Defining new fractional operators and employing them to establish well-known integral inequalities has been the recent trend in the theory of mathematical inequalities. To take a step forward, we present novel versions of Hermite-Hadamard type inequalities for a new fractional operator, which generalizes some well-known fractional integral operators. Moreover, a midpoint type fractional integral identity is derived for differentiable mappings, whose absolute value of the first-order derivatives are convex functions. Moreover, considering this identity as an auxiliary result, several improved inequalities are derived using some fundamental inequalities such as Hölder-İşcan, Jensen and Young inequality. Also, if we take the parameter ρ=1 in most of the results, we derive new results for Atangana-Baleanu equivalence. One example related to matrices is also given as an application.
Citation: Soubhagya Kumar Sahoo, Fahd Jarad, Bibhakar Kodamasingh, Artion Kashuri. Hermite-Hadamard type inclusions via generalized Atangana-Baleanu fractional operator with application[J]. AIMS Mathematics, 2022, 7(7): 12303-12321. doi: 10.3934/math.2022683
[1] | Saad Ihsan Butt, Erhan Set, Saba Yousaf, Thabet Abdeljawad, Wasfi Shatanawi . Generalized integral inequalities for ABK-fractional integral operators. AIMS Mathematics, 2021, 6(9): 10164-10191. doi: 10.3934/math.2021589 |
[2] | Jia-Bao Liu, Saad Ihsan Butt, Jamshed Nasir, Adnan Aslam, Asfand Fahad, Jarunee Soontharanon . Jensen-Mercer variant of Hermite-Hadamard type inequalities via Atangana-Baleanu fractional operator. AIMS Mathematics, 2022, 7(2): 2123-2141. doi: 10.3934/math.2022121 |
[3] | Jamshed Nasir, Saber Mansour, Shahid Qaisar, Hassen Aydi . Some variants on Mercer's Hermite-Hadamard like inclusions of interval-valued functions for strong Kernel. AIMS Mathematics, 2023, 8(5): 10001-10020. doi: 10.3934/math.2023506 |
[4] | Thabet Abdeljawad, Muhammad Aamir Ali, Pshtiwan Othman Mohammed, Artion Kashuri . On inequalities of Hermite-Hadamard-Mercer type involving Riemann-Liouville fractional integrals. AIMS Mathematics, 2021, 6(1): 712-725. doi: 10.3934/math.2021043 |
[5] | Muhammad Imran Asjad, Waqas Ali Faridi, Mohammed M. Al-Shomrani, Abdullahi Yusuf . The generalization of Hermite-Hadamard type Inequality with exp-convexity involving non-singular fractional operator. AIMS Mathematics, 2022, 7(4): 7040-7055. doi: 10.3934/math.2022392 |
[6] | Waqar Afzal, Khurram Shabbir, Savin Treanţă, Kamsing Nonlaopon . Jensen and Hermite-Hadamard type inclusions for harmonical $ h $-Godunova-Levin functions. AIMS Mathematics, 2023, 8(2): 3303-3321. doi: 10.3934/math.2023170 |
[7] | Shuang-Shuang Zhou, Saima Rashid, Muhammad Aslam Noor, Khalida Inayat Noor, Farhat Safdar, Yu-Ming Chu . New Hermite-Hadamard type inequalities for exponentially convex functions and applications. AIMS Mathematics, 2020, 5(6): 6874-6901. doi: 10.3934/math.2020441 |
[8] | Sabila Ali, Shahid Mubeen, Rana Safdar Ali, Gauhar Rahman, Ahmed Morsy, Kottakkaran Sooppy Nisar, Sunil Dutt Purohit, M. Zakarya . Dynamical significance of generalized fractional integral inequalities via convexity. AIMS Mathematics, 2021, 6(9): 9705-9730. doi: 10.3934/math.2021565 |
[9] | Maimoona Karim, Aliya Fahmi, Shahid Qaisar, Zafar Ullah, Ather Qayyum . New developments in fractional integral inequalities via convexity with applications. AIMS Mathematics, 2023, 8(7): 15950-15968. doi: 10.3934/math.2023814 |
[10] | Saad Ihsan Butt, Artion Kashuri, Muhammad Umar, Adnan Aslam, Wei Gao . Hermite-Jensen-Mercer type inequalities via Ψ-Riemann-Liouville k-fractional integrals. AIMS Mathematics, 2020, 5(5): 5193-5220. doi: 10.3934/math.2020334 |
Defining new fractional operators and employing them to establish well-known integral inequalities has been the recent trend in the theory of mathematical inequalities. To take a step forward, we present novel versions of Hermite-Hadamard type inequalities for a new fractional operator, which generalizes some well-known fractional integral operators. Moreover, a midpoint type fractional integral identity is derived for differentiable mappings, whose absolute value of the first-order derivatives are convex functions. Moreover, considering this identity as an auxiliary result, several improved inequalities are derived using some fundamental inequalities such as Hölder-İşcan, Jensen and Young inequality. Also, if we take the parameter ρ=1 in most of the results, we derive new results for Atangana-Baleanu equivalence. One example related to matrices is also given as an application.
H-H: Hermite-Hadamard; AB: Atangana-Baleanu; ABK: Atangana-Baleanu-Kashuri
The concept of functions is one of the fundamental constructions of mathematics, and many researchers have concentrated on new functions and put forth attempts to order the space of functions. One such function characterized as a result of this extreme exertion is the convex function, which has a lot of applications in engineering, industrial optimization, probability theory, theory of mathematical inequalities (see [1,2,3]), etc. Starting now and into the foreseeable future various experts have inspected and applied different fractional operators for modelling of COVID-19 [4], modelling of Hepatitis-B epidemic [5], groundwater flow [6], RLC electric circuit [7], the hypothesis of viscoelasticity [8], fluid mechanics [9], etc.
The theory of convex function was preceded by Jensen in [10] to the literature for the first time and since then attracted consideration to the fact that it seems to be the basis of the concept of incremental function. Many researchers have concentrated on the connections between convexity and the Hermite-Hadamard inequality.
There are numerous inequalities in the literature for convexity theory. Hermite-Hadamard inequality may be the one that takes the most consideration of scientists and on which many investigations have been conducted. The concept of integral inequality is an intriguing topic of study in mathematical analysis. The fundamental integral inequalities can be used to cultivate convexity's subjective features. The convex function has a lovely representation based on an inequality shown when the functional value of a linear combination of two points in its domain does not exceed the linear combination of the functional values at those two locations.
Definition 1.1. (see [11]) A real valued function Υ:K⊆R→R (set of real numbers) is said to be convex iff the following inequality satisfies
Υ(uϱ1+(1−u)ϱ2)≦uΥ(ϱ1)+(1−u)Υ(ϱ2), |
for all ϱ1,ϱ2∈K,u∈[0,1].
Let Υ:K⊆R⟶R be a convex function with ϱ1<ϱ2 and ϱ1,ϱ2∈K. Then the H-H inequality is expressed as follows (see [12]):
Υ(ϱ1+ϱ22)≦1ϱ2−ϱ1∫ϱ2ϱ1Υ(x)dx≦Υ(ϱ1)+Υ(ϱ2)2. | (1.1) |
Numerous mathematicians have recently generalized and extended the standard H-H inequality (1.1) under the premise of certain interesting new definitions as a generalization of a convex function.
It is known that fractional calculus aims at establishing mathematical models. As of late, it is seen that refining well-known integral inequalities utilizing fractional integral operators has become a surprising subject of exploration among mathematicians. Generalization of some existing integral inequalities such as Hermite-Hadamard, Simpson, Opial, Fejer and Ostrowski type inequalities using different types of fractional operators and innovative methodologies guided to a revolution in the inequality theory. Several researchers have included this concept in the premises of several types of convexities in recent decades. We refer the interested readers to check (see [13,14,15,16,17,18,19]) for collections of integral inequalities involving convexities.
Mathematicians have recently been fascinated by the prospect of refining well-known integral inequalities using fractional integral operators. Sarikaya et al. [20] suggested the idea of presenting the Hermite-Hadamard inequality using the Rieman-Liouville fractional integral operator. Liu et al. [21] generalized the Hermite-Hadamard inequality for the ψ-Riemann-Liouville fractional operator, which was inspired by Sarikaya's research. Similarly, several researchers, including Mumcu et al. [22] employed a generalized Proportional fractional integral. Gürbüz et al. [23] worked on the Caputo-Fabrizio operator, whereas Fernandez et al. [24] combined the Atangana-Baleanu fractional operator with the Mittag-Leffler kernel. Mohammed et al. [25] used Tempered fractional integrals, Sahoo et al. [26] used k−Riemann-Liouville fractional integrals and Khan et al. [27] worked on a generalised conformable operator.
