δς)1p(˘aˇcλ(ς)Δς)δppδ(˘aˇcλ(ς)hδ(ς)Δς)1δ. (2.2)

    Proof. Applying (1.9) with γ=δ/p>1 and ν=δ/(δp), then

    ˘aˇcλ(ς)hp(ς)Δς=˘aˇc(λ(ς))δpδ(λ(ς))pδhp(ς)Δς(˘aˇcλ(ς)Δς)δpδ(˘aˇcλ(ς)hδ(ς)Δς)pδ.

    Thus,

    (˘aˇcλ(ς)hp(ς)Δς)1p(˘aˇcλ(ς)Δς)δppδ(˘aˇcλ(ς)hδ(ς)Δς)1δ,

    which is (2.2).

    Lemma 2.2. (Jensen's inequality [36]) Let ˇc, ˘aT with ˇc<˘a and c, dR. Assuming that ϕCrd([ˇc,˘a]T,(c,d)), ϰCrd([ˇc,˘a]T,R+).

    If FC((c,d),R) is convex, then

    F(˘aˇcϰ(ς)ϕ(ς)Δς˘aˇcϰ(ς)Δς)˘aˇcϰ(ς)F(ϕ(ς))Δς˘aˇcϰ(ς)Δς. (2.3)

    The inequality (2.3) is reversed if F is concave.

    If F(ς)=ςλ, then

    (˘aˇcϰ(ς)ϕ(ς)Δς˘aˇcϰ(ς)Δς)λ˘aˇcϰ(ς)ϕλ(ς)Δς˘aˇcϰ(ς)Δς,  λ>1, (2.4)

    and

    (˘aˇcϰ(ς)ϕ(ς)Δς˘aˇcϰ(ς)Δς)λ˘aˇcϰ(ς)ϕλ(ς)Δς˘aˇcϰ(ς)Δς,  0<λ<1. (2.5)

    During this study, we assume the existence of the integrals under consideration.

    Theorem 3.1. Assume that ˇc,˘aT, ˘a>ˇc, 0<pδ<, α>0, and Gx, Wx, UxCrd([ˇc,˘a]T,R+), x=1,2,...,ι, with

    0<E<BαGx(ς)Wx(ς), for x=1,2,...,ι. (3.1)

    Then,

    +αα(E)(˘aˇcιx=1(Ux(ς))1ιΔς)pδpδ×(˘aˇcιx=1[(αGx(ς)EWx(ς))]pι(Ux(ς))1ιΔς)1p(˘aˇcιx=1Ux(ς)Gδx(ς)ιΔς)1δ+(˘aˇcιx=1Ux(ς)Wδx(ς)ιΔς)1δB+αα(BE)(˘aˇcιx=1(αGx(ς)EWx(ς))δUx(ς)ιΔς)1δ. (3.2)

    Proof. From (3.1), we see that

    0<1E1B1EWx(ς)αGx(ς)1E1.

    Then,

    EαGx(ς)αGx(ς)EWx(ς)BBE. (3.3)

    Since 0<pδ, we have from (3.3) that

    ιx=1[α(E)(αGx(ς)EWx(ς))]pι(Ux(ς))1ιιx=1(Ux(ς))1ιGpιx(ς), (3.4)

    and

    ιx=1[Bα(BE)(αGx(ς)EWx(ς))]δUx(ς)ιx=1Gδx(ς)Ux(ς). (3.5)

    Integrating (3.4) and (3.5) over ς from ˇc to ˘a, we see that

    α(E)(˘aˇcιx=1[(αGx(ς)EWx(ς))]pι(Ux(ς))1ιΔς)1p(˘aˇcιx=1(Ux(ς))1ιGpιx(ς)Δς)1p, (3.6)

    and

    (˘aˇcιx=1Gδx(ς)Ux(ς)Δς)1δBα(BE)(˘aˇcιx=1(αGx(ς)EWx(ς))δUx(ς)Δς)1δ. (3.7)

    By applying (2.2) with h(ς)=ιx=1G1ιx(ς) and λ(ς)=ιx=1(Ux(ς))1ι, we see that

    (˘aˇcιx=1(Ux(ς))1ιGpιx(ς)Δς)1p(˘aˇcιx=1(Ux(ς))1ιΔς)δppδ(˘aˇcιx=1(Ux(ς))1ιGδιx(ς)Δς)1δ.

    Then, from (3.6), we have

    α(E)(˘aˇcιx=1(Ux(ς))1ιΔς)pδpδ×(˘aˇcιx=1[(αGx(ς)EWx(ς))]pι(Ux(ς))1ιΔς)1p(˘aˇcιx=1(Ux(ς))1ιGδιx(ς)Δς)1δ. (3.8)

    Using (3.1), we deduce that

    0<BEαGx(ς)EWx(ς)Wx(ς)E.

