We introduce the class of ψ-convex functions f:[0,∞)→R, where ψ∈C([0,1]) satisfies ψ≥0 and ψ(0)≠ψ(1). This class includes several types of convex functions introduced in previous works. We first study some properties of such functions. Next, we establish a double Hermite-Hadamard-type inequality involving ψ-convex functions and a Simpson-type inequality for functions f∈C1([0,∞)) such that |f′| is ψ-convex. Our obtained results are new and recover several existing results from the literature.
Citation: Hassen Aydi, Bessem Samet, Manuel De la Sen. On ψ-convex functions and related inequalities[J]. AIMS Mathematics, 2024, 9(5): 11139-11155. doi: 10.3934/math.2024546
[1] | Ping Zhu . Dynamics of the positive almost periodic solution to a class of recruitment delayed model on time scales. AIMS Mathematics, 2023, 8(3): 7292-7309. doi: 10.3934/math.2023367 |
[2] | Yanshou Dong, Junfang Zhao, Xu Miao, Ming Kang . Piecewise pseudo almost periodic solutions of interval general BAM neural networks with mixed time-varying delays and impulsive perturbations. AIMS Mathematics, 2023, 8(9): 21828-21855. doi: 10.3934/math.20231113 |
[3] | Xiaofang Meng, Yongkun Li . Pseudo almost periodic solutions for quaternion-valued high-order Hopfield neural networks with time-varying delays and leakage delays on time scales. AIMS Mathematics, 2021, 6(9): 10070-10091. doi: 10.3934/math.2021585 |
[4] | Shihe Xu, Zuxing Xuan, Fangwei Zhang . Analysis of a free boundary problem for vascularized tumor growth with time delays and almost periodic nutrient supply. AIMS Mathematics, 2024, 9(5): 13291-13312. doi: 10.3934/math.2024648 |
[5] | Ramazan Yazgan . An analysis for a special class of solution of a Duffing system with variable delays. AIMS Mathematics, 2021, 6(10): 11187-11199. doi: 10.3934/math.2021649 |
[6] | Yongkun Li, Xiaoli Huang, Xiaohui Wang . Weyl almost periodic solutions for quaternion-valued shunting inhibitory cellular neural networks with time-varying delays. AIMS Mathematics, 2022, 7(4): 4861-4886. doi: 10.3934/math.2022271 |
[7] | Lini Fang, N'gbo N'gbo, Yonghui Xia . Almost periodic solutions of a discrete Lotka-Volterra model via exponential dichotomy theory. AIMS Mathematics, 2022, 7(3): 3788-3801. doi: 10.3934/math.2022210 |
[8] | Qi Shao, Yongkun Li . Almost periodic solutions for Clifford-valued stochastic shunting inhibitory cellular neural networks with mixed delays. AIMS Mathematics, 2024, 9(5): 13439-13461. doi: 10.3934/math.2024655 |
[9] | Ardak Kashkynbayev, Moldir Koptileuova, Alfarabi Issakhanov, Jinde Cao . Almost periodic solutions of fuzzy shunting inhibitory CNNs with delays. AIMS Mathematics, 2022, 7(7): 11813-11828. doi: 10.3934/math.2022659 |
[10] | Jin Gao, Lihua Dai . Weighted pseudo almost periodic solutions of octonion-valued neural networks with mixed time-varying delays and leakage delays. AIMS Mathematics, 2023, 8(6): 14867-14893. doi: 10.3934/math.2023760 |
We introduce the class of ψ-convex functions f:[0,∞)→R, where ψ∈C([0,1]) satisfies ψ≥0 and ψ(0)≠ψ(1). This class includes several types of convex functions introduced in previous works. We first study some properties of such functions. Next, we establish a double Hermite-Hadamard-type inequality involving ψ-convex functions and a Simpson-type inequality for functions f∈C1([0,∞)) such that |f′| is ψ-convex. Our obtained results are new and recover several existing results from the literature.
Let V be an ℓ-dimensional vector space over a field K of characteristic 0. An arrangement of hyperplanes A is a finite collection of codimension one affine subspaces in V. An arrangement A is called central if every hyperplane H∈A goes through the origin.
Let V∗ be the dual space of V, and S=S(V∗) be the symmetric algebra over V∗. A K-linear map θ:S→S is called a derivation if for f,g∈S,
θ(fg)=fθ(g)+gθ(f). |
Let DerK(S) be the S-module of derivations. When A is central, for each H∈A, choose αH∈V∗ with ker(αH)=H. Define an S-submodule of DerK(S), called the module of A-derivations by
D(A):={θ∈DerK(S)|θ(αH)∈αHSforallH∈A}. |
The arrangement A is called free if D(A) is a free S-module. Then, D(A) has a basis comprising of ℓ homogeneous elements. For an affine arrangement A in V, cA denotes the cone over A [7], which is a central arrangement in an (ℓ+1)-dimensional vector space by adding the new coordinate z.