This article is arranged as follows: In Section 2, some basic notions and properties in the frame of fractional calculus are presented. Section 3 deals with presenting the main results of our article, where we have established some new H-H type inequalities involving ABK fractional operator. In Section 4, application related to matrices is given. Finally, in Section 5, conclusions and plans of this paper are hinted at.
Now, we will present some basic definitions of different types of fractional operators that are exceptionally appealing in many parts of mathematics as follows:
Definition 2.1. (see [20,28]) Let Υ∈L[ϱ1,ϱ2]. Then the left and right Riemann-Liouville fractional integrals Iαϱ+1 and Iαϱ−2 of order α>0 are defined by
Iαϱ+1Υ(x):=1Γ(α)∫xϱ1(x−u)α−1Υ(u)du,(0≦ϱ1<x<ϱ2) |
and
Iαϱ−2Υ(x):=1Γ(α)∫ϱ2x(u−x)α−1Υ(u)du,(0≦ϱ2<x<ϱ2), |
respectively.
Theorem 2.1. (see [29]) Let Υ:[ϱ1,ϱ2]⟶R be a convex function with 0≦ϱ1≦ϱ2. If Υ∈L[ϱ1,ϱ2], then the following inequality for Riemann-Liouville fractional integral operator holds true:
Υ(ϱ1+ϱ22)≦2μ−1Γ(μ+1)(ϱ2−ϱ1)μ[Iμ(ϱ1+ϱ22)+Υ(ϱ2)+Iμ(ϱ1+ϱ22)−Υ(ϱ1)]≦Υ(ϱ1)+Υ(ϱ2)2. |
Definition 2.2. (see [30]) Let [ϱ1,ϱ2]⊂R be a finite interval. Then the left side and right side Katugampola fractional integral of order μ>0 of Υ∈Xρc(ϱ1,ϱ2) are defined by:
ρIμϱ+1{Υ(t)}=ρ1−μΓ(μ)∫tϱ1Υ(x)(tρ−xρ)μ−1xρ−1dx, |
and
ρIμϱ−2{Υ(t)}=ρ1−μΓ(μ)∫ϱ2tΥ(x)(xρ−tρ)μ−1xρ−1dx. |
With the use of fractional integral operators, this study was able to grow and obtain a variety of well-known integral inequalities. Several mathematicians have recently described distinct forms of the Riemann-Liouville fractional operator in order to propose novel generalisations and refinements of integral inequalities involving differentiable functions. In various domains of applied sciences, studies pertaining to fractional calculus have provided a new perspective and direction. With the use of recently defined fractional operators, it has provided insight into a variety of real-world challenges. A few fundamental rules have separated all of these new fractional operators, and some favourable applications have been contrasted with others.
As of late, Atangana-Baleanu presented another fractional operator that involves a special function, i.e., the Mittag-Leffler function, which tackles the issue of recovering the original function. The Mittag-Leffler function is more reasonable than a power law in demonstrating the physical phenomenon around us. This made the AB fractional operator more powerful and accommodating. Thus, numerous researchers have shown a keen fascination for using this operator. Atangana-Baleanu presented the derivative both in Caputo and Reimann-Liouville sense.
Note. From now on we will use B(μ)>0 as a normalization function satisfying B(0)=B(1)=1.
Definition 2.3. Let p∈[1,∞) and [ϱ1,ϱ2] be an open subset of R, the Sobolev space Hp(ϱ1,ϱ2) is defined by
Hp(ϱ1,ϱ2)={Υ∈L2(ϱ1,ϱ2):DμΥ∈L2(ϱ1,ϱ2),forall|μ|≤p}. |
Definition 2.4. (see [31]) Let ϱ2>ϱ1, μ∈[0,1] and Υ∈H1(ϱ1,ϱ2). The new fractional derivative is given:
ABCϱ1Dμt[Υ(t)]=B(μ)1−μ∫tϱ1Υ′(x)Eμ[−μ(t−x)μ(1−μ)]dx. |
Definition 2.5. (see[31]) Let Υ∈H1(ϱ1,ϱ2), ϱ1<ϱ2, μ∈[0,1]. The new fractional derivative is given:
ABRϱ1Dμt[Υ(t)]=B(μ)1−μddt∫tϱ1Υ(x)Eμ[−μ(t−x)μ(1−μ)]dx. |
However, in the same paper they have given the corresponding Atangana-Baleanu(AB)-fractional integral operator as:
Definition 2.6. (see[31]) The fractional integral operator with non-local kernel of a function Υ∈H1(ϱ1,ϱ2) is defined as:
ABϱ1Iμt{Υ(t)}=1−μB(μ)Υ(t)+μB(μ)Γ(μ)∫tϱ1Υ(x)(t−x)μ−1dx, |
where ϱ2>ϱ1,μ∈[0,1].
In [32], the right hand side of Atangana-Baleanu fractional integral operator as following;
ABϱ2Iμt{Υ(t)}=1−μB(μ)Υ(t)+μB(μ)Γ(μ)∫ϱ2tΥ(x)(x−t)μ−1dx, |
where, Γ(μ) is the Gamma function defined by Γ(μ)=∫∞0e−ttμ−1dt.
Now, we present the definition of integral operator that generalizes Atangana-Baleanu integral operator and Katugampola integral operator.
Definition 2.7. (see [33]) Let [ϱ1,ϱ2]⊂R be a finite interval. Then the left side and right side ABK-fractional integral of order μ>0 of Υ∈Xρc(ϱ1,ϱ2) are defined as follows:
ABKϱ+1ρIμt{Υ(t)}=1−μB(μ)Υ(t)+ρ1−μμB(μ)Γ(μ)∫tϱ1Υ(x)(tρ−xρ)μ−1xρ−1dx, |
and
ABKϱ−2ρIμt{Υ(t)}=1−μB(μ)Υ(t)+ρ1−μμB(μ)Γ(μ)∫ϱ2tΥ(x)(xρ−tρ)μ−1xρ−1dx. |
For other generalizations and detailed knowledge about fractional-calculus operators, the interested readers can see [34,35,36,37,38,39,40,41,42,43,44,45].
The purpose of this investigation is to get new estimations of Hermite-Hadamard type inequalities employing a generalized Atangana-Baleanu fractional integral operator, i.e., ABK for convex functions. The principal motivation for applying ABK fractional operators is that the consequences demonstrated by this operator permit us to generate unique and comprehensive inequalities of the Hermite-Hadamard type. A novel version of Hermite-Hadamard inequality and an integral identity including generalized Atangana-Baleanu fractional operator is established. Next, some refinements of H-H type inequalities in the setting of (ABK) fractional operator are discussed as well. It is apparent that if one selects ρ = 1, and μ=1 in the main results, multiple alternatives of the classical H-H inequality will be recaptured.
Definition 2.8. (Hölder's inequality [46]) Let p>1 and 1p+1q=1. If Υ and Ψ are real functions defined on [ϱ1,ϱ2] and if |Υ|p and |Ψ|q are integrable on [ϱ1,ϱ2], then the following inequality holds true:
∫ϱ2ϱ1|Υ(x)Ψ(x)|dx≦(∫ϱ2ϱ1|Υ(x)|pdx)1p(∫ϱ2ϱ1|Ψ(x)|qdx)1q. |
Definition 2.9. (Power-mean inequality [46]) Let q≧1. If Υ and Ψ are real functions defined on [ϱ1,ϱ2] and if |Υ|, |Υ||Ψ|q are integrable on [ϱ1,ϱ2], then the following inequality holds true:
∫ϱ2ϱ1|Υ(x)Ψ(x)|dx≦(∫ϱ2ϱ1|Υ(x)|dx)1−1q(∫ϱ2ϱ1|Υ(x)||Ψ(x)|qdx)1q. |
Definition 2.10. (Hölder-İşcan integral inequality [46]) Let p>1 and 1p+1q=1. If Υ and Ψ are real functions defined on [ϱ1,ϱ2] and if |Υ|p and |Ψ|q are integrable on [ϱ1,ϱ2], then the following inequality holds true:
∫ϱ2ϱ1|Υ(x)Ψ(x)|dx≦1ϱ2−ϱ1(∫ϱ2ϱ1(ϱ2−x)|Υ(x)|pdx)1p(∫ϱ2ϱ1(ϱ2−x)|Ψ(x)|qdx)1q+1ϱ2−ϱ1(∫ϱ2ϱ1(x−ϱ1)|Υ(x)|pdx)1p(∫ϱ2ϱ1(x−ϱ1)|Ψ(x)|qdx)1q. |
The main objective of this section is to establish several novel refinements of H-H type inequalities via ABK fractional operator.