    Therefore

    1E(αGx(ς)EWx(ς))Wx(ς)1BE(αGx(ς)EWx(ς)). (3.9)

    Since 0<pδ, we have from (3.9) that

    1E(˘aˇcιx=1(αGx(ς)EWx(ς))pι(Ux(ς))1ιΔς)1p(˘aˇcιx=1Wpιx(ς)(Ux(ς))1ιΔς)1p, (3.10)

    and

    (˘aˇcιx=1Wδx(ς)Ux(ς)Δς)1δ1BE(˘aˇcιx=1(αGx(ς)EWx(ς))δUx(ς)Δς)1δ. (3.11)

    By applying (2.2) with h(ς)=ιx=1W1ιx(ς) and λ(ς)=ιx=1(Ux(ς))1ι, we have

    (˘aˇcιx=1Wpιx(ς)(Ux(ς))1ιΔς)1p(˘aˇcιx=1(Ux(ς))1ιΔς)δppδ(˘aˇcιx=1(Ux(ς))1ιWδιx(ς)Δς)1δ.

    Thus, (3.10) gives

    1E(˘aˇcιx=1(Ux(ς))1ιΔς)pδpδ×(˘aˇcιx=1(αGx(ς)EWx(ς))pι(Ux(ς))1ιΔς)1p(˘aˇcιx=1(Ux(ς))1ιWδιx(ς)Δς)1δ. (3.12)

    From (3.8) and (3.12), we deduce that

    +αα(E)(˘aˇcιx=1(Ux(ς))1ιΔς)pδpδ×(˘aˇcιx=1[(αGx(ς)EWx(ς))]pι(Ux(ς))1ιΔς)1p(˘aˇcιx=1(Ux(ς))1ιWδιx(ς)Δς)1δ+(˘aˇcιx=1(Ux(ς))1ιGδιx(ς)Δς)1δ. (3.13)

    Applying (2.1), we see that

    ιx=1(Ux(ς))1ιGδιx(ς)ιx=1Ux(ς)Gδx(ς)ι

    and

    ιx=1(Ux(ς))1ιWδιx(ς)ιx=1Ux(ς)Wδx(ς)ι.

    Thus, (3.13) becomes

    +αα(E)(˘aˇcιx=1(Ux(ς))1ιΔς)pδpδ×(˘aˇcιx=1[(αGx(ς)EWx(ς))]pι(Ux(ς))1ιΔς)1p(˘aˇcιx=1Ux(ς)Gδx(ς)ιΔς)1δ+(˘aˇcιx=1Ux(ς)Wδx(ς)ιΔς)1δ. (3.14)

    From (3.7) and (3.11), we have

    (˘aˇcιx=1Gδx(ς)Ux(ς)ιΔς)1δ+(˘aˇcιx=1Wδx(ς)Ux(ς)ιΔς)1δB+αα(BE)(˘aˇcιx=1(αGx(ς)EWx(ς))δUx(ς)ιΔς)1δ. (3.15)

    Combining (3.14) and (3.15), we obtain

    +αα(E)(˘aˇcιx=1(Ux(ς))1ιΔς)pδpδ×(˘aˇcιx=1[(αGx(ς)EWx(ς))]pι(Ux(ς))1ιΔς)1p(˘aˇcιx=1Ux(ς)Gδx(ς)ιΔς)1δ+(˘aˇcιx=1Ux(ς)Wδx(ς)ιΔς)1δB+αα(BE)(˘aˇcιx=1(αGx(ς)EWx(ς))δUx(ς)ιΔς)1δ,

    which is (3.2).

    Corollary 3.1. Taking T=R and ι=1, then we get (1.7).

    Corollary 3.2. Taking T=N, ˇc, ˘aN, 0<pδ<, α>0, and {Gx}ιx=1, {Wx}ιx=1, {Ux}ιx=1 are positive sequences such that

    0<E<BαGx(ς)Wx(ς), for ςN.

    Then, σ(ς)=ς+1, μ(ς)=1, ρ(˘a)=˘a1, and

    +αα(E)(˘a1ς=ˇcιx=1(Ux(ς))1ι)pδpδ×(˘a1ς=ˇcιx=1[(αGx(ς)EWx(ς))]pι(Ux(ς))1ι)1p(˘a1ς=ˇcιx=1Ux(ς)Gδx(ς)ι)1δ+(˘a1ς=ˇcιx=1Ux(ς)Wδx(ς)ι)1δB+αα(BE)(˘a1ς=ˇcιx=1(αGx(ς)EWx(ς))δUx(ς)ι)1δ.

    Remark 3.1. If T= qN for q>1, ˇc, ˘aT, 0<pδ<, α>0, and {Gx}ιx=1, {Wx}ιx=1, {Ux}ιx=1 are positive sequences such that, for ςT,

    0<E<BαGx(ς)Wx(ς).