Let E=Rℓ be an ℓ-dimensional Euclidean space with a coordinate system x1,…,xℓ, and let Φ be a crystallographic irreducible root system in the dual space E∗. Let Φ+ be a positive system of Φ. For α∈Φ+ and k∈Z, define an affine hyperplane Hα,k by
Hα,k:={v∈E∣(α,v)=k}. |
The Shi arrangement Shi(ℓ) was introduced by Shi in the study of the Kazhdan-Lusztig representation theory of the affine Weyl groups in [9] by
Shi(ℓ):={Hα,k∣α∈Φ+,0≤k≤1}, |
when the root system is of type Aℓ−1.
For m∈Z≥0, the extended Shi arrangement Shik of the type Φ is an affine arrangement defined by
Shik:={Hα,k∣α∈Φ+,−m+1≤k≤m}. |
There are a lot of researches on the freeness of the cones over the extended Shi arrangements [1,3,4]. The first breakthrough was the proof of the freeness of multi-Coxeter arrangements with constant multiplicities by Terao in [13]. Combining it with algebro-geometric method, Yoshinaga proved the freeness of the extended Shi arrangements in [15]. Nevertheless, there has been limited progress in constructing their bases, and a universal method for determining these bases remains elusive. For types Aℓ−1, Bℓ, Cℓ, and Dℓ, explicit bases for the cones over the Shi arrangements were constructed in [6,10,11]. Notably, a basis for the extended Shi arrangements of type A2 was established in [2]. Recently, Suyama and Yoshinaga constructed explicit bases for the extended Shi arrangements of type Aℓ−1 using discrete integrals in [12]. Feigin et al. presented integral expressions for specific bases of certain multiarrangements in [5]. In these studies, Suyama and Terao first constructed a basis for the derivation module of the cone over the Shi arrangement, as detailed in [11], with Bernoulli polynomials playing a central role in their approach. The following definitions are pertinent to this result.
For (k1,k2)∈(Z≥0)2, the homogenization polynomial of degree k1+k2+1 is defined by
¯Bk1,k2(x,z):=zk1+k2+1k1∑i=01k2+i+1(k1i){Bk2+i+1(xz)−Bk2+i+1}, |
where Bk(x) denotes the k-th Bernoulli polynomial and Bk(0)=Bk denotes the k-th Bernoulli number. Using this polynomial, the basis for D(cShi(ℓ)) was constructed as follows.
Theorem 1.1. [11, Theorem 3.5] The arrangement cShi(ℓ) is free with the exponents (0,1,ℓℓ−1). The homogeneous derivations
η1:=∂1+∂2+⋯+∂ℓ,η2:=x1∂1+x2∂2+⋯+xℓ∂ℓ+z∂z,ψ(ℓ)j:=(xj−xj+1−z)ℓ∑i=1∑0≤k1≤j−10≤k2≤ℓ−j−1(−1)k1+k2Ij−k1−1[1,j−1]Iℓ−j−k2−1[j+2,ℓ]¯Bk1,k2(xi,z)∂i, |
form a basis for D(cShi(ℓ)), where 1≤j≤ℓ−1 and ∂i(1≤i≤ℓ), ∂z denote ∂∂xi, ∂∂z respectively. Ik[u,v] represents the elementary symmetric function in the variables {xu,xu+1,…,xv} of degree k for 1≤u≤v≤ℓ.
The above conclusion was reached by using Saito's criterion, which is a crucial theorem for determining the basis of a free arrangement.
Theorem 1.2. [8, Saito's criterion] Let A be a central arrangement, and Q(A) be the defining polynomial of A. Given θ1,…,θℓ∈D(A), the following two conditions are equivalent:
(1)detM(θ1,…,θℓ)≐Q(A),
(2)θ1,…,θℓ form a basis for D(A) over S,
where M(θ1,…,θℓ)=(θj(xi))ℓ×ℓ denotes the coefficient matrix, and A≐B means that A=cB, c∈K∖{0}.
This theorem provides a useful tool for determining when a set of derivations forms a basis for the module of derivations associated with a central arrangement.
Let αℓ=(1,…,1)T and βℓ=(x1,…,xℓ)T be the ℓ×1 column vectors, and define ψ(ℓ)i,j:=ψ(ℓ)j(xi) for 1≤i≤ℓ, 1≤j≤ℓ−1. Suyuma and Terao in [11] proved the equality
detM(η1,η2,ψ(ℓ)1,…,ψ(ℓ)ℓ−1)=det(αℓβℓ(ψ(ℓ)i,j)ℓ×(ℓ−1)0z01×(ℓ−1))(ℓ+1)×(ℓ+1)≐z∏1≤m<n≤ℓ(xm−xn)(xm−xn−z), |
which yields
det(αℓ(ψ(ℓ)i,j)ℓ×(ℓ−1))≐∏1≤m<n≤ℓ(xm−xn)(xm−xn−z). | (1.1) |
A graph G=(V,E) is defined as an ordered pair, where the set V={1,2,…,ℓ} represents the vertex set, and E is a collection of two-element subsets of V. If {i,j}∈E for some i,j∈V, then {i,j} is referred to as an edge. Writing {i,j}∈G implies {i,j}∈E. Let U⊆V, and define E(U)={{i,j}∣i,j∈U,{i,j}∈E}. We say U induces a subgraph GU=(U,E(U)). Specifically, we use the symbol KU for the induced subgraph of the complete graph Kℓ. For i<j, the interval notation [i,j] represents {i,i+1,…,j}.