Theorem 3.1. Let Υ:X=[ϱρ1,ϱρ2]⟶R be a function with ϱ2>ϱ1≧0, ρ>0 and Υ∈Xρc(ϱρ1,ϱρ2). If Υ is a convex function on X, then the following ABK fractional integral inequalities hold true:
1−μB(μ)[Υ(ϱρ1)+Υ(ϱρ2)]+(ϱρ2−ϱρ1)μ2μ−1ρμB(μ)Γ(μ)Υ(ϱρ1+ϱρ22)≦[ABK(ϱρ1+ϱρ22)1ρ+ρIμϱρ2Υ(ϱρ2)+ABK(ϱρ1+ϱρ22)1ρ−ρIμϱρ1Υ(ϱρ1)]≦[Υ(ϱρ1+Υ(ϱρ2))]2μ[(ϱρ2−ϱρ1)μρ1−μ+2μΓ(μ)(1−μ)B(μ)Γ(μ)], |
where μ∈(0,1).
Proof. From the convexity theory, we have
Υ(xρ+yρ2)≦Υ(xρ)+Υ(yρ)2. |
Choosing
xρ=uρ2ϱρ1+2−uρ2ϱρ2 |
and
yρ=uρ2ϱρ2+2−uρ2ϱρ1. |
Consequently, we get
2Υ(ϱρ1+ϱρ22)≦Υ(uρ2ϱρ1+2−uρ2ϱρ2)+Υ(uρ2ϱρ2+2−uρ2ϱρ1). | (3.1) |
Multiplying both sides of (3.1) by μB(μ)Γ(μ)uρμ−1(μ>0) and integrating over the closed inteval [0, 1], we obtain
2B(μ)Γ(μ)Υ(ϱρ1+ϱρ22)≦μ2μB(μ)Γ(μ)∫ϱ2(ϱρ1+ϱρ22)1ρ(ϱρ2−xρϱρ2−ϱρ1)μ−1Υ(xρ)xρ−1ϱρ2−ϱρ1dx+μ2μB(μ)Γ(μ)∫(ϱρ1+ϱρ22)1ρϱ1(xρ−ϱρ1ϱρ2−ϱρ1)μ−1Υ(xρ)xρ−1ϱρ2−ϱρ1dx. |
Now, by using Definition 2.7 of ABK Fractional operator, we get
2ρ1−μ(ϱρ2−ϱρ1)μ2μρB(μ)Γ(μ)Υ(ϱρ1+ϱρ22)≦μρ1−μB(μ)Γ(μ)∫ϱ2(ϱρ1+ϱρ22)1ρ(ϱρ2−xρ)μ−1Υ(xρ)xρ−1dx+μρ1−μB(μ)Γ(μ)∫(ϱρ1+ϱρ22)1ρϱ1(xρ−ϱρ1)μ−1Υ(xρ)xρ−1dx. |
This proves the first inequality asserted by Theorem 3.1.
1−μB(μ)[Υ(ϱρ1)+Υ(ϱρ2)]+(ϱρ2−ϱρ1)μ2μ−1ρμB(μ)Γ(μ)Υ(ϱρ1+ϱρ22)≦[ABK(ϱρ1+ϱρ22)1ρ+ρIμϱρ2Υ(ϱρ2)+ABK(ϱρ1+ϱρ22)1ρ−ρIμϱρ1Υ(ϱρ1)]. |
For the proof of the second inequality in Theorem 3.1, we need the following results:
Υ(uρ2ϱρ1+2−uρ2ϱρ2)+Υ(uρ2ϱρ2+2−uρ2ϱρ1)≦uρ2Υ(ϱρ1)+2−uρ2Υ(ϱρ2)+uρ2Υ(ϱρ2)+2−uρ2Υ(ϱρ1)=Υ(ϱρ1)+Υ(ϱρ2). | (3.2) |
Multiplying both sides of (3.2) by μB(μ)Γ(μ)uρμ−1(μ>0) and integrating over the closed inteval [0, 1], we obtain
μB(μ)Γ(μ)∫10Υ(uρ2ϱρ1+2−uρ2ϱρ2)uρμ−1du+μB(μ)Γ(μ)∫10Υ(uρ2ϱρ2+2−uρ2ϱρ1)uρμ−1du≦μ[Υ(ϱρ1)+Υ(ϱρ2)]B(μ)Γ(μ)∫10uρμ−1du. |
It follows
[ABK(ϱρ1+ϱρ22)1ρ+ρIμϱρ2Υ(ϱρ2)+ABK(ϱρ1+ϱρ22)1ρ−ρIμϱρ1Υ(ϱρ1)]≦Υ(ϱρ1)+Υ(ϱρ2)2μ[(ϱρ2−ϱρ1)μρ1−μ+2μΓ(μ)(1−μ)B(μ)Γ(μ)]. |
This leads us to the proof of the Theorem 3.1.
Corollary 3.1. When we choose ρ=1, Theorem 3.1 yields the following result for Atangana-Baleanu fractional operator.
1−μB(μ)[Υ(ϱ1)+Υ(ϱ2)]+(ϱ2−ϱ1)μ2μ−1B(μ)Γ(μ)Υ(ϱ1+ϱ22)≦[AB(ϱ1+ϱ22)+Iμϱ2Υ(ϱ2)+AB(ϱ1+ϱ22)−Iμϱ1Υ(ϱ1)]≦[Υ(ϱ1+Υ(ϱ2))]2μ[(ϱ2−ϱ1)μ+2μΓ(μ)(1−μ)B(μ)Γ(μ)]. |
Lemma 3.1. Let Υ:X=[ϱρ1,ϱρ2]⟶R be a differentiable function on X, with 0≦ϱ1<ϱ2, ρ>0 and μ∈(0,1). Then the following ABK fractional integral equality holds true:
[ABK(ϱρ1+ϱρ22)1ρ+ρIμϱρ2Υ(ϱρ2)+ABK(ϱρ1+ϱρ22)1ρ−ρIμϱρ1Υ(ϱρ1)]−1−μB(μ)[Υ(ϱρ1)+Υ(ϱρ2)]+(ϱρ2−ϱρ1)μ2μ−1ρμB(μ)Γ(μ)Υ(ϱρ1+ϱρ22)=(ϱρ1+ϱρ22)μ+1ρμ−1B(μ)Γ(μ)[∫10Υ′(uρ2ϱρ1+2−uρ2ϱρ2)uρμuρ−1du+∫10Υ′(uρ2ϱρ2+2−uρ2ϱρ1)uρμuρ−1du]. |
Proof. The proof directly follows by using integration by parts technique
∫10Υ′(uρ2ϱρ1+2−uρ2ϱρ2)uρμuρ−1du+∫10Υ′(uρ2ϱρ2+2−uρ2ϱρ1)uρμuρ−1du=I1+I2.I1=∫10Υ′(uρ2ϱρ1+2−uρ2ϱρ2)uρμuρ−1du=∫10uρμ[ddu(Υ(uρ2ϱρ1+2−uρ2ϱρ2))2ρ(ϱρ1−ϱρ2)]du.Integrating by partsuρμΥ(uρ2ϱρ1+2−uρ2ϱρ2)2ρ(ϱρ1−ϱρ2)|10−∫10μuρμ−1Υ(uρ2ϱρ1+2−uρ2ϱρ2)2(ϱρ1−ϱρ2)du=−2ρ(ϱρ2−ϱρ1)Υ(ϱρ1+ϱρ22)+2μ+1μ(ϱρ2−ϱρ1)μ+1∫ϱ2(ϱρ1+ϱρ22)1ρ(ϱρ2−xρ)μ−1Υ(xρ)xρ−1dx.Similarly,I2=∫10Υ′(uρ2ϱρ2+2−uρ2ϱρ1)uρμuρ−1du=2ρ(ϱρ2−ϱρ1)Υ(ϱρ1+ϱρ22)−2μ+1μ(ϱρ2−ϱρ1)μ+1∫(ϱρ1+ϱρ22)1ρϱ1(xρ−ϱρ1)μ−1Υ(xρ)xρ−1dx. |
Multiplying both I1 and I2 by ρ1−μB(μ)Γ(μ)(ϱρ1+ϱρ22)μ+1 and then subtracting the resultant I2 from I1, we have the desired proof.