    Then, σ(ς)=qς, μ(ς)=σ(ς)ς=(q1)ς, ρ(˘a)=˘a/q, and

    +αα(E)(˘aqς=ˇc(q1)ςιx=1(Ux(ς))1ι)pδpδ×(˘aqς=ˇc(q1)ςιx=1[(αGx(ς)EWx(ς))]pι(Ux(ς))1ι)1p(˘aqς=ˇcq1ι(ςιx=1Ux(ς)Gδx(ς)))1δ+(˘aqς=ˇcq1ι(ςιx=1Ux(ς)Wδx(ς)))1δB+αα(BE)(˘aqς=ˇcq1ι(ςιx=1(αGx(ς)EWx(ς))δUx(ς)))1δ.

    Example 3.1. In Theorem 3.1, assume that T=R, ˇc=0,˘aR, ι, p=1, δ=2, B=2, E=1, and α=1. In addition, if G, W, UC([ˇc,˘a]T,R+) such that U(ς)=ς, W(ς)=ς, G(ς)=3ς, and =5, then

    +αα(E)(˘aˇcU(ς)dς)pδpδ×(˘aˇc[(αG(ς)EW(ς))]pU(ς)dς)1p(˘aˇcU(ς)Gδ(ς)dς)1δ+(˘aˇcU(ς)Wδ(ς)dς)1δB+αα(BE)(˘aˇc(αG(ς)EW(ς))δU(ς)dς)1δ. (3.16)

    Proof. Using the hypothesis, the left-hand side of (3.16) can be written as follows:

    +αα(E)(˘aˇcU(ς)dς)pδpδ×(˘aˇc[(αG(ς)EW(ς))]pU(ς)dς)1p=+11(˘a0ςdς)12˘a0(3ςς)ςdς=+11(˘a0ςdς)12˘a02ς2dς=23+11(˘a22)12˘a3=23+11(12)12˘a2=(23)(64)212˘a2=212˘a2. (3.17)

    Also, we see that

    (˘aˇcU(ς)Gδ(ς)dς)1δ+(˘aˇcU(ς)Wδ(ς)dς)1δ=(9˘a0ς3dς)12+(˘a0ς3dς)12=(9˘a44)12+(˘a44)12=2˘a2. (3.18)

    Furthermore,

    B+αα(BE)(˘aˇc(αG(ς)EW(ς))δU(ς)dς)1δ=3(˘a0(2ς)2ςdς)12=6(˘a44)12=3˘a2. (3.19)

    From (3.17)–(3.19), we see that the inequality (3.16) holds. The proof is complete.

    Theorem 3.2. Assume that ˇc,˘aT, ˘a>ˇc, 0<δ<, α>0, Gx, Wx, UxCrd([ˇc,˘a]T,R+), x=1,2,...,ι, and (3.1) holds. If p>1, then

    +αα(E)(˘aˇcιx=1(Ux(ς))1ιΔς)1pδ×(˘aˇcιx=1(αGx(ς)EWx(ς))διp(Ux(ς))1ιΔς)pδ(˘aˇcιx=1Ux(ς)Gδx(ς)ιΔς)1δ+(˘aˇcιx=1Ux(ς)Wδx(ς)ιΔς)1δB+αα(BE)(˘aˇcιx=1(αGx(ς)EWx(ς))δUx(ς)ιΔς)1δ, (3.20)

    and, if 0<p<1, then

    +αα(E)(˘aˇcιx=1(Ux(ς))1ιΔς)p1δ×(˘aˇcιx=1(αGx(ς)EWx(ς))δι(Ux(ς))1ιΔς)1δ(˘aˇcιx=1Wδpx(ς)Ux(ς)ιΔς)pδ+(˘aˇcιx=1Gδpx(ς)Ux(ς)ιΔς)pδB+αα(BE)(˘aˇcιx=1(αGx(ς)EWx(ς))δpUx(ς)ιΔς)pδ. (3.21)

    Proof. To prove this theorem, we have two cases:

    Case 1: p>1. From (3.1), we deduce that

    EαGx(ς)αGx(ς)EWx(ς)BBE.

    Then,

    ιx=1[α(E)(αGx(ς)EWx(ς))]διp(Ux(ς))1ιιx=1Gδιpx(ς)(Ux(ς))1ι, (3.22)

    and

    ιx=1Gδx(ς)Ux(ς)ιx=1[Bα(BE)(αGx(ς)EWx(ς))]δUx(ς). (3.23)

    Integrating (3.22) and (3.23) over ς from ˇc to ˘a, we see that

    α(E)(˘aˇcιx=1(αGx(ς)EWx(ς))διp(Ux(ς))1ιΔς)pδ(˘aˇcιx=1Gδιpx(ς)(Ux(ς))1ιΔς)pδ, (3.24)

    and

    (˘aˇcιx=1Gδx(ς)Ux(ς)Δς)1δBα(BE)(˘aˇcιx=1(αGx(ς)EWx(ς))δUx(ς)Δς)1δ. (3.25)

    Applying (2.5) with λ=1/p<1, ϰ(ς)=ιx=1(Ux(ς))1ι, and ϕ(ς)=ιx=1Gδιx(ς), we get

    (˘aˇcιx=1(Ux(ς))1ιGδιx(ς)Δς˘aˇcιx=1(Ux(ς))1ιΔς)1p˘aˇcιx=1Gδιpx(ς)(Ux(ς))1ιΔς˘aˇcιx=1(Ux(ς))1ιΔς.