For a graph G on the vertex set {1,2,…,ℓ}, the arrangement Shi(G) was defined in [14] by
Shi(G):={{xm−xn=0}|{m,n}∈G}∪{{xm−xn=1}|1≤m<n≤ℓ}. |
Then, Shi(G) is an arrangement between the Linial arrangement
{{xm−xn=1}∣1≤m<n≤ℓ}, |
and the Shi arrangement Shi(ℓ). Write A(G):=cShi(G). It was classified to be free according to the following theorem.
Theorem 1.3. [14, Theorem 3] The arrangement A(G) is free if and only if G consists of all edges of three complete induced subgraphs G[1,s],G[t,ℓ],G[2,ℓ−1], where 1≤s≤ℓ, t≤s+1. The free arrangement A(G) has exponents (0,1,(ℓ−1)ℓ+t−s−2,ℓs−t+1) for s<ℓ and t>1, and (0,1,ℓℓ−1) for s=ℓ or t=1.
For s,t∈Z+, we may define the arrangement
A[s,t]:=A(K[2,ℓ−1])∪{{x1−xn=0}∣2≤n≤s≤ℓ}∪{{xm−xℓ=0}∣1≤t≤m≤ℓ−1}. |
By Theorem 1.3, for 1≤s≤ℓ and t≤s+1, the arrangement A[s,t] is free with exponents (0,1,(ℓ−1)ℓ+t−s−2,ℓs−t+1) for s<ℓ and t>1, and (0,1,ℓℓ−1) for s=ℓ or t=1.
For 0≤q≤ℓ−2, we write A[q]:=A[ℓ−1,ℓ−q], then A[q] is free with exponents (0,1,(ℓ−1)ℓ−q−1,ℓq).
In this section, based on the conclusions of Suyama and Terao, we provide an explicit construction of the basis for D(A[q]), 0≤q≤ℓ−2. First, we shall establish a basis for D(A[0]), which is the ingredient of the basis for D(A[q]).
Theorem 2.1. For 1≤j≤ℓ−2, define homogeneous derivations
φ(0)j:=(xj−xj+1−z)ℓ∑i=1∑0≤k1≤j−10≤k2≤ℓ−j−2(−1)k1+k2Ij−k1−1[1,j−1]Iℓ−j−k2−2[j+2,ℓ−1]¯Bk1,k2(yi,z)∂i,φ(0)ℓ−1:=ℓ−1∏s=1(xs−xℓ−z)∂ℓ∈D(A[0]), |
where
yi={xi,1≤i≤ℓ−1,xℓ+z,i=ℓ. |
Then, the derivations η1,η2,φ(0)1,…,φ(0)ℓ−1 form a basis for D(A[0]).
Proof. Write φ(0)i,j:=φ(0)j(xi),1≤i≤ℓ,1≤j≤ℓ−1, and from the definitions of φ(0)j and ψ(ℓ)j, we can get
φ(0)i,j=ψ(ℓ−1)i,j, | (2.1) |
for 1≤i≤ℓ−1, 1≤j≤ℓ−2. Consequently, for 1≤m<n≤ℓ−1, it follows that φ(0)j(xm−xn) is divisible by xm−xn, and φ(0)j(xm−xn−z) is divisible by xm−xn−z. For 1≤m≤ℓ−1, let the congruence notation (m,k)≡ in the subsequent calculation denote modulo the ideal (xm−xℓ−kz). We derive
φ(0)j(xm−xℓ−z)=(xj−xj+1−z)∑0≤k1≤j−10≤k2≤ℓ−j−2(−1)k1+k2Ij−k1−1[1,j−1]Iℓ−j−k2−2[j+2,ℓ−1][¯Bk1,k2(xm,z)−¯Bk1,k2(xℓ+z,z)](m,1)≡0, |
which implies that φ(0)j(xm−xℓ−z) is divisible by xm−xℓ−z. Thus, φ(0)j∈D(A[0]) for 1≤j≤ℓ−2. Therefore, we have η1,η2,φ(0)1,…,φ(0)ℓ−1∈D(A[0]). Additionally, we obtain
detM(η1,η2,φ(0)1,…,φ(0)ℓ−1)=(−1)ℓ+1zdet(1φ(0)1,1⋯φ(0)1,ℓ−20⋮⋮⋱⋮⋮1φ(0)ℓ−1,1⋯φ(0)ℓ−1,ℓ−201φ(0)ℓ,1⋯φ(0)ℓ,ℓ−2ℓ−1∏s=1(xs−xℓ−z))ℓ×ℓ=(−1)ℓ+1zℓ−1∏s=1(xs−xℓ−z)det(1φ(0)1,1⋯φ(0)1,ℓ−2⋮⋮⋱⋮1φ(0)ℓ−1,1⋯φ(0)ℓ−1,ℓ−2)(ℓ−1)×(ℓ−1)=(−1)ℓ+1zℓ−1∏s=1(xs−xℓ−z)det(αℓ−1(φ(0)i,j)(1≤i≤ℓ−1,1≤j≤ℓ−2))(ℓ−1)×(ℓ−1). |
According to the equalities (1.1) and (2.1), we have
det(αℓ−1(φ(0)i,j)(1≤i≤ℓ−1,1≤j≤ℓ−2))≐∏1≤m<n≤ℓ−1(xm−xn)(xm−xn−z). |
Hence, we obtain
detM(η1,η2,φ(0)1,…,φ(0)ℓ−1).=zℓ−1∏s=1(xs−xℓ−z)∏1≤m<n≤ℓ−1(xm−xn)(xm−xn−z)=z∏1≤m<n≤ℓ−1(xm−xn)∏1≤m<n≤ℓ(xm−xn−z)=Q(A[0]). |
By applying Theorem 1.2, we conclude that the derivations η1,η2,φ(0)1,…,φ(0)ℓ−1 form a basis for D(A[0]).