Theorem 3.2. Let Υ:X=[ϱρ1,ϱρ2]⟶R be a differentiable function on X, with 0≦ϱ1<ϱ2, ρ>0 and μ∈(0,1). If |Υ′| is a convex function, then the following ABK fractional integral inequality holds true:
|[ABK(ϱρ1+ϱρ22)1ρ+ρIμϱρ2Υ(ϱρ2)+ABK(ϱρ1+ϱρ22)1ρ−ρIμϱρ1Υ(ϱρ1)]−1−μB(μ)[Υ(ϱρ1)+Υ(ϱρ2)]+(ϱρ2−ϱρ1)μ2μ−1ρμB(μ)Γ(μ)Υ(ϱρ1+ϱρ22)|≦(ϱρ1+ϱρ22)μ+1ρμ−1B(μ)Γ(μ)[|Υ′(ϱρ1)|+|Υ′(ϱρ2)ρ(μ+1)]. |
Proof. Taking the equality given in Lemma 3.1 into consideration and convexity of |Υ′|, we have
|[ABK(ϱρ1+ϱρ22)1ρ+ρIμϱρ2Υ(ϱρ2)+ABK(ϱρ1+ϱρ22)1ρ−ρIμϱρ1Υ(ϱρ1)]−1−μB(μ)[Υ(ϱρ1)+Υ(ϱρ2)]+(ϱρ2−ϱρ1)μ2μ−1ρμB(μ)Γ(μ)Υ(ϱρ1+ϱρ22)|≦(ϱρ1+ϱρ22)μ+1ρμ−1B(μ)Γ(μ)[∫10(|Υ′(ϱρ1)|uρ2+2−uρ2|Υ′(ϱρ2)|)uρμuρ−1du+∫10(|Υ′(ϱρ2)|uρ2+2−uρ2|Υ′(ϱρ1)|)uρμuρ−1du]≦(ϱρ1+ϱρ22)μ+1ρμ−1B(μ)Γ(μ)[|Υ′(ϱρ1)|+|Υ′(ϱρ2)∫10uρμ+ρ−1du]=(ϱρ1+ϱρ22)μ+1ρμ−1B(μ)Γ(μ)[|Υ′(ϱρ1)|+|Υ′(ϱρ2)ρ(μ+1)]. |
This completes the proof.
Corollary 3.2. Using the same notations as in Theorem 3.2 and choosing |Υ′|≦M, we have the following inequality:
|[ABK(ϱρ1+ϱρ22)1ρ+ρIμϱρ2Υ(ϱρ2)+ABK(ϱρ1+ϱρ22)1ρ−ρIμϱρ1Υ(ϱρ1)]−1−μB(μ)[Υ(ϱρ1)+Υ(ϱρ2)]+(ϱρ2−ϱρ1)μ2μ−1ρμB(μ)Γ(μ)Υ(ϱρ1+ϱρ22)|≦(ϱρ1+ϱρ22)μ+1Mρμ−1B(μ)Γ(μ). |
Corollary 3.3. Using the same notations as in Theorem 3.2 and choosing ρ=1, we have the following inequality involving Atangana-Baleanu fractional operators:
|[AB(ϱ1+ϱ22)+Iμϱ2Υ(ϱ2)+AB(ϱ1+ϱ22)−Iμϱ1Υ(ϱ1)]−1−μB(μ)[Υ(ϱ1)+Υ(ϱ2)]+(ϱ2−ϱ1)μ2μ−1B(μ)Γ(μ)Υ(ϱ1+ϱ22)|≦(ϱ1+ϱ22)μ+11B(μ)Γ(μ)[|Υ′(ϱ1)|+|Υ′(ϱ2)(μ+1)]. |
Theorem 3.3. Let Υ:X=[ϱρ1,ϱρ2]⟶R be a differentiable function on X, with 0≦ϱ1<ϱ2, ρ>0 and μ∈(0,1). If |Υ′|q is a convex function, then the following ABK fractional integral inequality holds true:
|[ABK(ϱρ1+ϱρ22)1ρ+ρIμϱρ2Υ(ϱρ2)+ABK(ϱρ1+ϱρ22)1ρ−ρIμϱρ1Υ(ϱρ1)]−1−μB(μ)[Υ(ϱρ1)+Υ(ϱρ2)]+(ϱρ2−ϱρ1)μ2μ−1ρμB(μ)Γ(μ)Υ(ϱρ1+ϱρ22)|≦(ϱρ1+ϱρ22)μ+1ρμ−1B(μ)Γ(μ)[(1ρ(μ+1))1−1q{12ρ(μ+2)|Υ′(ϱρ1)|q+μ+32ρ(μ+1)(μ+2)|Υ′(ϱρ2)|q}1q+(1ρ(μ+1))1−1q{12ρ(μ+2)|Υ′(ϱρ2)|q+μ+32ρ(μ+1)(μ+2)|Υ′(ϱρ1)|q}1q], |
where q≧1.
Proof. Taking the equality given in Lemma 3.1 into consideration and power-mean inequality, we have
|[ABK(ϱρ1+ϱρ22)1ρ+ρIμϱρ2Υ(ϱρ2)+ABK(ϱρ1+ϱρ22)1ρ−ρIμϱρ1Υ(ϱρ1)]−1−μB(μ)[Υ(ϱρ1)+Υ(ϱρ2)]+(ϱρ2−ϱρ1)μ2μ−1ρμB(μ)Γ(μ)Υ(ϱρ1+ϱρ22)|≦(ϱρ1+ϱρ22)μ+1ρμ−1B(μ)Γ(μ)[(∫10uρμuρ−1du)1−1q(∫10|Υ′(uρ2ϱρ1+2−uρ2ϱρ2)|quρμuρ−1du)1q+(∫10uρμuρ−1du)1−1q(∫10|Υ′(uρ2ϱρ2+2−uρ2ϱρ1)|quρμuρ−1du)1q]. | (3.3) |
Using the convexity of |Υ′|q on X, we have
∫10|Υ′(uρ2ϱρ2+2−uρ2ϱρ1)|quρμuρ−1du=∫10(uρ2|Υ′(ϱρ1)|+2−uρ2|Υ′(ϱρ2)|)uρμuρ−1du=12ρ(μ+2)|Υ′(ϱρ1)|q+μ+32ρ(μ+1)(μ+2)|Υ′(ϱρ2)|q, |
and
∫10|Υ′(uρ2ϱρ2+2−uρ2ϱρ1)|quρμuρ−1du=∫10(uρ2|Υ′(ϱρ2)|+2−uρ2|Υ′(ϱρ1)|)uρμuρ−1du=12ρ(μ+2)|Υ′(ϱρ2)|q+μ+32ρ(μ+1)(μ+2)|Υ′(ϱρ1)|q, |
and also
∫10uρμuρ−1du=1ρ(μ+1). |
Substitution of the above computations in (3.3), completes rest of the proof.
Corollary 3.4. Using the same notations as the above Theorem 3.3 and if we take |Υ′|≦M, then we get:
|[ABK(ϱρ1+ϱρ22)1ρ+ρIμϱρ2Υ(ϱρ2)+ABK(ϱρ1+ϱρ22)1ρ−ρIμϱρ1Υ(ϱρ1)]−1−μB(μ)[Υ(ϱρ1)+Υ(ϱρ2)]+(ϱρ2−ϱρ1)μ2μ−1ρμB(μ)Γ(μ)Υ(ϱρ1+ϱρ22)|≦(ϱρ1+ϱρ22)μ+12Mρμ−1B(μ)Γ(μ)(1ρ(μ+1))1−1q. |
Corollary 3.5. Using the same notations as in Theorem 3.3 and choosing ρ=1, we have the following inequality involving Atangana-Baleanu fractional operators:
|[AB(ϱ1+ϱ22)+Iμϱ2Υ(ϱ2)+AB(ϱ1+ϱ22)−Iμϱ1Υ(ϱ1)]−1−μB(μ)[Υ(ϱ1)+Υ(ϱ2)]+(ϱ2−ϱ1)μ2μ−1B(μ)Γ(μ)Υ(ϱ1+ϱ22)|≦(ϱ1+ϱ22)μ+11B(μ)Γ(μ)[(1(μ+1))1−1q{12(μ+2)|Υ′(ϱ1)|q+μ+32(μ+1)(μ+2)|Υ′(ϱ2)|q}1q+(1(μ+1))1−1q{12(μ+2)|Υ′(ϱ2)|q+μ+32(μ+1)(μ+2)|Υ′(ϱ1)|q}1q]. |
Theorem 3.4. Let Υ:X=[ϱρ1,ϱρ2]⟶R be a differentiable function on X with 0≦ϱ1<ϱ2, ρ>0 and μ∈(0,1). If |Υ′|n is a convex function, then the following ABK fractional integral inequality holds true:
|[ABK(ϱρ1+ϱρ22)1ρ+ρIμϱρ2Υ(ϱρ2)+ABK(ϱρ1+ϱρ22)1ρ−ρIμϱρ1Υ(ϱρ1)]−1−μB(μ)[Υ(ϱρ1)+Υ(ϱρ2)]+(ϱρ2−ϱρ1)μ2μ−1ρμB(μ)Γ(μ)Υ(ϱρ1+ϱρ22)|≦(ϱρ1+ϱρ22)μ+1ρμ−1B(μ)Γ(μ)[2mρ(mμ+1)+|Υ′(ϱρ1)|n+|Υ′(ϱρ2)|nnρ], |
where 1m+1n=1.