    Then, we have from (3.24) that

    α(E)(˘aˇcιx=1(Ux(ς))1ιΔς)1pδ(˘aˇcιx=1(αGx(ς)EWx(ς))διp(Ux(ς))1ιΔς)pδ(˘aˇcιx=1(Ux(ς))1ιGδιx(ς)Δς)1δ. (3.26)

    Using (3.1), we deduce that

    0<BEαGx(ς)EWx(ς)Wx(ς)E.

    Therefore,

    1E(αGx(ς)EWx(ς))Wx(ς)1BE(αGx(ς)EWx(ς)).

    Then, we have that

    1E(˘aˇcιx=1(αGx(ς)EWx(ς))διp(Ux(ς))1ιΔς)pδ(˘aˇcιx=1Wδιpx(ς)(Ux(ς))1ιΔς)pδ, (3.27)

    and

    (˘aˇcιx=1Wδx(ς)Ux(ς)Δς)1δ1BE(˘aˇcιx=1(αGx(ς)EWx(ς))δUx(ς)Δς)1δ. (3.28)

    Applying (2.5) with λ=1/p<1, ϕ(ς)=ιx=1Wδιx(ς), and ϰ(ς)=ιx=1(Ux(ς))1ι, we see that

    (˘aˇcιx=1Wδιpx(ς)(Ux(ς))1ιΔς)pδ(˘aˇcιx=1(Ux(ς))1ιΔς)p1δ(˘aˇcιx=1Wδιx(ς)(Ux(ς))1ιΔς)1δ.

    Thus, (3.27) becomes

    1E(˘aˇcιx=1(Ux(ς))1ιΔς)1pδ×(˘aˇcιx=1(αGx(ς)EWx(ς))διp(Ux(ς))1ιΔς)pδ(˘aˇcιx=1Wδιx(ς)(Ux(ς))1ιΔς)1δ. (3.29)

    Adding (3.26) and (3.29), we see that

    +αα(E)(˘aˇcιx=1(Ux(ς))1ιΔς)1pδ×(˘aˇcιx=1(αGx(ς)EWx(ς))διp(Ux(ς))1ιΔς)pδ(˘aˇcιx=1(Ux(ς))1ιGδιx(ς)Δς)1δ+(˘aˇcιx=1Wδιx(ς)(Ux(ς))1ιΔς)1δ. (3.30)

    Applying (2.1) to the terms (˘aˇcιx=1(Ux(ς))1ιGδιx(ς)Δς)1δ and (˘aˇcιx=1Wδιx(ς)(Ux(ς))1ιΔς)1δ, then (3.30) becomes

    +αα(E)(˘aˇcιx=1(Ux(ς))1ιΔς)1pδ×(˘aˇcιx=1(αGx(ς)EWx(ς))διp(Ux(ς))1ιΔς)pδ(˘aˇcιx=1Ux(ς)Gδx(ς)ιΔς)1δ+(˘aˇcιx=1Ux(ς)Wδx(ς)ιΔς)1δ. (3.31)

    From (3.25) and (3.28), we have

    (˘aˇcιx=1Gδx(ς)Ux(ς)ιΔς)1δ+(˘aˇcιx=1Wδx(ς)Ux(ς)Δςι)1δB+αα(BE)(˘aˇcιx=1(αGx(ς)EWx(ς))δUx(ς)ιΔς)1δ. (3.32)

    Combining (3.31) and (3.32), we get

    +αα(E)(˘aˇcιx=1(Ux(ς))1ιΔς)1pδ×(˘aˇcιx=1(αGx(ς)EWx(ς))διp(Ux(ς))1ιΔς)pδ(˘aˇcιx=1Ux(ς)Gδx(ς)ιΔς)1δ+(˘aˇcιx=1Ux(ς)Wδx(ς)ιΔς)1δB+αα(BE)(˘aˇcιx=1(αGx(ς)EWx(ς))δUx(ς)ιΔς)1δ,

    which is (3.20).

    Case 2: 0<p<1. Again, by using (3.1), we see that

    EαGx(ς)αGx(ς)EWx(ς)BBE.

    Then,

    (α(E))διx=1(αGx(ς)EWx(ς))δι(Ux(ς))1ιιx=1(Ux(ς))1ιGδιx(ς), (3.33)

    and

    ιx=1Gδpx(ς)Ux(ς)ιx=1[Bα(BE)(αGx(ς)EWx(ς))]δpUx(ς). (3.34)

    Integrating (3.33) and (3.34), we have for p, δ>0, that

    α(E)(˘aˇcιx=1(αGx(ς)EWx(ς))δι(Ux(ς))1ιΔς)1δ(˘aˇcιx=1(Ux(ς))1ιGδιx(ς)Δς)1δ, (3.35)

    and

    (˘aˇcιx=1Gδpx(ς)Ux(ς)Δς)pδBα(BE)(˘aˇcιx=1(αGx(ς)EWx(ς))δpUx(ς)Δς)pδ. (3.36)

    Applying (2.4) with λ=1/p>1, ϰ(ς)=ιx=1(Ux(ς))1ι, and ϕ(ς)=ιx=1Gδιx(ς), we get

    (˘aˇcιx=1(Ux(ς))1ιGδιx(ς)Δς)1δ(˘aˇcιx=1(Ux(ς))1ιΔς)1pδ(˘aˇcιx=1Gδιpx(ς)(Ux(ς))1ιΔς)pδ.