Definition 2.1. For 1≤q≤ℓ−2, 1≤j≤ℓ−1, define the homogeneous derivations
φ(q)j:={φ(0)j,1≤j≤ℓ−q−2,(xj+1−xℓ)φ(0)j−(xj−xj+1−z)j−1∑a=ℓ−q−1φ(0)a,ℓ−q−1≤j≤ℓ−3,φ(0)j+1+j∑a=ℓ−q−1(ℓ−a−1)φ(0)a,j=ℓ−2,(xj−xℓ)φ(0)j+(xj−xj+1−z)j−2∑a=ℓ−q−1(ℓ−a−2)φ(0)a,j=ℓ−1. |
To prove the derivations η1,η2,φ(q)1,…,φ(q)ℓ−1 form a basis for D(A[q]), first we prove all such derivations belong to the module D(A[q]).
Theorem 2.2. For 1≤m≤ℓ−1, 1≤j≤ℓ−2, we have
φ(0)j(xm−xℓ)(m,0)≡(−z)(xj−xj+1−z)j−1∏s=1(xs−xm−z)ℓ−1∏s=j+2(xs−xm). | (2.2) |
Proof. We have the following congruence relation of polynomials modulo the ideal (xm−xℓ).
φ(0)j(xm−xℓ)=(xj−xj+1−z)∑0≤k1≤j−10≤k2≤ℓ−j−2(−1)k1+k2Ij−k1−1[1,j−1]Iℓ−j−k2−2[j+2,ℓ−1][¯Bk1,k2(xm,z)−¯Bk1,k2(xℓ+z,z)](m,0)≡(xj−xj+1−z)∑0≤k1≤j−10≤k2≤ℓ−j−2(−1)k1+k2+1Ij−k1−1[1,j−1]Iℓ−j−k2−2[j+2,ℓ−1][¯Bk1,k2(xm+z,z)−¯Bk1,k2(xm,z)]=(xj−xj+1−z)∑0≤k1≤j−10≤k2≤ℓ−j−2(−1)k1+k2+1Ij−k1−1[1,j−1]Iℓ−j−k2−2[j+2,ℓ−1]zk1+k2+1(xm+zz)k1(xmz)k2=(−z)(xj−xj+1−z)j−1∑k1=0Ij−k1−1[1,j−1][−(xm+z)]k1ℓ−j−2∑k2=0Iℓ−j−k2−2[j+2,ℓ−1](−xm)k2=(−z)(xj−xj+1−z)j−1∏s=1(xs−xm−z)ℓ−1∏s=j+2(xs−xm). |
We complete the proof.
Remark 2.1 In equality (2.2), we observe that ℓ−1∏s=j+2(xs−xm)=0 for j+2≤m≤ℓ−1. This implies that φ(0)j(xm−xℓ) is divisible by xm−xℓ for 1≤j≤ℓ−3 and j+2≤m≤ℓ−1.
According to Remark 2.1, for 1≤j≤ℓ−q−2, we have φ(0)j(xm−xℓ) is divisible by xm−xℓ for ℓ−q≤m≤ℓ−1, which implies that φ(q)j=φ(0)j∈D(A[q]). Therefore, to prove the derivations belong to the module D(A[q]), it suffices to prove φ(q)j∈D(A[q]) for ℓ−q−1≤j≤ℓ−1.
For the sake of convenience in the proof, let us introduce the notations for f,g,h∈Z+,
A[g,h]f:=h∏s=g(xs−xf),B[g,h]f:=h∏s=g(xs−xf−z). |
If g>h, we agree that A[g,h]f=B[g,h]f=1.