Proof. Taking the equality given in Lemma 3.1 into consideration, Young's inequality and convexity of |Υ′|n, we have
|[ABK(ϱρ1+ϱρ22)1ρ+ρIμϱρ2Υ(ϱρ2)+ABK(ϱρ1+ϱρ22)1ρ−ρIμϱρ1Υ(ϱρ1)]−1−μB(μ)[Υ(ϱρ1)+Υ(ϱρ2)]+(ϱρ2−ϱρ1)μ2μ−1ρμB(μ)Γ(μ)Υ(ϱρ1+ϱρ22)|≦(ϱρ1+ϱρ22)μ+1ρμ−1B(μ)Γ(μ)[∫10|Υ′(uρ2ϱρ1+2−uρ2ϱρ2)|uρμuρ−1du+∫10|Υ′(uρ2ϱρ2+2−uρ2ϱρ1)|uρμuρ−1du].≦(ϱρ1+ϱρ22)μ+1ρμ−1B(μ)Γ(μ)[1m∫10umρμuρ−1du+1n∫10|Υ′(uρ2ϱρ1+2−uρ2ϱρ2)|nuρ−1du+1m∫10umρμuρ−1du+1n∫10|Υ′(uρ2ϱρ2+2−uρ2ϱρ1)|nuρ−1du].≦(ϱρ1+ϱρ22)μ+1ρμ−1B(μ)Γ(μ)[1m∫10umρμuρ−1du+∫10(|Υ′(ϱρ1)|nuρ2+2−uρ2|Υ′(ϱρ2)|n)uρ−1du1m∫10umρμuρ−1du+∫10(|Υ′(ϱρ2)|nuρ2+2−uρ2|Υ′(ϱρ1)|n)uρ−1du].≦(ϱρ1+ϱρ22)μ+1ρμ−1B(μ)Γ(μ)[2mρ(mμ+1)+|Υ′(ϱρ1)|n+|Υ′(ϱρ2)|nnρ], |
where
1m∫10umρμuρ−1du=1m[1ρ(mμ+1)],1n∫10uρuρ−12du=14nρ, |
and
1n∫10(2−uρ)uρ−12du=34nρ. |
This completes the proof.
Corollary 3.6. Using the same notations as in Theorem 3.4 and choosing ρ=1, we have the following inequality involving Atangana-Baleanu fractional operators:
|[AB(ϱ1+ϱ22)+Iμϱ2Υ(ϱ2)+AB(ϱ1+ϱ22)−Iμϱ1Υ(ϱ1)]−1−μB(μ)[Υ(ϱ1)+Υ(ϱ2)]+(ϱ2−ϱ1)μ2μ−1B(μ)Γ(μ)Υ(ϱ1+ϱ22)|≦(ϱ1+ϱ22)μ+11B(μ)Γ(μ)[2m(mμ+1)+|Υ′(ϱ1)|n+|Υ′(ϱ2)|nn]. |
Theorem 3.5. Let Υ:X=[ϱρ1,ϱρ2]⟶R be a differentiable function on X with 0≦ϱ1<ϱ2, ρ>0 and μ∈(0,1). If |Υ′| is a concave function on X, then the following ABK fractional integral inequality holds true:
|[ABK(ϱρ1+ϱρ22)1ρ+ρIμϱρ2Υ(ϱρ2)+ABK(ϱρ1+ϱρ22)1ρ−ρIμϱρ1Υ(ϱρ1)]−1−μB(μ)[Υ(ϱρ1)+Υ(ϱρ2)]+(ϱρ2−ϱρ1)μ2μ−1ρμB(μ)Γ(μ)Υ(ϱρ1+ϱρ22)|≦(ϱρ1+ϱρ22)μ+1ρμ−1B(μ)Γ(μ)(1ρ(μ+1))[|Υ′((μ+1)ϱρ2+(μ+3)ϱρ12(μ+2))|+|Υ′((μ+1)ϱρ1+(μ+3)ϱρ22(μ+2))|]. |
Proof. Taking the equality given in Lemma 3.1 into consideration and Jensen's inequality, we have
|[ABK(ϱρ1+ϱρ22)1ρ+ρIμϱρ2Υ(ϱρ2)+ABK(ϱρ1+ϱρ22)1ρ−ρIμϱρ1Υ(ϱρ1)]−1−μB(μ)[Υ(ϱρ1)+Υ(ϱρ2)]+(ϱρ2−ϱρ1)μ2μ−1ρμB(μ)Γ(μ)Υ(ϱρ1+ϱρ22)|≦(ϱρ1+ϱρ22)μ+1ρμ−1B(μ)Γ(μ)[∫10|Υ′(uρ2ϱρ1+2−uρ2ϱρ2)|uρμuρ−1du+∫10|Υ′(uρ2ϱρ2+2−uρ2ϱρ1)|uρμuρ−1du].≦(ϱρ1+ϱρ22)μ+1ρμ−1B(μ)Γ(μ)[(∫10uρμuρ−1du)|Υ′(∫10uρμuρ−1(uρ2ϱρ1+2−uρ2ϱρ2)du∫10uρμuρ−1du)|+(∫10uρμuρ−1du)|Υ′(∫10uρμuρ−1(uρ2ϱρ2+2−uρ2ϱρ1)du∫10uρμuρ−1du)|]≦(ϱρ1+ϱρ22)μ+1ρμ−1B(μ)Γ(μ)[1ρ(μ+1)|Υ′(ϱρ12ρ(μ+2)+(μ+3)ϱρ22ρ(μ+1)(μ+2)1ρ(μ+1))|+1ρ(μ+1)|Υ′(ϱρ22ρ(μ+2)+(μ+3)ϱρ12ρ(μ+1)(μ+2)1ρ(μ+1))|]≦(ϱρ1+ϱρ22)μ+1ρμ−1B(μ)Γ(μ)(1ρ(μ+1))[|Υ′((μ+1)ϱρ2+(μ+3)ϱρ12(μ+2))|+|Υ′((μ+1)ϱρ1+(μ+3)ϱρ22(μ+2))|]. |
This led us to the proof of the desired Theorem 3.5.
Corollary 3.7. Using the same notations as in Theorem 3.5 and choosing ρ=1, we have the following inequality involving Atangana-Baleanu fractional operators:
|[AB(ϱ1+ϱ22)+Iμϱ2Υ(ϱ2)+AB(ϱ1+ϱ22)−Iμϱ1Υ(ϱ1)]−1−μB(μ)[Υ(ϱ1)+Υ(ϱ2)]+(ϱ2−ϱ1)μ2μ−1B(μ)Γ(μ)Υ(ϱ1+ϱ22)|≦(ϱ1+ϱ22)μ+11B(μ)Γ(μ)(1(μ+1))[|Υ′((μ+1)ϱ2+(μ+3)ϱ12(μ+2))|+|Υ′((μ+1)ϱ1+(μ+3)ϱ22(μ+2))|]. |
Theorem 3.6. Let Υ:X=[ϱρ1,ϱρ2]⟶R be a differentiable function on [ϱρ1,ϱρ2] with 0≦ϱ1<ϱ2, ρ>0 and μ∈(0,1). If |Υ′|q is a convex function on X, then the following inequality ABK fractional integral inequality holds true:
|[ABK(ϱρ1+ϱρ22)1ρ+ρIμϱρ2Υ(ϱρ2)+ABK(ϱρ1+ϱρ22)1ρ−ρIμϱρ1Υ(ϱρ1)]−1−μB(μ)[Υ(ϱρ1)+Υ(ϱρ2)]+(ϱρ2−ϱρ1)μ2μ−1ρμB(μ)Γ(μ)Υ(ϱρ1+ϱρ22)|≦(ϱρ1+ϱρ22)μ+1ρμ−1B(μ)Γ(μ)×[(1ρμs+ρ−1ρμs+ρ+1)1s(|Υ′(ϱρ1)|q2[12ρ(2ρ+1)]+|Υ′(ϱρ2)|q2[32ρ+12ρ+1−2ρ+1])+(1ρμs+ρ+1)1s(|Υ′(ϱρ1)|q2(2ρ+1)+|Υ′(ϱρ2)|q(3ρ+1)2(ρ+1)(2ρ+1))1q+(1ρμs+ρ+1)1s(|Υ′(ϱρ2)|q2(2ρ+1)+|Υ′(ϱρ1)|q(3ρ+1)2(ρ+1)(2ρ+1))1q+(1ρμs+ρ−1ρμs+ρ+1)1s(|Υ′(ϱρ2)|q2[12ρ(2ρ+1)]+|Υ′(ϱρ1)|q2[32ρ+12ρ+1−2ρ+1])], |
where 1s+1q=1.