    So, the inequality (3.35) can be written as follows

    α(E)(˘aˇcιx=1(Ux(ς))1ιΔς)p1δ×(˘aˇcιx=1(αGx(ς)EWx(ς))δι(Ux(ς))1ιΔς)1δ(˘aˇcιx=1Gδιpx(ς)(Ux(ς))1ιΔς)pδ. (3.37)

    From (3.1), we deduce that

    0<BEαGx(ς)EWx(ς)Wx(ς)E.

    Thus,

    1E(αGx(ς)EWx(ς))Wx(ς)1BE(αGx(ς)EWx(ς)).

    Then, we have for δ>0 that

    1E(˘aˇcιx=1(αGx(ς)EWx(ς))δι(Ux(ς))1ιΔς)1δ(˘aˇcιx=1Wδιx(ς)(Ux(ς))1ιΔς)1δ, (3.38)

    and

    (˘aˇcιx=1Wδpx(ς)Ux(ς)Δς)pδ1BE(˘aˇcιx=1(αGx(ς)EWx(ς))δpUx(ς)Δς)pδ. (3.39)

    Applying (2.4) with λ=1/p>1, ϕ(ς)=ιx=1Wδιx(ς), and ϰ(ς)=ιx=1(Ux(ς))1ι, we get

    (˘aˇcιx=1Wδιx(ς)(Ux(ς))1ιΔς)1δ(˘aˇcιx=1(Ux(ς))1ιΔς)1pδ(˘aˇc1ιx=1Wδιpx(ς)(Ux(ς))1ιΔς)pδ.

    Then, the inequality (3.38) becomes

    1E(˘aˇcιx=1(Ux(ς))1ιΔς)p1δ×(˘aˇcιx=1(αGx(ς)EWx(ς))δι(Ux(ς))1ιΔς)1δ(˘aˇcιx=1Wδιpx(ς)(Ux(ς))1ιΔς)pδ. (3.40)

    Adding (3.37) and (3.40), we get

    +αα(E)(˘aˇcιx=1(Ux(ς))1ιΔς)p1δ×(˘aˇcιx=1(αGx(ς)EWx(ς))δι(Ux(ς))1ιΔς)1δ(˘aˇcιx=1Wδιpx(ς)(Ux(ς))1ιΔς)pδ+(˘aˇcιx=1Gδιpx(ς)(Ux(ς))1ιΔς)pδ. (3.41)

    Applying the inequality (2.1) on the right-hand side of (3.41), we have

    +αα(E)(˘aˇcιx=1(Ux(ς))1ιΔς)p1δ×(˘aˇcιx=1(αGx(ς)EWx(ς))δι(Ux(ς))1ιΔς)1δ(˘aˇcιx=1Wδpx(ς)Ux(ς)ιΔς)pδ+(˘aˇcιx=1Gδpx(ς)Ux(ς)ιΔς)pδ. (3.42)

    From (3.36) and (3.39), we get

    (˘aˇcιx=1Wδpx(ς)Ux(ς)Δς)pδ+(˘aˇcιx=1Gδpx(ς)Ux(ς)Δς)pδB+αα(BE)(˘aˇcιx=1(αGx(ς)EWx(ς))δpUx(ς)Δς)pδ. (3.43)

    Combining (3.42) and (3.43), we see that

    +αα(E)(˘aˇcιx=1(Ux(ς))1ιΔς)p1δ×(˘aˇcιx=1(αGx(ς)EWx(ς))δι(Ux(ς))1ιΔς)1δ(˘aˇcιx=1Wδpx(ς)Ux(ς)ιΔς)pδ+(˘aˇcιx=1Gδpx(ς)Ux(ς)ιΔς)pδB+αα(BE)(˘aˇcιx=1(αGx(ς)EWx(ς))δpUx(ς)ιΔς)pδ,

    which is (3.21).

    Remark 3.2. Assume that T=R; ˇc,˘aR with ˘a>ˇc, 0<δ<, α>0; and Gx, Wx, UxC ([ˇc,˘a],R+) with

    0<E<BαGx(ς)Wx(ς)  for  x=1,2,...,ι.