Lemma 2.1. For any u,v,w∈Z+ that satisfy 4≤ℓ−j+1≤u≤ℓ−2, 3≤v≤ℓ−2, and 3≤w≤ℓ−2, we have the following three equalities:
B[ℓ−u,j−1]ℓ−u−1=A[ℓ−u+1,j]ℓ−u−1+j−1∑a=ℓ−u(xa−xa+1−z)A[a+2,j]ℓ−u−1B[ℓ−u,a−1]ℓ−u−1. | (2.3) |
B[ℓ−v,ℓ−1]ℓ−v−1=(v+1)A[ℓ−v,ℓ−1]ℓ−v−1+ℓ−2∑a=ℓ−v−1(ℓ−a−1)(xa−xa+1−z)A[a+2,ℓ−1]ℓ−v−1B[ℓ−v−1,a−1]ℓ−v−1. | (2.4) |
B[ℓ−w,ℓ−2]ℓ−w−1=wA[ℓ−w,ℓ−2]ℓ−w−1+ℓ−3∑a=ℓ−w−1(ℓ−a−2)(xa−xa+1−z)A[a+2,ℓ−2]ℓ−w−1B[ℓ−w−1,a−1]ℓ−w−1. | (2.5) |
Proof. We will only prove equality (2.5) by induction on w. The proofs of equalities (2.3) and (2.4) are similar. For w=3,
3A[ℓ−3,ℓ−2]ℓ−4+ℓ−3∑a=ℓ−4(ℓ−a−2)(xa−xa+1−z)A[a+2,ℓ−2]ℓ−4B[ℓ−4,a−1]ℓ−4=3(xℓ−3−xℓ−4)(xℓ−2−xℓ−4)+2(xℓ−4−xℓ−3−z)(xℓ−2−xℓ−4)+(xℓ−3−xℓ−2−z)(−z)=(xℓ−3−xℓ−4−z)(xℓ−2−xℓ−4−z)=B[ℓ−3,ℓ−2]ℓ−4, |
and the equality holds. Assume that for w=k≤ℓ−3, the equality holds. Then, we replace xℓ−k−1 with xℓ−k−2, and multiply both sides of the equality by (xℓ−k−1−xℓ−k−2−z) to get
B[ℓ−k−1,ℓ−2]ℓ−k−2=(k−1)(xℓ−k−2−xℓ−k−z)(xℓ−k−1−xℓ−k−2−z)A[ℓ−k+1,ℓ−2]ℓ−k−2+k(xℓ−k−1−xℓ−k−2−z)A[ℓ−k,ℓ−2]ℓ−k−2+ℓ−3∑a=ℓ−k(ℓ−a−2)(xa−xa+1−z)A[a+2,ℓ−2]ℓ−k−2B[ℓ−k−2,a−1]ℓ−k−2=(k+1)A[ℓ−k−1,ℓ−2]ℓ−k−2+ℓ−3∑a=ℓ−k−2(ℓ−a−2)(xa−xa+1−z)A[a+2,ℓ−2]ℓ−k−2B[ℓ−k−2,a−1]ℓ−k−2. |
We have completed the induction.
Lemma 2.2. The derivation φ(q)j belongs to the module D(A[q]) for 2≤q≤ℓ−2 and ℓ−q−1≤j≤ℓ−3.
Proof. For 2≤q≤ℓ−2 and j=ℓ−q−1, it is evident from Remark 2.1 that
φ(q)ℓ−q−1=(xℓ−q−xℓ)φ(0)ℓ−q−1∈D(A[q]). |
For 3≤q≤ℓ−2 and ℓ−q≤j≤ℓ−3, we will establish this by induction on q. From Theorem 2.2, for ℓ−q≤m≤ℓ−1, we have
φ(q)j(xm−xℓ)=(xj+1−xℓ)φ(0)j(xm−xℓ)−(xj−xj+1−z)j−1∑a=ℓ−q−1φ(0)a(xm−xℓ)(m,0)≡(−z)(xj−xj+1−z)A[j+1,ℓ−1]mB[1,ℓ−q−2]m[B[ℓ−q−1,j−1]m−j−1∑a=ℓ−q−1(xa−xa+1−z)A[a+2,j]mB[ℓ−q−1,a−1]m]. |
(1) For q=3, we get
φ(3)ℓ−3(xm−xℓ)(m,0)≡(−z)(xℓ−3−xℓ−2−z)A[ℓ−2,ℓ−1]mB[1,ℓ−5]m(xℓ−3−xm). |
If m=ℓ−3,ℓ−2,ℓ−1, then we have φ(3)ℓ−3(xm−xℓ)(m,0)≡0, which indicates that φ(3)ℓ−3(xm−xℓ) is divisible by xm−xℓ for m=ℓ−3,ℓ−2,ℓ−1. Therefore, φ(3)j∈D(A[3]).
(2) For q=k≤ℓ−3, assume that φ(k)j∈D(A[k]), which implies that φ(k)j(xm−xℓ) is divisible by xm−xℓ for ℓ−k≤m≤ℓ−1.
For q=k+1, we observe that
φ(k+1)j=φ(k)j−(xj−xj+1−z)φ(0)ℓ−k−2. |
According to the induction hypothesis and Remark 2.1, it is sufficient to prove that φ(k+1)j(xℓ−k−1−xℓ) is divisible by xℓ−k−1−xℓ. By using the equality (2.3), we obtain
φ(k+1)j(xℓ−k−1−xℓ)(ℓ−k−1,0)≡(−z)(xj−xj+1−z)A[j+1,ℓ−1]ℓ−k−1B[1,ℓ−k−3]ℓ−k−1[B[ℓ−k−2,j−1]ℓ−k−1−j−1∑a=ℓ−k−2(xa−xa+1−z)A[a+2,j]ℓ−k−1B[ℓ−k−2,a−1]ℓ−k−1]=(−z)2(xj−xj+1−z)A[j+1,ℓ−1]ℓ−k−1B[1,ℓ−k−2]ℓ−k−1[B[ℓ−k,j−1]ℓ−k−1−A[ℓ−k+1,j]ℓ−k−1−j−1∑a=ℓ−k(xa−xa+1−z)A[a+2,j]ℓ−k−1B[ℓ−k,a−1]ℓ−k−1]=0. |
Therefore, φ(k+1)j(xℓ−k−1−xℓ) is divisible by xℓ−k−1−xℓ, and it follows that φ(k+1)j∈D(A[k+1]). Consequently, we can conclude that for any 3≤q≤ℓ−2 and ℓ−q≤j≤ℓ−3, φ(q)j∈D(A[q]).