Proof. Taking the equality given in Lemma 3.1 into consideration and using Hölder-İşcan inequality
|[ABK(ϱρ1+ϱρ22)1ρ+ρIμϱρ2Υ(ϱρ2)+ABK(ϱρ1+ϱρ22)1ρ−ρIμϱρ1Υ(ϱρ1)]−1−μB(μ)[Υ(ϱρ1)+Υ(ϱρ2)]+(ϱρ2−ϱρ1)μ2μ−1ρμB(μ)Γ(μ)Υ(ϱρ1+ϱρ22)|≦(ϱρ1+ϱρ22)μ+1ρμ−1B(μ)Γ(μ)×[∫10|Υ′(uρ2ϱρ1+2−uρ2ϱρ2)|uρμuρ−1du+∫10|Υ′(uρ2ϱρ2+2−uρ2ϱρ1)|uρμuρ−1du].≦(ϱρ1+ϱρ22)μ+1ρμ−1B(μ)Γ(μ)×[(∫10(1−u)uρμsuρ−1du)1s(∫10(1−u)uρ−1|Υ′(uρ2ϱρ1+2−uρ2ϱρ2)|q)1q+(∫10uuρμsuρ−1du)1s(∫10uuρ−1|Υ′(uρ2ϱρ1+2−uρ2ϱρ2)|q)1q+(∫10(1−u)uρμsuρ−1du)1s(∫10(1−u)uρ−1|Υ′(uρ2ϱρ2+2−uρ2ϱρ1)|q)1q+(∫10uuρμsuρ−1du)1s(∫10uuρ−1|Υ′(uρ2ϱρ2+2−uρ2ϱρ1)|q)1q]. | (3.4) |
By the convexity of |Υ′|q, we have
∫10(u)uρ−1|Υ′(uρ2ϱρ1+2−uρ2ϱρ2)|qdu=|Υ′(ϱρ1)|q2(2ρ+1)+|Υ′(ϱρ2)|q2[2ρ+1−12ρ+1],∫10(1−u)uρ−1|Υ′(uρ2ϱρ1+2−uρ2ϱρ2)|qdu=|Υ′(ϱρ1)|q2[12ρ−12ρ+1]+|Υ′(ϱρ2)|q2[32ρ−2ρ+1+12ρ+1],∫10(u)uρ−1|Υ′(uρ2ϱρ2+2−uρ2ϱρ1)|qdu=|Υ′(ϱρ2)|q2(2ρ+1)+|Υ′(ϱρ1)|q2[2ρ+1−12ρ+1],∫10(1−u)uρ−1|Υ′(uρ2ϱρ2+2−uρ2ϱρ1)|qdu=|Υ′(ϱρ2)|q2[12ρ−12ρ+1]+|Υ′(ϱρ1)|q2[32ρ−2ρ+1+12ρ+1]. |
Also,
∫10(1−u)uρμsuρ−1du=1ρμs+ρ−1ρμs+ρ+1,∫10(u)uρμsuρ−1du=1ρμs+ρ+1. |
Upon, substituting the above computations in (3.4), we have the required result.
Corollary 3.8. Using the same notations as in Theorem 3.6 and choosing ρ=1, we have the following inequality involving Atangana-Baleanu fractional operators:
|[AB(ϱ1+ϱ22)+Iμϱ2Υ(ϱ2)+AB(ϱ1+ϱ22)−Iμϱ1Υ(ϱ1)]−1−μB(μ)[Υ(ϱ1)+Υ(ϱ2)]+(ϱ2−ϱ1)μ2μ−1B(μ)Γ(μ)Υ(ϱ1+ϱ22)|≦(ϱ1+ϱ22)μ+11B(μ)Γ(μ)[(1μs+1−1μs+2)1s(|Υ′(ϱ1)|q12+5|Υ′(ϱ2)|q12)+(1μs+2)1s(|Υ′(ϱ1)|q6+|Υ′(ϱ2)|q3)1q+(1μs+2)1s(|Υ′(ϱ2)|q6+7|Υ′(ϱ1)|q3)1q+(1μs+1−1μs+2)1s(|Υ′(ϱ2)|q12+5|Υ′(ϱ1)|q12)]. |
Theorem 3.7. Let Υ:X=[ϱρ1,ϱρ2]⟶R be a differentiable function with 0≦ϱ1<ϱ2 ρ>0, μ∈(0,1). If |Υ′|q is a convex function on X, for q>1 and 1s+1q=1, then the following ABK fractional integral inequality holds true:
|[ABK(ϱρ1+ϱρ22)1ρ+ρIμϱρ2Υ(ϱρ2)+ABK(ϱρ1+ϱρ22)1ρ−ρIμϱρ1Υ(ϱρ1)]−1−μB(μ)[Υ(ϱρ1)+Υ(ϱρ2)]+(ϱρ2−ϱρ1)μ2μ−1ρμB(μ)Γ(μ)Υ(ϱρ1+ϱρ22)|≦(ϱρ1+ϱρ22)μ+1ρμ−1B(μ)Γ(μ)(1s(ρμ)+ρ)1s{(|Υ′(ϱρ1)|q4ρ+3|Υ′(ϱρ2)|q4ρ)1q+(|Υ′(ϱρ2)|q4ρ+3|Υ′(ϱρ1)|q4ρ)1q}. |
Proof. Taking the equality given in Lemma 3.1 into consideration and Hölder inequality, we have
|[ABK(ϱρ1+ϱρ22)1ρ+ρIμϱρ2Υ(ϱρ2)+ABK(ϱρ1+ϱρ22)1ρ−ρIμϱρ1Υ(ϱρ1)]−1−μB(μ)[Υ(ϱρ1)+Υ(ϱρ2)]+(ϱρ2−ϱρ1)μ2μ−1ρμB(μ)Γ(μ)Υ(ϱρ1+ϱρ22)|≦(ϱρ1+ϱρ22)μ+1ρμ−1B(μ)Γ(μ)[(∫10uρμsuρ−1du)1s(∫10|Υ′(uρ2ϱρ1+2−uρ2ϱρ2)|quρ−1du)1q+(∫10uρμsuρ−1du)1s(∫10|Υ′(uρ2ϱρ2+2−uρ2ϱρ1)|quρ−1du)1q]. | (3.5) |
Using the convexity of |Υ′|q on [ϱρ1,ϱρ2], we have
∫10|Υ′(uρ2ϱρ2+2−uρ2ϱρ1)|quρμuρ−1du=∫10(uρ2|Υ′(ϱρ1)|+2−uρ2|Υ′(ϱρ2)|)uρ−1du=|Υ′(ϱρ1)|q4ρ+3|Υ′(ϱρ2)|q4ρ, |
and
∫10|Υ′(uρ2ϱρ2+2−uρ2ϱρ1)|quρμuρ−1du=∫10(uρ2|Υ′(ϱρ2)|+2−uρ2|Υ′(ϱρ1)|)uρ−1du=|Υ′(ϱρ2)|q4ρ+3|Υ′(ϱρ1)|q4ρ. |
Substituting the above computations in (3.5), completes rest of the proof.
Corollary 3.9. Using the same notations as in Theorem 3.7 and choosing ρ=1, we have the following inequality involving Atangana-Baleanu fractional operators:
|[AB(ϱ1+ϱ22)+Iμϱ2Υ(ϱ2)+AB(ϱ1+ϱ22)−Iμϱ1Υ(ϱ1)]−1−μB(μ)[Υ(ϱ1)+Υ(ϱ2)]+(ϱ2−ϱ1)μ2μ−1B(μ)Γ(μ)Υ(ϱ1+ϱ22)|≦(ϱ1+ϱ22)μ+11B(μ)Γ(μ)(1sμ)1s{(|Υ′(ϱ1)|q4+3|Υ′(ϱ2)|q4)1q+(|Υ′(ϱ2)|q4+3|Υ′(ϱ1)|q4)1q}. |
We represent Cn as the set of n×n complex matrices and Mn as the algebra of n×n complex matrices and M+n represents as the strictly positive matrices in M. That is, A∈M+n, if ⟨Au,u⟩>0 for all nonzero u∈Cn.
Sababheh [47], proved that Υ(u)=∥AuXB1−u+A1−uXBu∥, A,B∈M+n,X∈Mn is convex for all u∈[0,1]. Then, by using Theorem 3.1, we have
1−μB(μ)[||Aϱρ1XB1−ϱρ1+A1−ϱρ1XBϱρ1||+||Aϱρ2XB1−ϱρ2+A1−ϱρ2XBϱρ2||]+(ϱρ2−ϱρ1)μ2μ−1ρμB(μ)Γ(μ)||A(ϱρ1+ϱρ22)XB1−(ϱρ1+ϱρ22)+A1−(ϱρ1+ϱρ22)XB(ϱρ1+ϱρ22)||≦2α−sΓ(α+1)(ϱρ2−ϱρ1)α[ABK(ϱρ1+ϱρ22)1ρ+ρIμϱρ2||Aϱρ2XB1−ϱρ2+A1−ϱρ2XBϱρ2||+ABK(ϱρ1+ϱρ22)1ρ−ρIμϱρ2||Aϱρ1XB1−ϱρ1+A1−ϱρ1XBϱρ1||]≦||Aϱρ1XB1−ϱρ1+A1−ϱρ1XBϱρ1||+||Aϱρ2XB1−ϱρ2+A1−ϱρ2XBϱρ2||2μ[(ϱρ2−ϱρ1)μρ1−μ+2μΓ(μ)(1−μ)B(μ)Γ(μ)]. |
Recently, fractional calculus has been one of the often utilized concepts to acquire new variants of some well-known integral inequalities. This improvement in the field of mathematical inequality dealing with fractional calculus has prompted another direction in different areas of mathematics and applied sciences. In this article, we have investigated ABK fractional integrals and, by using these fractional integrals, we have derived H-H type inequality (see Theorem 3.1) and then we presented an identity (see Lemma 3.1). Using the identity, some refinements of H-H type inequalities (see Theorems 3.2–3.7) are discussed for convex functions. If we choose ρ=1, our presented results give some new inequalities of (ϱ1+ϱ22) type for AB fractional operator. The ABK fractional operator being a new and unified operator, it will be quite interesting to check whether we can apply this integral operator to establish Ostrowski type inequality, Simpson type inequality. For future work, we will apply the ABK operator using Minkowski and Markov inequalities. Also, we will check its applicability on interval valued analysis and on coordinates for integral inequalities.