    In addition, if p>1, then

    +αα(E)(˘aˇcιx=1(Ux(ς))1ιdς)1pδ×(˘aˇcιx=1(αGx(ς)EWx(ς))διp(Ux(ς))1ιdς)pδ(˘aˇcιx=1Ux(ς)Gδx(ς)ιdς)1δ+(˘aˇcιx=1Ux(ς)Wδx(ς)ιdς)1δB+αα(BE)(˘aˇcιx=1(αGx(ς)EWx(ς))δUx(ς)ιdς)1δ. (3.44)

    If 0<p<1, then

    +αα(E)(˘aˇcιx=1(Ux(ς))1ιdς)p1δ×(˘aˇcιx=1(αGx(ς)EWx(ς))δι(Ux(ς))1ιdς)1δ(˘aˇcιx=1Wδpx(ς)Ux(ς)ιdς)pδ+(˘aˇcιx=1Gδpx(ς)Ux(ς)ιdς)pδB+αBE(˘aˇcιx=1(αGx(ς)EWx(ς))δpUx(ς)ιdς)pδ.

    Remark 3.3. If T=R, ι=1, p>1, and 0<δ<, then we obtain the correction and the generalization of (1.8) by replacing ˘aˇc with ˘aˇcU(ς)dς.

    Remark 3.4. Suppose that T=N; ˇc, ˘aN, 0<δ<, α>0, and {Gx}ιx=1, {Wx}ιx=1, {Ux}ιx=1 are positive sequences such that

    0<E<BαGx(ς)Wx(ς), ςN.

    In addition, if p>1, then

    +αα(E)(˘a1ς=ˇcιx=1(Ux(ς))1ι)1pδ×(˘a1ς=ˇcιx=1(αGx(ς)EWx(ς))διp(Ux(ς))1ι)pδ(˘a1ς=ˇcιx=1Ux(ς)Gδx(ς)ι)1δ+(˘a1ς=ˇcιx=1Ux(ς)Wδx(ς)ι)1δB+αα(BE)(˘a1ς=ˇcιx=1(αGx(ς)EWx(ς))δUx(ς)ι)1δ,

    and, if 0<p<1, then

    +αα(E)(˘a1ς=ˇcιx=1(Ux(ς))1ι)p1δ×(˘a1ς=ˇcιx=1(αGx(ς)EWx(ς))δι(Ux(ς))1ι)1δ(˘a1ς=ˇcιx=1Wδpx(ς)Ux(ς)ι)pδ+(˘a1ς=ˇcιx=1Gδpx(ς)Ux(ς)ι)pδB+αα(BE)(˘a1ς=ˇcιx=1(αGx(ς)EWx(ς))δpUx(ς)ι)pδ.

    Remark 3.5. Assume that T=qN for q>1; ˇc, ˘aT, 0<δ<, α>0; and {Gx}ιx=1, {Wx}ιx=1, {Ux}ιx=1 are positive sequences with

    0<E<BαGx(ς)Wx(ς),  for  ςT.

    In addition, if p>1, then ρ(˘a)=˘a/q, σ(ς)=qς, μ(ς)=σ(ς)ς=(q1)ς, and

    +αα(E)(˘aqς=ˇc(q1)ςιx=1(Ux(ς))1ι)1pδ×(˘aqς=ˇc(q1)ςιx=1(αGx(ς)EWx(ς))διp(Ux(ς))1ι)pδ(˘aqς=ˇc(q1)ςιx=1Ux(ς)Gδx(ς)ι)1δ+(˘aqς=ˇc(q1)ςιx=1Ux(ς)Wδx(ς)ι)1δB+αα(BE)(˘aqς=ˇc(q1)ςιx=1(αGx(ς)EWx(ς))δUx(ς)ι)1δ,

    and, if 0<p<1, then

    +αα(E)(˘aqς=ˇc(q1)ςιx=1(Ux(ς))1ι)p1δ×(˘aqς=ˇc(q1)ςιx=1(αGx(ς)EWx(ς))δι(Ux(ς))1ι)1δ(˘aqς=ˇc((q1)ςι)ιx=1Wδpx(ς)Ux(ς))pδ+(˘aqς=ˇc((q1)ςι)ιx=1Gδpx(ς)Ux(ς))pδB+αα(BE)(˘aqς=ˇc((q1)ςι)ιx=1(αGx(ς)EWx(ς))δpUx(ς))pδ.

    In this paper, we have established a novel extensions of the reversed Minkowski's inequality for various functions on delta calculus time scales by applying Jensen's and Hölder's inequalities on time scales. In addition, we have presented some new inequalities in different cases, like T=N and qN for q>1.

    In the future, we will apply the reversed Minkowski inequality for various functions to diamond-alpha calculus and conformable calculus time scales.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    The authors extend their appreciation to the Deputyship for Research & Innovation, Ministry of Education in Saudi Arabia for funding this research work through the project number ISP23-86.

    The authors declare that they have no conflict of interest.