Lemma 2.3. The derivation φ(q)ℓ−2 belongs to the module D(A[q]) for 1≤q≤ℓ−2.
Proof. From Theorem 2.2, we can get the following equality for ℓ−q≤m≤ℓ−1,
φ(q)ℓ−2(xm−xℓ)=φ(0)ℓ−1(xm−xℓ)+ℓ−2∑a=ℓ−q−1(ℓ−a−1)φ(0)a(xm−xℓ)(m,0)≡−B[1,ℓ−1]m+(−z)ℓ−2∑a=ℓ−q−1(ℓ−a−1)(xa−xa+1−z)A[a+2,ℓ−1]mB[1,a−1]m. |
(1) For q=1,2, this conclusion is straightforward to verify.
(2) For q=k≤ℓ−3, assume that φ(k)ℓ−2∈D(A[k]), which implies that φ(k)ℓ−2(xm−xℓ) is divisible by xm−xℓ for ℓ−k≤m≤ℓ−1.
For q=k+1, we have
φ(k+1)ℓ−2=φ(k)ℓ−2+(k+1)φ(0)ℓ−k−2. |
By using the equality (2.4), we have
φ(k+1)ℓ−2(xℓ−k−1−xℓ)(ℓ−k−1,0)≡−B[1,ℓ−1]ℓ−k−1+(−z)ℓ−2∑a=ℓ−k−2(ℓ−a−1)(xa−xa+1−z)A[a+2,ℓ−1]ℓ−k−1B[1,a−1]ℓ−k−1=B[1,ℓ−k−1]ℓ−k−1[−B[ℓ−k,ℓ−1]ℓ−k−1+(k+1)A[ℓ−k,ℓ−1]ℓ−k−1+ℓ−2∑a=ℓ−k−1(ℓ−a−1)(xa−xa+1−z)A[a+2,ℓ−1]ℓ−k−1B[ℓ−k−1,a−1]ℓ−k−1]=0. |
Therefore, φ(k+1)ℓ−2(xℓ−k−1−xℓ) is divisible by xℓ−k−1−xℓ. According to the induction hypothesis and Remark 2.1, we have φ(k+1)ℓ−2∈D(A[k+1]). Hence, we may conclude that for any 1≤q≤ℓ−2, φ(q)ℓ−2∈D(A[q]).
Lemma 2.4. The derivation φ(q)ℓ−1 belongs to the module D(A[q]) for 1≤q≤ℓ−2.
Proof. First, from Theorem 2.2, for ℓ−q≤m≤ℓ−1, we can get
φ(q)ℓ−1(xm−xℓ)=(xℓ−1−xℓ)φ(0)ℓ−1(xm−xℓ)+(xℓ−1−xℓ−z)ℓ−3∑a=ℓ−q−1(ℓ−a−2)φ(0)a(xm−xℓ)(m,0)≡−(xℓ−1−xm)B[1,ℓ−1]m+(−z)(xℓ−1−xm−z)ℓ−3∑a=ℓ−q−1(ℓ−a−2)(xa−xa+1−z)A[a+2,ℓ−1]mB[1,a−1]m. |
(1) For q=1,2, it is obvious that φ(q)ℓ−1∈D(A[q]).
(2) For q=k≤ℓ−3, assume that φ(k)ℓ−1∈D(A[k]), which implies that φ(k)ℓ−1(xm−xℓ) is divisible by xm−xℓ for ℓ−k≤m≤ℓ−1.
For q=k+1, we can see
φ(k+1)ℓ−1=φ(k)ℓ−1+k(xℓ−1−xℓ−z)φ(0)ℓ−k−2. |
By using the equality (2.5), we have
φ(k+1)ℓ−1(xℓ−k−1−xℓ)(ℓ−k−1,0)≡−(xℓ−1−xℓ−k−1)B[1,ℓ−1]ℓ−k−1+(−z)(xℓ−1−xℓ−k−1−z)ℓ−3∑a=ℓ−k−2(ℓ−a−2)(xa−xa+1−z)A[a+2,ℓ−1]ℓ−k−1B[1,a−1]ℓ−k−1=(xℓ−1−xℓ−k−1)(xℓ−1−xℓ−k−1−z)B[1,ℓ−k−1]ℓ−k−1[−B[ℓ−k,ℓ−2]ℓ−k−1+kA[ℓ−k,ℓ−2]ℓ−k−1+ℓ−3∑a=ℓ−k−1(ℓ−a−2)(xa−xa+1−z)A[a+2,ℓ−2]ℓ−k−1B[ℓ−k−1,a−1]ℓ−k−1]=0. |
Therefore, φ(k+1)ℓ−1(xℓ−k−1−xℓ) is divisible by xℓ−k−1−xℓ. According to the induction hypothesis and Remark 2.1, we have φ(k+1)ℓ−1∈D(A[k+1]). Hence, we may conclude that for any 1≤q≤ℓ−2, φ(q)ℓ−1∈D(A[q]).