The authors declare no conflict of interest.
[1] |
S. Faisal, M. Khan, S. Iqbal, Generalized Hermite-Hadamard-Mercer type inequalities via majorization, Filomat, 36 (2022), 469–483. http://dx.doi.org/10.2298/FIL2202469F doi: 10.2298/FIL2202469F
![]() |
[2] |
M. Ragusa, On weak solutions of ultraparabolic equations, Nonlinear Anal.-Theory, 47 (2001), 503–511. http://dx.doi.org/10.1016/S0362-546X(01)00195-X doi: 10.1016/S0362-546X(01)00195-X
![]() |
[3] |
S. Rashid, A. Akdemir, M. Noor, K. Noor, Integral inequalities for exponentially harmonically convex functions via fractional integral operators, Miskolc Math. Notes, 22 (2021), 875–888. http://dx.doi.org/10.18514/MMN.2021.3078 doi: 10.18514/MMN.2021.3078
![]() |
[4] |
M. Ur Rahman, S. Ahmad, R. Matoog, N. Alshehri, T. Khan, Study on the mathematical modelling of COVID-19 with Caputo-Fabrizio operator, Chaos Soliton. Fract., 150 (2021), 111121. http://dx.doi.org/10.1016/j.chaos.2021.111121 doi: 10.1016/j.chaos.2021.111121
![]() |
[5] |
S. Ahmad, M. Ur Rahman, M. Arfan, On the analysis of semi-analytical solutions of Hepatitis B epidemic model under the Caputo-Fabrizio operator, Chaos Soliton. Fract., 146 (2021), 110892. http://dx.doi.org/10.1016/j.chaos.2021.110892 doi: 10.1016/j.chaos.2021.110892
![]() |
[6] |
A. Atangana, D. Baleanu, Caputo-Fabrizio derivative applied to groundwater flow within confined aquifer, J. Eng. Mech., 143 (2017), 4016005. http://dx.doi.org/10.1061/(ASCE)EM.1943-7889.0001091 doi: 10.1061/(ASCE)EM.1943-7889.0001091
![]() |
[7] |
F. Gómez, J. Rosales, M. Guíía, RLC electrical circuit of non-integer order, Open Phys., 11 (2013), 1361–1365. http://dx.doi.org/10.2478/s11534-013-0265-6 doi: 10.2478/s11534-013-0265-6
![]() |
[8] | E. Soczkiewicz, Application of fractional calculus in the theory of viscoelasticity (Russian), Molecular and Quantum Acoustics, 23 (2002), 397–404. |
[9] |
V. Kulish, J. Lage, Application of fractional calculus to fluid mechanics, J. Fluids Eng., 124 (2002), 803–806. http://dx.doi.org/10.1115/1.1478062 doi: 10.1115/1.1478062
![]() |
[10] |
J. Jensen, Sur les fonctions convexes et les inegalites entre les valeurs moyennes, Acta Math., 30 (1906), 175–193. http://dx.doi.org/10.1007/BF02418571 doi: 10.1007/BF02418571
![]() |
[11] | C. Niculescu, L. Persson, Convex functions and their applications, Cham: Springer, 2018. http://dx.doi.org/10.1007/978-3-319-78337-6 |
[12] | J. Hadamard, Étude sur les propriétés des fonctions entiéres en particulier d'une fonction considéréé par Riemann (French), J. Math. Pure. Appl., 58 (1893), 171–215. |
[13] |
İ. İşcan, Hermite-Hadamard inequalities for harmonically convex functions, Hacet. J. Math. Stat., 43 (2014), 935–942. http://dx.doi.org/10.15672/HJMS.2014437519 doi: 10.15672/HJMS.2014437519
![]() |
[14] |
B. Xi, F. Qi, Some integral inequalities of Hermite-Hadamard type for convex functions with applications to means, J. Funct. Space., 2012 (2012), 980438. http://dx.doi.org/10.1155/2012/980438 doi: 10.1155/2012/980438
![]() |
[15] |
K. Tseng, S. Hwang, S. Dragomir, New Hermite-Hadamard-type inequalities for convex functions (I), Appl. Math. Lett., 25 (2012), 1005–1009. http://dx.doi.org/10.1016/j.aml.2011.11.016 doi: 10.1016/j.aml.2011.11.016
![]() |
[16] |
M. Özdemir, M. Avcı, E. Set, On some inequalities of Hermite-Hadamard type via m-convexity, Appl. Math. Lett., 23 (2010), 1065–1070. http://dx.doi.org/10.1016/j.aml.2010.04.037 doi: 10.1016/j.aml.2010.04.037
![]() |
[17] |
S. Özcan, İ. İşcan, Some new Hermite-Hadamard type inequalities for s-convex functions and their applications, J. Inequal. Appl., 2019 (2019), 201. http://dx.doi.org/10.1186/s13660-019-2151-2 doi: 10.1186/s13660-019-2151-2
![]() |
[18] | G. Anastassiou, Generalised fractional Hermite-Hadamard inequalities involving m-convexity and (s, m)-convexity, Facta Univ.-Ser. Math. Inform., 28 (2013), 107–126. |
[19] |
S. Sahoo, M. Tariq, H. Ahmad, J. Nasir, H. Aydi, A. Mukheimer, New Ostrowski-type fractional integral inequalities via generalized exponential-type convex functions and applications, Symmetry, 13 (2021), 1429. http://dx.doi.org/10.3390/sym13081429 doi: 10.3390/sym13081429
![]() |
[20] |
M. Sarikaya, E. Set, H. Yaldiz, N. Başak, Hermite-Hadamard inequalities for fractional integrals and related fractional inequalities, Math. Comput. Model., 57 (2013), 2403–2407. http://dx.doi.org/10.1016/j.mcm.2011.12.048 doi: 10.1016/j.mcm.2011.12.048
![]() |
[21] |
K. Liu, J. Wang, D. O'Regan, On the Hermite-Hadamard type inequality for ψ-Riemann-Liouville fractional integrals via convex functions, J. Inequal. Appl., 2019 (2019), 27. http://dx.doi.org/10.1186/s13660-019-1982-1 doi: 10.1186/s13660-019-1982-1
![]() |
[22] | İ. Mumcu, E. Set, A. Akdemir, F. Jarad, New extensions of Hermite-Hadamard inequalities via generalized proportional fractional integral, Numer. Meth. Part. D. E., in press. http://dx.doi.org/10.1002/num.22767 |
[23] |
M. Gürbüz, A. Akdemir, S. Rashid, E. Set, Hermite-Hadamard inequality for fractional integrals of Caputo-Fabrizio type and related inequalities, J. Inequl. Appl., 2020 (2020), 172. http://dx.doi.org/10.1186/s13660-020-02438-1 doi: 10.1186/s13660-020-02438-1
![]() |
[24] |
A. Fernandez, P. Mohammed, Hermite-Hadamard inequalities in fractional calculus defined using Mittag-Leffler kernels, Math. Method. Appl. Sci., 44 (2021), 8414–8431. http://dx.doi.org/10.1002/mma.6188 doi: 10.1002/mma.6188
![]() |
[25] |
P. Mohammed, M. Sarikaya, D. Baleanu, On the generalized Hermite-Hadamard inequalities via the tempered fractional integrals, Symmetry, 12 (2020), 595. http://dx.doi.org/10.3390/sym12040595 doi: 10.3390/sym12040595
![]() |
[26] |
S. Sahoo, H. Ahmad, M. Tariq, B. Kodamasingh, H. Aydi, M. De la Sen, Hermite-Hadamard type inequalities involving k-fractional operator for (¯h,m)-convex functions, Symmetry, 13 (2021), 1686. http://dx.doi.org/10.3390/sym13091686 doi: 10.3390/sym13091686
![]() |
[27] |
T. Khan, M. Khan, Hermite-Hadamard inequality for new generalized conformable fractional operators, AIMS Mathematics, 6 (2020), 23–38. http://dx.doi.org/10.3934/math.2021002 doi: 10.3934/math.2021002
![]() |
[28] | A. Kilbas, H. Srivastava, J. Trujillo, Theory and applications of fractional differential equations, Amsterdam: Elsevier, 2006. |
[29] |