    [1] O. Hölder, Uber einen Mittelwerthssatz, Nachr. Ges. Wiss. Gottingen, 1889 (1889), 38–47. http://eudml.org/doc/180218
    [2] J. Canto, Sharp Reverse Hölder inequality for weights and applications, J. Geom. Anal., 31 (2021), 4165–4190. https://doi.org/10.1007/s12220-020-00430-1. doi: 10.1007/s12220-020-00430-1
    [3] X. Yang, Refinement of Hölder inequality and application to Ostrowski inequality, Appl. Math. Comput., 138 (2003), 455–461. https://doi.org/10.1016/S0096-3003(02)00159-5 doi: 10.1016/S0096-3003(02)00159-5
    [4] C. L. Wang, Applications of variants of the Hölder inequality and its inverses: Extensions of Barnes, Marshall-Olkin, and Nehari inequalities, Can. Math. Bull., 21 (1978), 347–354. https://doi.org/10.4153/CMB-1978-060-3 doi: 10.4153/CMB-1978-060-3
    [5] L. Liu, J. Zheng, G. Bao, Global weak solutions in a three-dimensional Keller-Segel-Navier-Stokes system modeling coral fertilization, Discrete Cont. Dyn.-S., 25 (2020), 3437–3460. https://doi.org/10.3934/dcdsb.2020068 doi: 10.3934/dcdsb.2020068
    [6] T. Köppl, E. Vidotto, B. Wohlmuth, P. Zunino, Mathematical modeling, analysis and numerical approximation of second-order elliptic problems with inclusions, Math. Mod. Meth. Appl. S., 28 (2018), 953–978. https://doi.org/10.1142/S0218202518500252 doi: 10.1142/S0218202518500252
    [7] M. Shoaib, M. Sarwar, Multi-valued common N-tupled fixed point result and their applications to system of N-integral equations, J. Math. Anal. Model., 4 (2023), 1–15. https://doi.org/10.48185/jmam.v4i2.806 doi: 10.48185/jmam.v4i2.806
    [8] M. S. Alhaj, Mathematical model for dengue fever with vertical transmission and control measures: Dengue fever model, J. Math. Anal. Model., 4 (2023), 44–58. https://doi.org/10.48185/jmam.v4i2.841 doi: 10.48185/jmam.v4i2.841
    [9] W. T. Sulaiman, Reverses of Minkowski's, Hölder's, and Hardy's integral inequalities, Int. J. Mod. Math. Sci., 1 (2012), 14–24.
    [10] B. Sroysang, More on reverses of Minkowski's integral inequality, Math. Aeterna, 3 (2013), 597–600.
    [11] B. Benaissa, More on reverses of Minkowski's inequalities and Hardy's integral inequalities, Asian-Eur. J. Math., 13 (2020), 1–7. https://doi.org/10.1142/S1793557120500643 doi: 10.1142/S1793557120500643
    [12] B. Bouharket, A further generalization of the reverse Minkowski type inequality via Hölder and Jensen inequalities, J. Sib. Fed. Univ.-Math., 15 (2022), 319–328. https://doi.org/10.17516/1997-1397-2022-15-3-319-328 doi: 10.17516/1997-1397-2022-15-3-319-328
    [13] M. Bohner, A. Peterson, Dynamic equations on time scales: An introduction with applications, Boston: Birkhäuser, 2001. https://doi.org/10.1007/978-1-4612-0201-1
    [14] A. K. I. N. Lütfi, On some integral type inequality on time scales, In: Conference Proceedings of Science and Technology, 3 (2020), 141–144. Available from: https://dergipark.org.tr/tr/download/article-file/1218548.
    [15] G. Alnemer, A. I. Saied, M. Zakarya, H. A. Abd El-Hamid, O. Bazighifan, H. M. Rezk, Some new reverse Hilbert's inequalities on time scales, Symmetry, 13 (2021), 2431. https://doi.org/10.3390/sym13122431 doi: 10.3390/sym13122431
    [16] E. Awwad, A. I. Saied, Some new multidimensional Hardy-type inequalities with general kernels on time scales, J. Math. Inequal., 16 (2022), 393–412. https://doi.org/10.7153/jmi-2022-16-29 doi: 10.7153/jmi-2022-16-29
    [17] R. Bibi, M. Bohner, J. Pečarić, S. Varošanec, Minkowski and Beckenbach-Dresher inequalities and functionals on time scales, J. Math. Inequal., 7 (2013), 299–312. https://doi.org/10.7153/jmi-07-28 doi: 10.7153/jmi-07-28
    [18] M. Bohner, S. G. Georgiev, Multiple integration on time scales, Multivariable dynamic calculus on time scales, Springer, 2016,449–515. https://doi.org/10.1007/978-3-319-47620-9
    [19] P. Řehak, Hardy inequality on time scales and its application to half-linear dynamic equations, J. Inequal. Appl., 2005 (2005), 942973. https://doi.org/10.1155/JIA.2005.495 doi: 10.1155/JIA.2005.495