From the above proof, we finally conclude that φ(q)1,…,φ(q)ℓ−1 belong to the module D(A[q]).
Theorem 2.3. For 1≤q≤ℓ−2, the derivations η1,η2,φ(q)1,…,φ(q)ℓ−1 form a basis for D(A[q]).
Proof. According to Lemmas 2.2–2.4, it suffices to prove that
detM(η1,η2,φ(q)1,⋯,φ(q)ℓ−1)≐Q(A[q]). |
Let
γ1=(q,q−1,…,1,1)T |
and
γ2=((q−1)(xℓ−1−xℓ−z),(q−2)(xℓ−1−xℓ−z),…,xℓ−1−xℓ−z,0,xℓ−1−xℓ)T |
be the (q+1)×1 column vectors, and define a matrix
M(q+1)×(q−1):=(xℓ−q−xℓ−(xℓ−q−xℓ−q+1−z)⋯−(xℓ−3−xℓ−2−z)0xℓ−q+1−xℓ⋯−(xℓ−3−xℓ−2−z)⋮⋮⋱⋮00⋯xℓ−2−xℓ00⋯000⋯0). |
Write ˜M(q+1)×(q+1):=(M(q+1)×(q−1),γ1,γ2), then
det˜M(q+1)×(q+1)=ℓ−1∏s=ℓ−q(xs−xℓ). |
Thus, we obtain the following equality
(η1,η2,φ(q)1,⋯,φ(q)ℓ−1)(ℓ+1)×(ℓ+1)=(η1,η2,φ(0)1,⋯,φ(0)ℓ−1)(Eℓ−q0(ℓ−q)×(q+1)0(q+1)×(ℓ−q)˜M(q+1)×(q+1)). |
Hence,
detM(η1,η2,φ(q)1,⋯,φ(q)ℓ−1)=detM(η1,η2,φ(0)1,⋯,φ(0)ℓ−1)det˜M(q+1)×(q+1).=z∏1≤m<n≤ℓ−1(xm−xn)∏1≤m<n≤ℓ(xm−xn−z)ℓ−1∏s=ℓ−q(xs−xℓ)=Q(A[q]). |
We complete the proof.
Meihui Jiang: writing-original draft; Ruimei Gao: writing-review and editing, methodology and supervision. All authors have read and approved the final version of the manuscript for publication.
The authors declare they have used Artificial Intelligence (AI) tools in the creation of this article.
The work was partially supported by Science and Technology Development Plan Project of Jilin Province, China (No. 20230101186JC) and NSF of China (No. 11501051).
The authors declare no conflict of interest in this paper.
[1] | J. M. Borwein, J. D. Vanderwerff, Convex functions: Constructions, characterizations and counterexamples, Cambridge University Press, Cambridge, 2010. |
[2] | R. Correa, A. Hantoute, M. A. López, Fundamentals of convex analysis and optimization, Springer, Cham, Switzerland, 2023 |
[3] | J. R. Giles, Convex analysis with application in the differentiation of convex functions, Pitman Publ., Boston-London-Melbourne, 1982. |
[4] | C. P. Niculescu, L. E. Persson, Convex functions and their applications: A contemporary approach, Springer-Verlag, New York, 2006. |
[5] | J. E. Pečarić, F. Proschan, Y. L. Tong, Convex functions, partial orderings, and statistical applications, Academic Press, Boston, 1992. |
[6] | R. R. Phelps, Convex functions, monotone operators and differentiability, 2 Eds., Springer-Verlag, New York, 1993. |
[7] | A. W. Roberts, D. E. Varberg, Convex functions, Academic Press, New York, 1973. |
[8] | J. Hadamard, Étude sur les propriétés des fonctions entières et en particulier d'une fonction considérée par Riemann, J. Math. Pure. Appl., 58 (1893), 171–215. |
[9] | C. Hermite, Sur deux limites d'une intégrale défine, Mathesis, 3 (1983), 1–82. |
[10] | S. S. Dragomir, C. E. M. Pearce, Selected topics on Hermite-Hadamard inequalities and applications, RGMIA Monographs, Victoria University, Melbourne, 2000. |
[11] |
S. S. Dragomir, New inequalities of Hermite-Hadamard type for log convex functions, Khayyam J. Math., 3 (2017), 98–15. https://doi.org/10.22034/KJM.2017.47458 doi: 10.22034/KJM.2017.47458
![]() |
[12] |
B. Y. Xi, F. Qi, Some integral inequalities of Hermite-Hadamard type for s-logarithmically convex functions, Acta Math. Sci. Ser. A (Chin. Ed.), 35 (2015), 515–524. https://doi.org/10.13140/RG.2.1.4385.9044 doi: 10.13140/RG.2.1.4385.9044
![]() |
[13] |
S. S. Dragomir, B. T. Torebek, Some Hermite-Hadamard type inequalities in the class of hyperbolic p-convex functions, Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Mat., 113 (2019), 3413–3423. https://doi.org/10.1007/s13398-019-00708-2 doi: 10.1007/s13398-019-00708-2
![]() |
[14] |
M. Z. Sarikaya, M. E. Kiris, Some new inequalities of Hermite-Hadamard type for s-convex functions, Miskolc Math. Notes, 16 (2015), 491–501. https://doi.org/10.18514/MMN.2015.1099 doi: 10.18514/MMN.2015.1099
![]() |
[15] |
S. S. Dragomir, On the Hadamard's inequality for convex functions on the co-ordinates in a rectangle from the plane, Taiwan. J. Math., 5 (2001), 775–788. https://doi.org/10.11650/twjm/1500574995 doi: 10.11650/twjm/1500574995
![]() |
[16] |
B. Samet, On an implicit convexity concept and some integral inequalities, J. Inequal. Appl., 2016 (2016), 308. https://doi.org/10.1186/s13660-016-1253-3 doi: 10.1186/s13660-016-1253-3
![]() |
[17] |
P. O. Mohammed, M. Z. Sarikaya, Hermite-Hadamard type inequalities for F-convex function involving fractional integrals, J. Inequal. Appl., 2018 (2018), 359. https://doi.org/10.1186/s13660-018-1950-1 doi: 10.1186/s13660-018-1950-1
![]() |
[18] |
H. Kalsoom, M. A. Latif, Z. A. Khan, M. Vivas-Cortez, Some new Hermite-Hadamard-Fejér fractional type inequalities for h-convex and harmonically h-convex interval-valued functions, Mathematics, 10 (2021), 74. https://doi.org/10.3390/math10010074 doi: 10.3390/math10010074
![]() |
[19] | S. S. Dragomir, On some new inequalities of Hermite-Hadamard type for m-convex functions, Tamkang J. Math., 3 (2002), 45–55. |
[20] |
H. Kadakal, (m1,m2)-convexity and some new Hermite-Hadamard type inequalities, Int. J. Math. Model. Comput., 9 (2019), 297–309. https://doi.org/10.13140/2.1.2919.7126 doi: 10.13140/2.1.2919.7126
![]() |
[21] |
M. K. Bakula, M. E. Özdemir, J. Pečarić, Hadamard-type inequalities for m-convex and (α,m)-convex functions, J. Inequal. Pure Appl. Math., 9 (2007), 96. https://doi.org/10.1186/s13660-020-02442-5 doi: 10.1186/s13660-020-02442-5
![]() |
[22] |
H. Kadakal, (α,m1,m2)-convexity and some inequalities of Hermite-Hadamard type, Commun. Fac. Sci. Univ. Ank. Ser. Math. Stat., 68 (2019), 2128–2142. https://doi.org/10.31801/cfsuasmas.511184 doi: 10.31801/cfsuasmas.511184
![]() |
[23] |
S. Qaisar, C. He, S. Hussain, A generalization of Simpson's type inequality for differentiable functions using (α,m)-convex functions and applications, J. Inequal. Appl., 2013 (2013), 1–13. https://doi.org/10.1186/1029-242X-2013-158 doi: 10.1186/1029-242X-2013-158
![]() |
[24] | M. Alomari, M. Darus, On some inequalities of Simpson-type via quasi-convex functions and applications, Transylv. J. Math. Mech., 2 (2010), 15–24. |
[25] | S. S. Dragomir, On Simpson's quadrature formula for mappings of bounded variation and applications, Tamkang J. Math., 30 (1999), 53–58. |
[26] |
V. N. Huy, Q. A. Ngô, New inequalities of Simpson-like type involving n knots and the mth derivative, Math. Comput. Model., 52 (2010), 522–528. https://doi.org/10.1016/j.mcm.2010.03.049 doi: 10.1016/j.mcm.2010.03.049
![]() |
[27] |
Z. Liu, An inequality of Simpson type, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 461 (2005), 2155–2158. https://doi.org/10.1098/rspa.2005.1505 doi: 10.1098/rspa.2005.1505
![]() |
[28] | Z. Liu, Some sharp modified Simpson type inequalities and applications, Vietnam J. Math., 39 (2011), 135–144. |
[29] | G. Toader, Some generalizations of the convexity, In: Proceedings of the Colloquium on Approximation and Optimization (Cluj-Napoca, 1985), Univ. Cluj-Napoca, Cluj, 1985,329–338. |
[30] | V. G. Miheşan, A generalization of the convexity, Seminar on Functional Equations, Approx. Convex, Cluj-Napoca, Romania, 1993. |
[31] |
T. Lara, J. Matkowski, N. Merentes, R. Quintero, M. Wróbel, A generalization of m-convexity and a sandwich theorem, Ann. Math. Silesianae, 31 (2017), 107–126. https://doi.org/10.1515/amsil-2017-0003 doi: 10.1515/amsil-2017-0003
![]() |