M. Sarikaya, H. Yildirim, On Hermite-Hadamard type inequalities for Riemann-Liouville fractional integrals, Miskolc Math. Notes, 17 (2017), 1049–1059. http://dx.doi.org/10.18514/MMN.2017.1197 doi: 10.18514/MMN.2017.1197
![]() |
[30] |
H. Chen, U. Katugampola, Hermite-Hadamard and Hermite-Hadamard-Fejér type inequalities for generalized fractional integrals, J. Math. Anal. Appl., 446 (2017), 1274–1291. http://dx.doi.org/10.1016/j.jmaa.2016.09.018 doi: 10.1016/j.jmaa.2016.09.018
![]() |
[31] |
A. Atangana, D. Baleanu, New fractional derivatices with non-local and non-singular kernel: theory and application to heat transfer model, Therm. Sci., 20 (2016), 763–769. http://dx.doi.org/10.2298/TSCI160111018A doi: 10.2298/TSCI160111018A
![]() |
[32] |
T. Abdeljawad, D. Baleanu, Integration by parts and its applications of a new nonlocal fractional derivative with Mittag-Leffler nonsingular kernel, J. Nonlinear Sci. Appl., 10 (2017), 1098–1107. http://dx.doi.org/10.22436/jnsa.010.03.20 doi: 10.22436/jnsa.010.03.20
![]() |
[33] | A. Kashuri, Hermite-Hadamard type inequalities for the ABK-fractional integrals, J. Comput. Anal. Appl., 29 (2021), 309–326. |
[34] |
H. Ahmad, M. Tariq, S. Sahoo, J. Baili, C. Cesarano, New estimations of Hermite-Hadamard type integral inequalities for special functions, Fractal Fract., 5 (2021), 144. http://dx.doi.org/10.3390/fractalfract5040144 doi: 10.3390/fractalfract5040144
![]() |
[35] |
K. Nikodem, On midpoint convex set-valued functions, Aeq. Math., 33 (1987), 46–56. http://dx.doi.org/10.1007/BF01836150 doi: 10.1007/BF01836150
![]() |
[36] |
P. Mohammed, M. Sarikaya, On generalized fractional integral inequalities for twice differentiable convex functions, J. Comput. Appl. Math., 372 (2020), 112740. http://dx.doi.org/10.1016/j.cam.2020.112740 doi: 10.1016/j.cam.2020.112740
![]() |
[37] |
H. Budak, P. Agarwal, New generalized midpoint type inequalities for fractional integral, Miskolc Math. Notes, 20 (2019), 781–793. http://dx.doi.org/10.18514/MMN.2019.2525 doi: 10.18514/MMN.2019.2525
![]() |
[38] |
J. Sousa, E. Capelas De Oliveira, On the Ψ-Hilfer fractional derivative, Commun. Nonlinear Sci., 60 (2018), 72–91. http://dx.doi.org/10.1016/j.cnsns.2018.01.005 doi: 10.1016/j.cnsns.2018.01.005
![]() |
[39] |
T. Abdeljawad, On conformable fractional calculus, J. Comput. Appl. Math., 279 (2015), 57–66. http://dx.doi.org/10.1016/j.cam.2014.10.016 doi: 10.1016/j.cam.2014.10.016
![]() |
[40] |
T. Abdeljawad, D. Baleanu, On fractional derivatives with exponential kernel and their discrete versions, Rep. Math. Phys., 80 (2017), 11–27. http://dx.doi.org/10.1016/S0034-4877(17)30059-9 doi: 10.1016/S0034-4877(17)30059-9
![]() |
[41] |
U. Katugampola, New approach to a generalized fractional integral, Appl. Math. Comput., 218 (2011), 860–865. http://dx.doi.org/10.1016/j.amc.2011.03.062 doi: 10.1016/j.amc.2011.03.062
![]() |
[42] |
H. Srivastava, Z. Zhang, Y. Wu, Some further refinements and extensions of the Hermite-Hadamard and Jensen inequalities in several variables, Math. Comput. Model., 54 (2001), 2709–2717. http://dx.doi.org/10.1016/j.mcm.2011.06.057 doi: 10.1016/j.mcm.2011.06.057
![]() |
[43] |
S. Butt, S. Yousaf, A. Akdemir, M. Dokuyucu, New Hadamard-type integral inequalities via a general form of fractional integral operators, Chaos Soliton. Fract., 148 (2021), 111025. http://dx.doi.org/10.1016/j.chaos.2021.111025 doi: 10.1016/j.chaos.2021.111025
![]() |
[44] |
S. Butt, E. Set, S. Yousaf, T. Abdeljawad, W. Shatanawi, Generalized integral inequalities for ABK-fractional integral operators, AIMS Mathematics, 6 (2021), 10164–10191. http://dx.doi.org/10.3934/math.2021589 doi: 10.3934/math.2021589
![]() |
[45] |
İ. İşcan, S. Wu, Hermite-Hadamard type inequalities for harmonically convex functions via fractional integrals, Appl. Math. Comput., 238 (2014), 237–244. http://dx.doi.org/10.1016/j.amc.2014.04.020 doi: 10.1016/j.amc.2014.04.020
![]() |
[46] |
S. Özcan, İ. İşcan, Some new Hermite-Hadamard type inequalities for s-convex functions and their applications, J. Inequal. Appl., 2019 (2019), 201. http://dx.doi.org/10.1186/s13660-019-2151-2 doi: 10.1186/s13660-019-2151-2
![]() |
[47] | M. Sababheh, Convex functions and means of matrices, arXiv: 1606.08099v1. http://dx.doi.org/10.48550/arXiv.1606.08099 |
1. | YONGFANG QI, QINGZHI WEN, GUOPING LI, KECHENG XIAO, SHAN WANG, DISCRETE HERMITE–HADAMARD-TYPE INEQUALITIES FOR (s,m)-CONVEX FUNCTION, 2022, 30, 0218-348X, 10.1142/S0218348X22501602 | |
2. | Artion Kashuri, Soubhagya Kumar Sahoo, Bibhakar Kodamasingh, Muhammad Tariq, Ahmed A. Hamoud, Homan Emadifar, Faraidun K. Hamasalh, Nedal M. Mohammed, Masoumeh Khademi, Guotao Wang, Integral Inequalities of Integer and Fractional Orders for n –Polynomial Harmonically t g s –Convex Functions and Their Applications, 2022, 2022, 2314-4785, 1, 10.1155/2022/2493944 | |
3. | Humaira Yasmin, Azzh Saad Alshehry, Abdulkafi Mohammed Saeed, Rasool Shah, Kamsing Nonlaopon, Application of the q-Homotopy Analysis Transform Method to Fractional-Order Kolmogorov and Rosenau–Hyman Models within the Atangana–Baleanu Operator, 2023, 15, 2073-8994, 671, 10.3390/sym15030671 | |
4. | Soubhagya Kumar Sahoo, Bibhakar Kodamasingh, Artion Kashuri, Hassen Aydi, Eskandar Ameer, Ostrowski-type inequalities pertaining to Atangana–Baleanu fractional operators and applications containing special functions, 2022, 2022, 1029-242X, 10.1186/s13660-022-02899-6 | |
5. | Jinbo Ni, Gang Chen, Hudie Dong, Study on Hermite-Hadamard-type inequalities using a new generalized fractional integral operator, 2023, 2023, 1029-242X, 10.1186/s13660-023-02969-3 | |
6. | SA’UD AL-SA’DI, MARIA BIBI, YOUNGSOO SEOL, MUHAMMAD MUDDASSAR, MILNE-TYPE FRACTAL INTEGRAL INEQUALITIES FOR GENERALIZED m-CONVEX MAPPING, 2023, 31, 0218-348X, 10.1142/S0218348X23500810 | |
7. | Azzh Saad Alshehry, Humaira Yasmin, Ali M. Mahnashi, Analyzing fractional PDE system with the Caputo operator and Mohand transform techniques, 2024, 9, 2473-6988, 32157, 10.3934/math.20241544 | |
8. | Artion Kashuri, Yahya Almalki, Ali M. Mahnashi, Soubhagya Kumar Sahoo, New Estimates on Hermite–Hadamard Type Inequalities via Generalized Tempered Fractional Integrals for Convex Functions with Applications, 2023, 7, 2504-3110, 579, 10.3390/fractalfract7080579 | |
9. | Merve Coşkun, Çetin Yildiz, Luminiţa-Ioana Cotîrlă, Novel Estimations of Hadamard-Type Integral Inequalities for Raina’s Fractional Operators, 2024, 8, 2504-3110, 302, 10.3390/fractalfract8050302 |