    [20] H. M. Rezk, W. Albalawi, H. A. Abd El-Hamid, A. I. Saied, O. Bazighifan, M. S. Mohamed, et al., Hardy-Leindler-type inequalities via conformable delta fractional calculus, J. Funct. Space., 2022 (2022), 2399182. https://doi.org/10.1155/2022/2399182 doi: 10.1155/2022/2399182
    [21] S. H. Saker, A. I. Saied, M. Krnić, Some new dynamic Hardy-type inequalities with kernels involving monotone functions, Racsam. Rev. R. Acad. A, 114 (2020), 142. https://doi.org/10.1007/s13398-020-00876-6 doi: 10.1007/s13398-020-00876-6
    [22] S. H. Saker, A. I. Saied, M. Krnić, Some new weighted dynamic inequalities for monotone functions involving kernels, Mediterr. J. Math., 17 (2020), 39. https://doi.org/10.1007/s00009-020-1473-0 doi: 10.1007/s00009-020-1473-0
    [23] S. H. Saker, J. Alzabut, A. I. Saied, D. O'Regan, New characterizations of weights on dynamic inequalities involving a Hardy operator, J. Inequal. Appl., 2021 (2021), 73. https://doi.org/10.1186/s13660-021-02606-x doi: 10.1186/s13660-021-02606-x
    [24] S. H. Saker, A. I. Saied, D. R. Anderson, Some new characterizations of weights in dynamic inequalities involving monotonic functions, Qual. Theor. Dyn. Syst., 20 (2021), 49. https://doi.org/10.1007/s12346-021-00489-3 doi: 10.1007/s12346-021-00489-3
    [25] M. Zakarya, G. AlNemer, A. I. Saied, R. Butush, O. Bazighifan, H. M. Rezk, Generalized inequalities of Hilbert-type on time scales Nabla calculus, Symmetry, 14 (2022), 1512. https://doi.org/10.3390/sym14081512 doi: 10.3390/sym14081512
    [26] M. Zakarya, A. I. Saied, G. ALNemer, H. A. Abd El-Hamid, H. M. Rezk, A study on some new generalizations of reversed dynamic inequalities of Hilbert-type via supermultiplicative functions, J. Funct. Space., 2022 (2022), 8720702. https://doi.org/10.1155/2022/8720702 doi: 10.1155/2022/8720702
    [27] E. S. Aly, Y. A. Madani, F. Gassem, A. I. Saied, H. M. Rezk, W. W. Mohammed, Some dynamic Hardy-type inequalities with negative parameters on time scales Nabla calculus, AIMS Math., 9 (2024), 5147–5170. https://doi.org/10.3934/math.2024250 doi: 10.3934/math.2024250
    [28] M. Zakarya, A. I. Saied, G. AlNemer, H. M. Rezk, A study on some new reverse Hilbert-type inequalities and its generalizations on time scales, J. Math., 2022 (2022), 6285367. https://doi.org/10.1155/2022/6285367 doi: 10.1155/2022/6285367
    [29] C. P. Jadhav, T. Dale, On Dirichlet problem of time-fractional advection-diffusion equation, J. Frac. Calc. Nonlinear Sys., 4 (2023), 1–13. https://doi.org/10.48185/jfcns.v4i2.861 doi: 10.48185/jfcns.v4i2.861
    [30] S. Kumbinarasaiah, R. Yeshwanth, Haar wavelet approach to study the control of biological pest model in Tea plants, J. Frac. Calc. Nonlinear Sys., 4 (2023), 14–30. https://doi.org/10.48185/jfcns.v4i2.862 doi: 10.48185/jfcns.v4i2.862
    [31] İ. Yaslan, Beta-fractional calculus on time scales, J. Frac. Calc. Nonlinear Sys., 4 (2023), 48–60. https://doi.org/10.48185/jfcns.v4i2.877 doi: 10.48185/jfcns.v4i2.877
    [32] A. M. Ahmed, A. I. Saied, M. Ali, M. Zakarya, H. M. Rezk, Generalized dynamic inequalities of Copson type on time scales, Symmetry, 16 (2024), 288. https://doi.org/10.3390/sym16030288 doi: 10.3390/sym16030288
    [33] M. Tamsir, M. J. Huntul, A numerical approach for solving Fisher's reaction-diffusion equation via a new kind of spline functions, Ain Shams Eng. J., 12 (2021), 3157–3165. https://doi.org/10.1016/j.asej.2020.11.024 doi: 10.1016/j.asej.2020.11.024
    [34] S. Bourazza, Evaluation of the operators of the genetic algorithm in application of the traveling salesman problem, Int. J. Adv. Res., 6 (2018), 42–52. http://dx.doi.org/10.21474/IJAR01/6406 doi: 10.21474/IJAR01/6406
    [35] M. J. Huntul, I. Tekin, An inverse problem of identifying the time-dependent potential and source terms in a two-dimensional parabolic equation, Hacet. J. Math. Stat., 52 (2023), 1578–1599. https://doi.org/10.15672/hujms.1118138 doi: 10.15672/hujms.1118138
    [36] R. P. Agarwal, D. O'Regan, S. H. Saker, Dynamic inequalities on time scales, New York: Springer Cham, 2014. https://doi.org/10.1007/978-3-319-11002-8
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1421) PDF downloads(65) Cited by(0)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog