In this work, we prove several new (γ,a)-nabla Bennett and Leindler dynamic inequalities on time scales. The results proved here generalize some known dynamic inequalities on time scales, unify and extend some continuous inequalities and their corresponding discrete analogues. Our results will be proved by using integration by parts, chain rule and Hölder inequality for the (γ,a)-nabla-fractional derivative on time scales.
Citation: Ahmed A. El-Deeb, Samer D. Makharesh, Sameh S. Askar, Dumitru Baleanu. Bennett-Leindler nabla type inequalities via conformable fractional derivatives on time scales[J]. AIMS Mathematics, 2022, 7(8): 14099-14116. doi: 10.3934/math.2022777
[1] | Ahmed A. El-Deeb, Dumitru Baleanu, Nehad Ali Shah, Ahmed Abdeldaim . On some dynamic inequalities of Hilbert's-type on time scales. AIMS Mathematics, 2023, 8(2): 3378-3402. doi: 10.3934/math.2023174 |
[2] | Ahmed A. El-Deeb, Osama Moaaz, Dumitru Baleanu, Sameh S. Askar . A variety of dynamic $ \alpha $-conformable Steffensen-type inequality on a time scale measure space. AIMS Mathematics, 2022, 7(6): 11382-11398. doi: 10.3934/math.2022635 |
[3] | Elkhateeb S. Aly, Y. A. Madani, F. Gassem, A. I. Saied, H. M. Rezk, Wael W. Mohammed . Some dynamic Hardy-type inequalities with negative parameters on time scales nabla calculus. AIMS Mathematics, 2024, 9(2): 5147-5170. doi: 10.3934/math.2024250 |
[4] | Jian-Mei Shen, Saima Rashid, Muhammad Aslam Noor, Rehana Ashraf, Yu-Ming Chu . Certain novel estimates within fractional calculus theory on time scales. AIMS Mathematics, 2020, 5(6): 6073-6086. doi: 10.3934/math.2020390 |
[5] | Mohammed S. El-Khatib, Atta A. K. Abu Hany, Mohammed M. Matar, Manar A. Alqudah, Thabet Abdeljawad . On Cerone's and Bellman's generalization of Steffensen's integral inequality via conformable sense. AIMS Mathematics, 2023, 8(1): 2062-2082. doi: 10.3934/math.2023106 |
[6] | Awais Younus, Khizra Bukhsh, Manar A. Alqudah, Thabet Abdeljawad . Generalized exponential function and initial value problem for conformable dynamic equations. AIMS Mathematics, 2022, 7(7): 12050-12076. doi: 10.3934/math.2022670 |
[7] | Marwa M. Ahmed, Wael S. Hassanein, Marwa Sh. Elsayed, Dumitru Baleanu, Ahmed A. El-Deeb . On Hardy-Hilbert-type inequalities with $ \alpha $-fractional derivatives. AIMS Mathematics, 2023, 8(9): 22097-22111. doi: 10.3934/math.20231126 |
[8] | Ahmed A. El-Deeb, Inho Hwang, Choonkil Park, Omar Bazighifan . Some new dynamic Steffensen-type inequalities on a general time scale measure space. AIMS Mathematics, 2022, 7(3): 4326-4337. doi: 10.3934/math.2022240 |
[9] | Bingxian Wang, Mei Xu . Asymptotic behavior of some differential inequalities with mixed delays on time scales and their applications. AIMS Mathematics, 2024, 9(6): 16453-16467. doi: 10.3934/math.2024797 |
[10] | M. Zakarya, Ghada AlNemer, A. I. Saied, H. M. Rezk . Novel generalized inequalities involving a general Hardy operator with multiple variables and general kernels on time scales. AIMS Mathematics, 2024, 9(8): 21414-21432. doi: 10.3934/math.20241040 |
In this work, we prove several new (γ,a)-nabla Bennett and Leindler dynamic inequalities on time scales. The results proved here generalize some known dynamic inequalities on time scales, unify and extend some continuous inequalities and their corresponding discrete analogues. Our results will be proved by using integration by parts, chain rule and Hölder inequality for the (γ,a)-nabla-fractional derivative on time scales.
In [13], Hardy presented the discrete version.
Theorem 1.1. If {r(n)}∞n=0 is a nonnegative real sequence and l>1, then
∞∑n=1(1nn∑m=1r(m))l≤(ll−1)l∞∑n=1rl(n). | (1.1) |
Also, Hardy [14] gave the continuous version of (1.1).
Theorem 1.2. Let r⩾0 be a continuous over [0,∞) and l>1. Then
∫∞0(1x∫x0r(s)ds)ldx≤(ll−1)l∫∞0rl(x)dx. | (1.2) |
Copson [6] obtained a new version of inequality (1.1) by replacing the arithmetic mean of a sequence by a weighted arithmetic mean in the following manner: Let b(m)⩾0, η(m)⩾0 for all m. If l>1, c>1, then
∞∑m=1η(m)[¯ξ(m)]c(m∑j=1b(j)η(j))l⩽(lc−1)l∞∑m=1η(m)[¯ξ(m)]l−cbl(m), | (1.3) |
where ¯ξ(m)=∑mj=1η(j), and if 0⩽c<1<l, then
∞∑m=1η(m)[¯ξ(m)]c(∞∑j=1b(j)η(j))l⩽(l1−c)l∞∑m=1η(m)[¯ξ(m)]l−cbl(m). | (1.4) |
The reverse versions of the inequalities (1.3) and (1.4), which have been derived by Bennett and Leindler [4,17], can be deduced for ¯ξ(m)→∞, b(m)⩾0 and η(m)⩾0 for all m that if 0<l<1<c, then
∞∑m=1η(m)[¯ξ(m)]c(m∑j=1b(j)η(j))l⩾(lLc−1)l∞∑m=1η(m)[¯ξ(m)]l−cbl(m), | (1.5) |
where L=inf¯ξ(m)¯ξ(m+1), and if c⩽0<l<1, then
∞∑m=1η(m)[¯ξ(m)]c(∞∑j=1b(j)η(j))l⩾(l1−c)l∞∑m=1η(m)[¯ξ(m)]l−cbl(m), | (1.6) |
respectively. Copson [7] gave the continuous version of the inequalities (1.5) and (1.6), respectively, as follows: Let η and f be nonnegative functions and ¯ξ(℘)=∫℘0η(ϱ)dϱ, B(℘)=∫℘0η(ϱ)f(ϱ)dϱ, ¯B(℘)=∫∞℘η(ϱ)f(ϱ)dϱ. If 0<l⩽1<c, a>0 then
∫∞aη(℘)[¯ξ(℘)]c[B(℘)]ldt⩾(pc−1)l∫∞aη(℘)[¯ξ(℘)]l−cfl(℘)dt, | (1.7) |
and if 0<l<1, c<1 then
∫∞aη(℘)[¯ξ(℘)]c[¯B(℘)]ldt⩾(l1−c)l∫∞aη(℘)[¯ξ(℘)]l−cfl(℘)dt. | (1.8) |
For further results on Hardy inequalities and other types see [1,2,3,5,8,9,10,12,15,18,19,20,21,23,24,25,26,27]. In [20] the author proved the time scales version of (1.1) and (1.2).
∫∞a(∫σ(℘)aη(ϱ)Δϱσ(℘)−a)lΔ℘<(ll−1)l∫∞aηl(℘)Δ℘, | (1.9) |
unless η≡0.
In [11] El-Deeb et al. extended (1.9)
∫∞a˜λ(ς)˘Ψp(ς)˜Λˆγ(ς)Δς≥pˆγ−1∫∞a˜λ(ς)˜Λp−ˆγ(ς)υp(ς)Δς, | (1.10) |
where
˘Ψ(ς)=∫ςa˜λ(υ)υ(ϱ)Δυ,and˜Λ(ς)=∫ςa˜λ(υ)Δυ. |
In 2021 Kayar et al. [16], established the time scale version unification of discrete and continuous Bennett-Leindler inequalities (1.5) and (1.7) as following theorem.
Theorem 1.3. Let λ, f be nonnegative, ld-continuous, ∇-differentiable and ∇-integrable functions on [a,∞)T where a∈[0,∞)T. Define
¯ξ(℘)=∫℘aλ(ϱ)∇ϱB(℘)=∫℘aλ(ϱ)f(ϱ)∇ϱ. |
If L=inf℘∈T¯ξρ(℘)¯ξ(℘)>0, 0<p<1 and c⩾1, then
∫∞aλ(℘)[¯ξc(℘)][B(℘)]p∇℘⩾(pLcc−1)p∫∞aλ(℘)fp(℘)(¯ξ(℘))c−p∇℘. | (1.11) |
Lately, Zakarya et al. proved an α-conformable version of Hardy inequalities [22].
Theorem 1.4. Assume that T is a time scale with ω∈(0,∞)T. Let λ and ξ be rd-continuous and α-fractional differentiable functions on [ω,∞)T. Define
χ(℘)=∫∞tλ(ϱ)Δαϱ and Θ(℘)=∫℘ωλ(ϱ)ξ(ϱ)Δαϱ. |
Then, for k⩽0<h<1, and α∈(0,1], we have that
∫∞ωλ(℘)χk−α+1(℘)(Θσ(℘))hΔα℘⩾(hα−k)h∫∞ωλ(℘)ξh(℘)χh−k+α−1(℘)Δα℘. |
We will need the following chain rule for γ-nabla derivative, integration by parts for γ-nabla derivative [29] and generalized γ-nabla Hölder fractional inequality on timescales [28] respectively
∇γa(ϖ∘ξ)(℘)=ϖ′(ξ(c))∇γa(ξ(℘)). | (1.12) |
∫bdϖ(℘)[∇γaξ(℘)]∇γa℘=[ϖ(℘)ξ(℘)]bd−∫bd[∇γaϖ(℘)]ξρ(℘)∇γa℘. | (1.13) |
∫bd|ϖ(℘)ξ(℘)|∇γa℘≤(∫bd|ϖ(℘)|p∇γa℘)1/p(∫bd|ξ(℘)|q∇γa℘)1/q, | (1.14) |
where 1p+1q=1 and 0<γ≤1. Now, we start to state our main results.
We focus in this section, on investigating corresponding results for γ-nabla conformable time scales.
Theorem 2.1. Let T be a time scale with r∈[0,∞)T, γ∈(0,1] and ℘⩾a. In addition, let ℷ and λ be nonnegative ld-continuous and (γ,a)-nabla fractional differentiable functions on [r,∞)T where
Ω(℘)=∫∞℘λ(ϱ)∇γaϱandΨ(℘)=∫℘rλ(ϱ)ℷ(ϱ)∇γaϱ,℘∈[r,∞)T. |
If 0<p<γ and c⩽γ−1, then
∫∞rλ(℘)[Ωρ(℘)]c−γ+1[Ψ(℘)]p−γ+1∇γa℘⩾(p−γ+1)γ−c)p∫∞rλ(℘)ℷp(℘)[Ψ(℘)]1−γ(Ωρ(℘))c−p−γ+1∇γa℘. | (2.1) |
Proof. Using (1.13), with
∇γaη(℘)=λ(℘)/[Ωρ(℘)]c−γ+1,ξ(℘)=[Ψ(℘)]p−γ+1, |
we have
∫∞rλ(℘)[Ωρ(℘)]c−γ+1[Ψ(℘)]p−α+1∇γa℘=[η(℘)Ψp−α+1(℘)]∞r+∫∞r(−ηρ(℘))∇γa(Ψp−γ+1(℘))∇γa℘, |
where we assumed that
η(℘)=−∫∞℘λ(℘)/Ωc−γ+1(℘)∇γaϱ. | (2.2) |
Using Ψ(r)=0 and η(∞)=0, we get
∫∞rλ(℘)[Ωρ(℘)]c−γ+1[Ψ(℘)]p−γ+1∇γa℘=∫∞r−ηρ(℘)∇γa(Ψp−γ+1(℘))∇γa℘. | (2.3) |
Applying (1.12), then there exists d∈[℘,ρ(℘)] such that
∇γa(Ψp−γ+1(℘))=p−γ+1Ψγ−p(d)∇γaΨ(℘)⩾(p−γ+1)λ(℘)ℷ(℘)Ψγ−p(℘). | (2.4) |
Next note ∇γaΩ(℘)=−λ(℘)⩽0. By chain rule, we see that
∇γa(Ω(℘))γ−c=(γ−c)∫10∇γaΩ(℘)dh[hΩ(℘)+(1−h)Ωρ(℘)]c−α+1=−(γ−c)∫10λ(℘)dh[hΩ(℘)+(1−h)Ωρ(℘)]c−γ+1⩾−(γ−c)∫10λ(℘)dh[hΩρ(℘)+(1−h)Ωρ(℘)]c−γ+1=−(γ−c)λ(℘)[Ωρ(℘)]c−γ+1. |
This implies that
λ(℘)[Ωρ(℘)]c−γ+1⩾−1γ−c∇γa(Ω(℘))γ−c, | (2.5) |
and then, we have that
−ηρ(℘)=∫∞ρ(℘)λ(ϱ)[Ωρ(ϱ)]c−γ+1∇γaϱ⩾−1γ−c∫∞ρ(℘)∇γa(Ω(ϱ))γ−c∇γaϱ=1(γ−c)(Ωρ(℘))c−γ. | (2.6) |
Using (2.4) and (2.6) in (2.3) yields
(∫∞rλ(℘)[Ωρ(℘)]c−γ+1[Ψ(℘)]p−γ+1∇γa℘)p⩾(p−γ+1)γ−c)p(∫∞r[λp(℘)ℷp(℘)(Ψ(℘))p(γ−p)(Ωρ(℘))p(c−γ)]1p∇γa℘)p. | (2.7) |
Applying Hölder inequality on the term
(∫∞r[λp(℘)ℷp(℘)(Ψ(℘))p(γ−p)(Ωρ(℘))p(γ−c)]1p∇γa℘)p, |
with indices 1/p and 1/1−p and
F(℘)=λp(℘)ℷp(℘)(Ψ(℘))p(γ−p)(Ωρ(℘))p(c−γ)andℷ(℘)=(λ(℘)[Ωρ(℘)]c−γ+1)1−p[Ψ(℘)](1−p)(p−γ+1) |
(∫∞rF1/p(℘)∇γa℘)p=(∫∞r[λp(℘)ℷp(℘)(Ψ(℘))p(γ−p)(Ωρ(℘))p(c−γ)]1p∇γa℘)p⩾∫∞rF(℘)ℷ(℘)∇γa℘(∫∞rℷ11−p(℘)∇γa℘)p−1=[∫∞rλp(℘)(λ(℘)[Ωρ(℘)]γ−c−1)1−pℷp(℘)[Ψ(℘)](1−p)(p−γ+1)(Ψ(℘))p(α−p)(Ωρ(℘))p(c−α)∇γa℘]×(∫∞rλ(℘)[Ωρ(℘)]c−α+1[Ψ(℘)]p−γ+1∇γa℘)p−1=(∫∞aλ(℘)ℷp(℘)[Ψ(℘)]1−γ(Ωρ(℘))c−p−γ+1∇γa℘)(∫∞rλ(℘)[Ωρ(℘)]c−γ+1[Ψ(℘)]p−γ+1∇γa℘)p−1. | (2.8) |
From (2.8) and (2.7) yields
(∫∞rλ(℘)[Ωρ(℘)]c−γ+1[Ψ(℘)]p−γ+1∇γa℘)p⩾(p−γ+1)γ−c)p(∫∞rλ(℘)ℷp(℘)[Ψ(℘)]1−γ(Ωρ(℘))c−p−γ+1∇γa℘)(∫∞rλ(℘)[Ωρ(℘)]c−γ+1[Ψ(℘)]p−γ+1∇γa℘)p−1. | (2.9) |
Therefore,
∫∞rλ(℘)[Ωρ(℘)]c−γ+1[Ψ(℘)]p−γ+1∇γa℘⩾(p−γ+1)γ−c)p∫∞rλ(℘)ℷp(℘)[Ψ(℘)]1−γ(Ωρ(℘))c−p−γ+1∇γa℘. |
Remark 2.1. In Theorem 2, if we take γ=1 then inequality (2.1) reduces to
∫∞rλ(℘)Ψp(℘)(Ωρ(℘))c∇℘⩾(p1−c)p∫∞rλ(℘)ℷp(℘)(Ωρ(℘))c∇℘, |
where
Ψ(℘)=∫℘rλ(ϱ)ℷ(ϱ)∇ϱandΩ(℘)=∫∞℘λ(ϱ)∇ϱ, |
which is Theorem 3.1 in [16].
Corollary 2.1. From Theorem 2, assume T=R, then (2.1) obtains
∫∞rλ(℘)Ψp−γ+1(℘)(Ω(℘))c−γ+1(℘−a)γ−1d℘⩾(p−γ+1γ−c)p∫∞rλ(℘)ℷp(℘)Ψ1−γ(℘)(Ω(℘))c−γ+1(℘−a)γ−1dt, |
where
Ψ(℘)=∫℘rλ(ϱ)ℷ(ϱ)(℘−a)γ−1dϱandΩ(℘)=∫∞℘λ(ϱ)(℘−a)γ−1ds. |
Corollary 2.2. From Theorem 2, assume T=hZ, then (2.1) get
∞∑℘=rhλ(h℘)Ψp−γ+1(h℘)Ωc−γ+1(h℘−h)(ργ−1(h℘)−a)(γ−1)h⩾(p−γ+1γ−c)p∞∑℘=rhλ(h℘)ℷp(h℘)Ψ1−γ(℘)Ωc−γ+1(h℘−h)(ργ−1(h℘)−a)(γ−1)h, |
where
Ψ(℘)=h℘∑ϱ=℘hλ(hϱ)ℷ(hϱ)(ργ−1(hϱ)−a)(γ−1)handΩ(℘)=h∞∑ϱ=℘hλ(hϱ)(ργ−1(hϱ)−a)(γ−1)h. |
Corollary 2.3. From Corollary 2, assumer T=Z and h=1, then (2.1) obtains
∞∑℘=rλ(℘)Ψp−γ+1(h℘)Ωc−γ+1(℘−1)(ργ−1(℘)−a)(γ−1)⩾(p−γ+1γ−c)p∞∑℘=rλ(℘)ℷp(℘)Ψ1−γ(℘)Ωc−γ+1(℘−1)(ργ−1(℘)−a)(γ−1), |
where
Ψ(℘)=℘∑ϱ=rλ(ϱ)ℷ(ϱ)(ργ−1(hϱ)−a)(γ−1)andΩ(℘)=h∞∑ϱ=℘λ(hϱ)(ργ−1(hϱ)−a)(γ−1). |
Corollary 2.4. From Theorem 2, assume T=qN0, then (2.10) obtains
∑℘∈(r,∞)℘(ργ−1(℘)−a)(γ−1)˜qλ(℘)Ψp−γ+1(℘)Ωc−γ+1(ρ(℘))⩾(p−γ+1γ−c)p∑℘∈(r,∞)℘(ργ−1(℘)−a)(γ−1)˜qλ(℘)ℷp(℘)Ψ1−γ(℘)Ωc−γ+1(ρ(℘)), |
where
Ψ(℘)=(˜q−1)∑ϱ∈(r,℘)ϱλ(ϱ)ℷ(ϱ)(ργ−1(ϱ)−a)(γ−1)˜qandΩ(℘)=(˜q−1)∑ϱ∈(℘,∞)ϱλ(ϱ)(ργ−1(ϱ)−a)(γ−1)˜q. |
Theorem 2.2. Let T be a time scale with r∈[0,∞)T, γ∈(0,1] and ℘⩾a. In addition, let ℷ and λ be nonnegative ld-continuous and (γ,a)-nabla fractional differentiable functions on [r,∞)T where
Ω(℘)=∫∞℘λ(ϱ)∇γaϱand¯Ψ(℘)=∫∞℘λ(ϱ)ℷ(ϱ)∇γaϱ,℘∈[r,∞)T. |
If 0<p<γ and c⩾γ, then
∫∞rλ(℘)[Ωρ(℘)]c−γ+1[¯Ψρ(℘)]p−γ+1∇γa℘⩾(p−γ+1)γ−c)p∫∞rλ(℘)ℷp(℘)[¯Ψρ(℘)]1−γ(Ωρ(℘))c−p−γ+1∇γa℘. | (2.10) |
Proof. Using (1.13), with
∇γaη(℘)=λ(℘)/[Ωρ(℘)]c−γ+1,ξ(℘)=[¯Ψ(℘)]p−γ+1, |
we have
∫∞rλ(℘)[Ωρ(℘)]c−γ+1[¯Ψρ(℘)]p−α+1∇γa℘=[η(℘)¯Ψp−α+1(℘)]∞r+∫∞r(η(℘))∇γa(−¯Ψp−γ+1(℘))∇γa℘, |
where we assumed that
η(℘)=∫℘rλ(℘)/[Ωρ(℘)]c−γ+1∇γaϱ. |
Using ¯Ψ(∞)=0 and η(r)=0, we get
∫∞rλ(℘)[Ωρ(℘)]c−γ+1[¯Ψρ(℘)]p−γ+1∇γa℘=∫∞rη(℘)∇γa(−¯Ψp−γ+1(℘))∇γa℘. | (2.11) |
Applying (1.12), then there exists d∈[℘,ρ(℘)] such that
∇γa(−¯Ψp−γ+1(℘))=−p−γ+1Ψγ−p(d)∇γaΨ(℘)⩾(p−γ+1)λ(℘)ℷ(℘)¯Ψργ−p(℘). | (2.12) |
Next note ∇γaΩ(℘)=−λ(℘)⩽0. By chain rule, we see that
∇γa(Ω(℘))γ−c=(γ−c)∫10∇γaΩ(℘)dh[hΩ(℘)+(1−h)Ωρ(℘)]c−α+1=(c−γ)∫10λ(℘)dh[hΩ(℘)+(1−h)Ωρ(℘)]c−γ+1⩾(c−γ)∫10λ(℘)dh[hΩρ(℘)+(1−h)Ωρ(℘)]c−γ+1=(c−γ)λ(℘)[Ωρ(℘)]c−γ+1. |
This implies that
−λ(℘)[Ωρ(℘)]c−γ+1⩾−1c−γ∇γa(Ω(℘))γ−c, | (2.13) |
and thus, we get
η(℘)=∫℘rλ(ϱ)[Ωρ(ϱ)]c−γ+1∇γaϱ=∫∞rλ(ϱ)[Ωρ(ϱ)]c−γ+1∇γaϱ−∫∞℘λ(ϱ)[Ωρ(ϱ)]c−γ+1∇γaϱ⩾−∫∞℘λ(ϱ)[Ωρ(ϱ)]c−γ+1∇γaϱ=−1c−γ∫∞℘∇γa(Ω(ϱ))γ−c∇γaϱ=1(c−γ)(Ωρ(℘))γ−c. | (2.14) |
Substituting (2.13), (2.14) into (2.11) obtains
(∫∞rλ(℘)[Ωρ(℘)]c−γ+1[¯Ψρ(℘)]p−γ+1∇γa℘)p⩾(p−γ+1)c−γ)p(∫∞r[λp(℘)ℷp(℘)(¯Ψρ(℘))p(γ−p)(Ωρ(℘))p(c−γ)]1p∇γa℘)p. | (2.15) |
Applying Hölder inequality on the term
(∫∞r[λp(℘)ℷp(℘)(¯Ψρ(℘))p(γ−p)(Ωρ(℘))p(γ−c)]1p∇γa℘)p, |
with indices 1/p and 1/1−p and
F(℘)=λp(℘)ℷp(℘)(¯Ψρ(℘))p(γ−p)(Ωρ(℘))p(c−γ)andℷ(℘)=(λ(℘)[Ωρ(℘)]c−γ+1)1−p[¯Ψρ(℘)](1−p)(p−γ+1) |
(∫∞rF1/p(℘)∇γa℘)p=(∫∞r[λp(℘)ℷp(℘)(Ψ(℘))p(γ−p)(Ωρ(℘))p(c−γ)]1p∇γa℘)p⩾∫∞rF(℘)ℷ(℘)∇γa℘(∫∞rℷ11−p(℘)∇γa℘)p−1=[∫∞rλp(℘)(λ(℘)[Ωρ(℘)]γ−c−1)1−pℷp(℘)[¯Ψρ(℘)](1−p)(p−γ+1)(¯Ψρ(℘))p(α−p)(Ωρ(℘))p(c−α)∇γa℘]×(∫∞rλ(℘)[Ωρ(℘)]c−α+1[¯Ψρ(℘)]p−γ+1∇γa℘)p−1=(∫∞rλ(℘)ℷp(℘)[¯Ψρ(℘)]1−γ(Ωρ(℘))c−p−γ+1∇γa℘)(∫∞rλ(℘)[Ωρ(℘)]c−γ+1[¯Ψρ(℘)]p−γ+1∇γa℘)p−1. | (2.16) |
Substituting (2.16) into (2.15) yields
(∫∞rλ(℘)[Ωρ(℘)]c−γ+1[¯Ψρ(℘)]p−γ+1∇γa℘)p⩾(p−γ+1)c−γ)p(∫∞rλ(℘)ℷp(℘)[¯Ψρ(℘)]1−γ(Ωρ(℘))c−p−γ+1∇γa℘)(∫∞rλ(℘)[Ωρ(℘)]c−γ+1[¯Ψρ(℘)]p−γ+1∇γa℘)p−1. | (2.17) |
Therefore,
∫∞rλ(℘)[Ωρ(℘)]c−γ+1[¯Ψρ(℘)]p−γ+1∇γa℘⩾(p−γ+1)c−γ)p∫∞rλ(℘)ℷp(℘)[¯Ψρ(℘)]1−γ(Ωρ(℘))c−p−γ+1∇γa℘. |
Remark 2.2. In Theorem 2, if we take γ=1 then inequality (2.10) reduces to
∫∞rλ(℘)¯Ψp(℘)(Ωρ(℘))c∇℘⩾(pc−1)p∫∞rλ(℘)ℷp(℘)(Ωρ(℘))c−p∇℘, |
where
¯Ψ(℘)=∫∞℘λ(ϱ)ℷ(ϱ)∇ϱandΩ(℘)=∫∞℘λ(ϱ)∇ϱ, |
which is Theorem 3.4 in [16].
Corollary 2.5. From Theorem 2, assume T=R, then (2.10) gets
∫∞rλ(℘)Ψp−γ+1(℘)(Ω(℘))c−γ+1(℘−a)γ−1d℘⩾(p−γ+1c−γ)p∫∞rλ(℘)ℷp(℘)Ψ1−γ(℘)(Ω(℘))c−p−γ+1(℘−a)γ−1dt, |
where
¯Ψ(℘)=∫∞℘λ(ϱ)ℷ(ϱ)(℘−a)γ−1dϱandΩ(℘)=∫∞℘λ(ϱ)(℘−a)γ−1ds. |
Corollary 2.6. From Theorem 2, assume T=hZ, then (2.10) gets
∞∑℘=rhλ(h℘)¯Ψp−γ+1(h℘)Ωc−γ+1(h℘−h)(ργ−1(h℘)−a)(γ−1)h⩾(p−γ+1c−γ)p∞∑℘=rhλ(h℘)ℷp(h℘)¯Ψ1−γ(℘)Ωc−p−γ+1(h℘−h)(ργ−1(h℘)−a)(γ−1)h, |
where
¯Ψ(℘)=h∞∑ϱ=℘hλ(hϱ)ℷ(hϱ)(ργ−1(hϱ)−a)(γ−1)handΩ(℘)=h∞∑ϱ=℘hλ(hϱ)(ργ−1(hϱ)−a)(γ−1)h. |
Corollary 2.7. From Corollary 2, assume T=Z, and h=1, then (2.10) obtains
∞∑℘=rλ(℘)¯Ψp−γ+1(h℘)Ωc−p−γ+1(℘−1)(ργ−1(℘)−a)(γ−1)⩾(p−γ+1c−γ)p∞∑℘=rλ(℘)ℷp(℘)¯Ψ1−γ(℘)Ωc−p−γ+1(℘−1)(ργ−1(℘)−a)(γ−1), |
where
¯Ψ(℘)=∞∑ϱ=℘λ(ϱ)ℷ(ϱ)(ργ−1(hϱ)−a)(γ−1)andΩ(℘)=h∞∑ϱ=℘λ(hϱ)(ργ−1(hϱ)−a)(γ−1). |
Corollary 2.8. From Theorem 2, assume T=qN0, then (2.10) obtains
∑℘∈(r,∞)℘(ργ−1(℘)−a)(γ−1)˜qλ(℘)¯Ψp−γ+1(℘)Ωc−γ+1(ρ(℘))⩾(p−γ+1c−γ)p∑℘∈(r,∞)℘(ργ−1(℘)−a)(γ−1)˜qλ(℘)ℷp(℘)¯Ψ1−γ(℘)Ωc−p−γ+1(ρ(℘)), |
where
¯Ψ(℘)=(˜q−1)∑ϱ∈(℘,∞)ϱλ(ϱ)ℷ(ϱ)(ργ−1(ϱ)−a)(γ−1)˜qandΩ(℘)=(˜q−1)∑ϱ∈(℘,∞)ϱλ(ϱ)(ργ−1(ϱ)−a)(γ−1)˜q. |
Theorem 2.3. Let T be a time scale with r∈[0,∞)T, γ∈(0,1] and ℘⩾a. In addition, let ℷ and λ be nonnegative ld-continuous and (γ,a)-nabla fractional differentiable functions on [r,∞)T where
¯Ω(℘)=∫℘rλ(ϱ)∇γaϱand¯Ψ(℘)=∫∞℘λ(ϱ)ℷ(ϱ)∇γaϱ,℘∈[r,∞)T. |
If 0<p<γ and c⩽γ−1, then
∫∞rλ(℘)[¯Ω(℘)]c−γ+1[¯Ψρ(℘)]p−γ+1∇γa℘⩾(p−γ+1)γ−c)p∫∞rλ(℘)ℷp(℘)[¯Ψρ(℘)]1−γ(¯Ω(℘))c−p−γ+1∇γa℘. | (2.18) |
Proof. Using (1.13), with
∇γaη(℘)=λ(℘)/[¯Ω(℘)]c−γ+1,ξ(℘)=[¯Ψ(℘)]p−γ+1, |
we have
∫∞rλ(℘)[¯Ω(℘)]c−γ+1[¯Ψρ(℘)]p−α+1∇γa℘=[η(℘)¯Ψp−α+1(℘)]∞r+∫∞r(−η(℘))∇γa(¯Ψp−γ+1(℘))∇γa℘, |
where we assumed that
η(℘)=∫℘rλ(℘)/[¯Ω(℘)]c−γ+1∇γaϱ. |
Using ¯Ψ(∞)=0 and η(r)=0, we have that
∫∞rλ(℘)[¯Ω(℘)]c−γ+1[¯Ψρ(℘)]p−γ+1∇γa℘=∫∞r−η(℘)∇γa(¯Ψp−γ+1(℘))∇γa℘. | (2.19) |
Applying (1.12), then there exists d∈[℘,ρ(℘)] such that
−∇γa(¯Ψp−γ+1(℘))=−p−γ+1¯Ψγ−p(d)∇γa¯Ψ(℘)⩾(p−γ+1)λ(℘)ℷ(℘)¯Ψργ−p(℘). | (2.20) |
Next note ∇γaΩ(℘)=λ(℘)⩽0. By chain rule, we see that
∇γa(Ω(℘))γ−c=(γ−c)∫10∇γa¯Ω(℘)dh[h¯Ω(℘)+(1−h)¯Ωρ(℘)]c−γ+1=(γ−c)∫10λ(℘)dh[hΩ(℘)+(1−h)Ωρ(℘)]c−γ+1⩽(γ−c)∫10λ(℘)dh[h¯Ω(℘)+(1−h)¯Ω(℘)]c−γ+1=(γ−c)λ(℘)[¯Ω(℘)]c−γ+1. |
This implies that
λ(℘)[¯Ω(℘)]c−γ+1⩾−1γ−c∇γa(¯Ω(℘))γ−c, | (2.21) |
and then, we have that
η(℘)=∫℘rλ(ϱ)[¯Ω(ϱ)]c−γ+1∇γaϱ=∫∞rλ(ϱ)[Ωρ(ϱ)]c−γ+1∇γaϱ−∫∞℘λ(ϱ)[¯Ω(ϱ)]c−γ+1∇γaϱ⩾−∫∞℘λ(ϱ)[¯Ω(ϱ)]c−γ+1∇γaϱ=1γ−c∫∞℘∇γa(Ω(ϱ))γ−c∇γaϱ=1(γ−c)(¯Ω(℘))c−γ. | (2.22) |
Substituting (2.21), (2.22) into (2.19) yields
(∫∞rλ(℘)[¯Ω(℘)]c−γ+1[¯Ψρ(℘)]p−γ+1∇γa℘)p⩾(p−γ+1)c−γ)p(∫∞r[λp(℘)ℷp(℘)(¯Ψρ(℘))p(γ−p)(¯Ω(℘))p(c−γ)]1p∇γa℘)p. | (2.23) |
Applying Hölder inequality on the term
(∫∞r[λp(℘)ℷp(℘)(¯Ψρ(℘))p(γ−p)(¯Ω(℘))p(γ−c)]1p∇γa℘)p, |
with indices 1/p and 1/1−p and
F(℘)=λp(℘)ℷp(℘)(¯Ψρ(℘))p(γ−p)(¯Ω(℘))p(c−γ)andℷ(℘)=(λ(℘)[¯Ω(℘)]c−γ+1)1−p[¯Ψρ(℘)](1−p)(p−γ+1) |
(∫∞rF1/p(℘)∇γa℘)p=(∫∞r[λp(℘)ℷp(℘)(¯Ψρ(℘))p(γ−p)(¯Ω(℘))p(c−γ)]1p∇γa℘)p⩾∫∞rF(℘)ℷ(℘)∇γa℘(∫∞rℷ11−p(℘)∇γa℘)p−1=[∫∞rλp(℘)(λ(℘)[¯Ω(℘)]γ−c−1)1−pℷp(℘)[¯Ψρ(℘)](1−p)(p−γ+1)(¯Ψρ(℘))p(α−p)(¯Ω(℘))p(c−α)∇γa℘]×(∫∞rλ(℘)[¯Ω(℘)]c−α+1[¯Ψρ(℘)]p−γ+1∇γa℘)p−1=(∫∞rλ(℘)ℷp(℘)[¯Ψρ(℘)]1−γ(¯Ω(℘))c−p−γ+1∇γa℘)(∫∞rλ(℘)[¯Ω(℘)]c−γ+1[¯Ψρ(℘)]p−γ+1∇γa℘)p−1. | (2.24) |
From (2.24) and (2.23) gets
(∫∞rλ(℘)[¯Ω(℘)]c−γ+1[¯Ψρ(℘)]p−γ+1∇γa℘)p⩾(p−γ+1)c−γ)p(∫∞rλ(℘)ℷp(℘)[¯Ψρ(℘)]1−γ(¯Ω(℘))c−p−γ+1∇γa℘)(∫∞rλ(℘)[¯Ω(℘)]c−γ+1[¯Ψρ(℘)]p−γ+1∇γa℘)p−1. | (2.25) |
Therefore,
∫∞rλ(℘)[¯Ω(℘)]c−γ+1[¯Ψρ(℘)]p−γ+1∇γa℘⩾(p−γ+1)γ−c)p∫∞rλ(℘)ℷp(℘)[¯Ψρ(℘)]1−γ(¯Ω(℘))c−p−γ+1∇γa℘. |
Remark 2.3. In Theorem 2, if we take γ=1 then inequality (2.18) reduces to
∫∞rλ(℘)[¯Ψρ(℘)]p(¯Ω(℘))c∇℘⩾(p1−c)p∫∞rλ(℘)ℷp(℘)(¯Ω(℘))c−p∇℘, |
where
¯Ψ(℘)=∫∞℘λ(ϱ)ℷ(ϱ)∇ϱand¯Ω(℘)=∫℘rλ(ϱ)∇ϱ, |
which is Theorem 3.9 in [16].
Corollary 2.9. From Theorem 2, assume T=R, then (2.18) gets
∫∞rλ(℘)¯Ψp−γ+1(℘)(¯Ω(℘))c−γ+1(℘−a)γ−1d℘⩾(p−γ+1γ−c)p∫∞rλ(℘)ℷp(℘)¯Ψ1−γ(℘)(¯Ω(℘))c−p−γ+1(℘−a)γ−1dt, |
where
¯Ψ(℘)=∫∞℘λ(ϱ)ℷ(ϱ)(℘−a)γ−1dϱand¯Ω(℘)=∫℘rλ(ϱ)(℘−a)γ−1ds. |
Remark 2.4. In Corollary 2, if we take γ=1 yields discrete Bennett-Leindler type inequality (1.8).
Corollary 2.10. From Theorem 2, assume T=hZ, then (2.18) gets
∞∑℘=rhλ(h℘)¯Ψp−γ+1(h℘−h)¯Ωc−γ+1(h℘)(ργ−1(h℘)−a)(γ−1)h⩾(p−γ+1γ−c)p∞∑℘=rhλ(h℘)ℷp(h℘)¯Ψ1−γ(℘)¯Ωc−p−γ+1(h℘)(ργ−1(h℘)−a)(γ−1)h, |
where
¯Ψ(℘)=h∞∑ϱ=℘hλ(hϱ)ℷ(hϱ)(ργ−1(hϱ)−a)(γ−1)hand¯Ω(℘)=h℘∑ϱ=rhλ(hϱ)(ργ−1(hϱ)−a)(γ−1)h. |
Corollary 2.11. For T=Z, we take h=1 in Corollary 2. In this case, inequality (2.18) reduces to
∞∑℘=rλ(℘)¯Ψp−γ+1(℘−1)¯Ωc−γ+1(℘)(ργ−1(℘)−a)(γ−1)⩾(p−γ+1γ−c)p∞∑℘=rλ(℘)ℷp(℘)¯Ψ1−γ(℘)¯Ωc−p−γ+1(℘)(ργ−1(℘)−a)(γ−1), |
where
¯Ψ(℘)=∞∑ϱ=℘λ(ϱ)ℷ(ϱ)(ργ−1(hϱ)−a)(γ−1)and¯Ω(℘)=h℘∑ϱ=rλ(hϱ)(ργ−1(hϱ)−a)(γ−1). |
Remark 2.5. In Corollary 2, if we take γ=1 and r=1, yields discrete Bennett-Leindler type inequality (1.6), which is the converse of Copson inequality (1.4).
Corollary 2.12. From Theorem 2, assume T=qN0, then (2.18) gets
∑℘∈(r,∞)℘(ργ−1(℘)−a)(γ−1)˜qλ(℘)¯Ψp−γ+1(ρ(℘))¯Ωc−γ+1(℘)⩾(p−γ+1γ−c)p∑℘∈(r,∞)℘(ργ−1(℘)−a)(γ−1)˜qλ(℘)ℷp(℘)¯Ψ1−γ(℘)¯Ωc−p−γ+1(℘), |
where
¯Ψ(℘)=(˜q−1)∑ϱ∈(℘,∞)ϱλ(ϱ)ℷ(ϱ)(ργ−1(ϱ)−a)(γ−1)˜qand¯Ω(℘)=(˜q−1)∑ϱ∈(r,℘)ϱλ(ϱ)(ργ−1(ϱ)−a)(γ−1)˜q. |
Theorem 2.4. Let T be a time scale with r∈[0,∞)T, γ∈(0,1] and ℘⩾a. In addition, let ℷ and λ be nonnegative ld-continuous and (γ,a)-nabla fractional differentiable functions on [r,∞)T where
¯Ω(℘)=∫℘rλ(ϱ)∇γaϱ,¯Ω(∞)=∞,Ψ(℘)=∫℘rλ(ϱ)ℷ(ϱ)∇γaϱ,℘∈[r,∞)T. |
If L=inf℘∈T¯Ωρ(℘)¯Ω(℘)>0, 0<p<γ and c⩾γ, then
∫∞rλ(℘)[¯Ω(℘)]c−γ+1[Ψ(℘)]p−γ+1∇γa℘⩾((p−γ+1)Lc−γ+1c−γ)p∫∞rλ(℘)ℷp(℘)[Ψ(℘)]1−γ(¯Ω(℘))c−p−γ+1∇γa℘. | (2.26) |
Proof. Using (1.13), with
∇γaη(℘)=λ(℘)/[¯Ω(℘)]c−γ+1,ξ(℘)=[Ψ(℘)]p−γ+1, |
we have
∫∞rλ(℘)[¯Ω(℘)]c−γ+1[Ψ(℘)]p−α+1∇γa℘=[η(℘)Ψp−α+1(℘)]∞r+∫∞r(−ηρ(℘))∇γa(Ψp−γ+1(℘))∇γa℘, |
where we assumed that
η(℘)=−∫∞℘λ(℘)/[¯Ω(℘)]c−γ+1∇γaϱ. |
Using Ψ(r)=0 and η(∞)=0, we have that
∫∞rλ(℘)[¯Ω(℘)]c−γ+1[Ψ(℘)]p−γ+1∇γa℘=∫∞r−ηρ(℘)∇γa(Ψp−γ+1(℘))∇γa℘. | (2.27) |
Applying (1.12), then there exists d∈[℘,ρ(℘)] such that
∇γa(Ψp−γ+1(℘))=p−γ+1Ψγ−p(d)∇γaΨ(℘)⩾(p−γ+1)λ(℘)ℷ(℘)Ψγ−p(℘). | (2.28) |
Next note ∇γa¯Ω(℘)=λ(℘)⩽0. By chain rule, we see that
∇γa(¯Ω(℘))γ−c=(γ−c)∫10∇γa¯Ω(℘)dh[h¯Ω(℘)+(1−h)¯Ωρ(℘)]c−γ+1=−(c−γ)∫10λ(℘)dh[h¯Ω(℘)+(1−h)¯Ωρ(℘)]c−γ+1⩾−(c−γ)∫10λ(℘)dh[h¯Ωρ(℘)+(1−h)¯Ωρ(℘)]c−γ+1=−(c−γ)λ(℘)[¯Ωρ(℘)]c−γ+1=−(γ−c)λ(℘)[¯Ωρ(℘)]c−γ+1[¯Ω(℘)]c−γ+1[¯Ω(℘)]c−γ+1⩾−(c−γ)λ(℘)Lc−γ+1[¯Ω(℘)]c−γ+1. |
This implies that
λ(℘)[¯Ω(℘)]c−γ+1⩾−Lc−γ+1c−γ∇γa(¯Ω(℘))γ−c | (2.29) |
and then, we have that
−ηρ(℘)=∫∞ρ(℘)λ(ϱ)[¯Ω(ϱ)]c−γ+1∇γaϱ⩾−∫∞ρ(℘)Lc−γ+1c−γ∇γa(¯Ω(℘))γ−c∇γaϱ=Lc−γ+1c−γ{(¯Ωρ(℘))γ−c−(¯Ω(∞))γ−c}=Lc−γ+1c−γ(¯Ωρ(℘))γ−c⩾Lc−γ+1c−γ(¯Ω(℘))γ−c. | (2.30) |
Substituting (2.30), (2.28) into (2.27) yields
(∫∞rλ(℘)[¯Ω(℘)]c−γ+1[Ψ(℘)]p−γ+1∇γa℘)p⩾(p−γ+1)Lc−γ+1c−γ)p(∫∞r[λp(℘)ℷp(℘)(Ψ(℘))p(γ−p)(¯Ω(℘))p(c−γ)]1p∇γa℘)p. | (2.31) |
Applying Hölder inequality on the term
(∫∞r[λp(℘)ℷp(℘)(Ψ(℘))p(γ−p)(¯Ω(℘))p(γ−c)]1p∇γa℘)p, |
with indices 1/p and 1/1−p and
F(℘)=λp(℘)ℷp(℘)(Ψ(℘))p(γ−p)(¯Ω(℘))p(c−γ)andℷ(℘)=(λ(℘)[¯Ω(℘)]c−γ+1)1−p[Ψ(℘)](1−p)(p−γ+1) |
(∫∞rF1/p(℘)∇γa℘)p=(∫∞r[λp(℘)ℷp(℘)(Ψ(℘))p(γ−p)(¯Ω(℘))p(c−γ)]1p∇γa℘)p⩾∫∞rF(℘)ℷ(℘)∇γa℘(∫∞rℷ11−p(℘)∇γa℘)p−1=[∫∞rλp(℘)(λ(℘)[¯Ω(℘)]γ−c−1)1−pℷp(℘)[Ψ(℘)](1−p)(p−γ+1)(Ψ(℘))p(α−p)(¯Ω(℘))p(c−α)∇γa℘]×(∫∞rλ(℘)[¯Ω(℘)]c−α+1[Ψ(℘)]p−γ+1∇γa℘)p−1=(∫∞rλ(℘)ℷp(℘)[¯Ψρ(℘)]1−γ(¯Ω(℘))c−p−γ+1∇γa℘)(∫∞rλ(℘)[¯Ω(℘)]c−γ+1[Ψ(℘)]p−γ+1∇γa℘)p−1. | (2.32) |
From (2.32) and (2.31) gets
(∫∞rλ(℘)[¯Ω(℘)]c−γ+1[Ψ(℘)]p−γ+1∇γa℘)p⩾(p−γ+1)c−γ)p(∫∞rλ(℘)ℷp(℘)[¯Ψρ(℘)]1−γ(¯Ω(℘))c−p−γ+1∇γa℘)(∫∞rλ(℘)[¯Ω(℘)]c−γ+1[Ψ(℘)]p−γ+1∇γa℘)p−1. | (2.33) |
Therefore,
∫∞rλ(℘)[¯Ω(℘)]c−γ+1[Ψ(℘)]p−γ+1∇γa℘⩾((p−γ+1)Lc−γ+1c−γ)p∫∞rλ(℘)ℷp(℘)[Ψ(℘)]1−γ(¯Ω(℘))c−p−γ+1∇γa℘. |
Remark 2.6. In Theorem 2, if we take γ=1 then we get Theorem 1.
Corollary 2.13. From Theorem 2, assume T=R, then (2.26) gets
∫∞rλ(℘)Ψp−γ+1(℘)(¯Ω(℘))c−γ+1(℘−a)γ−1d℘⩾((p−γ+1)Lc−γ+1c−γ)p∫∞rλ(℘)ℷp(℘)Ψ1−γ(℘)(¯Ω(℘))c−p−γ+1(℘−a)γ−1dt, |
where
Ψ(℘)=∫℘rλ(ϱ)ℷ(ϱ)(℘−a)γ−1dϱand¯Ω(℘)=∫℘rλ(ϱ)(℘−a)γ−1ds. |
Remark 2.7. In Corollary 2, if we take L=γ=1 yields continuous variant of Bennett-Leindler type inequality (1.7).
Corollary 2.14. From Theorem 2, assume T=hZ, then (2.26) gets
∞∑℘=rhλ(h℘)Ψp−γ+1(h℘)Ωc−γ+1(h℘)(ργ−1(h℘)−a)(γ−1)h⩾((p−γ+1)Lc−γ+1c−γ)p∞∑℘=rhλ(h℘)ℷp(h℘)Ψ1−γ(℘)¯Ωc−p−γ+1(h℘)(ργ−1(h℘)−a)(γ−1)h, |
where
Ψ(℘)=h℘∑ϱ=rhλ(hϱ)ℷ(hϱ)(ργ−1(hϱ)−a)(γ−1)hand¯Ω(℘)=h℘∑ϱ=rhλ(hϱ)(ργ−1(hϱ)−a)(γ−1)h. |
Corollary 2.15. For T=Z, we take h=1 in Corollary 2. In this case, inequality (2.26) reduces to
∞∑℘=rλ(℘)Ψp−γ+1(h℘)¯Ωc−p−γ+1(℘)(ργ−1(℘)−a)(γ−1)⩾((p−γ+1)Lc−γ+1c−γ)p∞∑℘=rλ(℘)ℷp(℘)Ψ1−γ(℘)¯Ωc−p−γ+1(℘)(ργ−1(℘)−a)(γ−1), |
where
Ψ(℘)=℘∑ϱ=rλ(ϱ)ℷ(ϱ)(ργ−1(hϱ)−a)(γ−1)and¯Ω(℘)=h℘∑ϱ=rλ(hϱ)(ργ−1(hϱ)−a)(γ−1). |
Remark 2.8. In Corollary 2, if we take γ=1 and r=1, yields discrete Bennett-Leindler type inequality (1.5), which is the converse of Copson inequality (1.3).
Corollary 2.16. From Theorem 2, assume T=qN0, then (2.26) gets
∑℘∈(r,∞)℘(ργ−1(℘)−a)(γ−1)˜qλ(℘)Ψp−γ+1(℘)¯Ωc−γ+1(ρ(℘))⩾((p−γ+1)Lc−γ+1c−γ)p∑℘∈(r,∞)℘(ργ−1(℘)−a)(γ−1)˜qλ(℘)ℷp(℘)Ψ1−γ(℘)¯Ωc−p−γ+1(℘), |
where
Ψ(℘)=(˜q−1)∑ϱ∈(r,℘)ϱλ(ϱ)ℷ(ϱ)(ργ−1(ϱ)−a)(γ−1)˜qand¯Ω(℘)=(˜q−1)∑ϱ∈(r,℘)ϱλ(ϱ)(ργ−1(ϱ)−a)(γ−1)˜q. |
In this paper, with the help of a simple consequence of Keller's chain rule and Hölder inequality for the (γ,a)-nabla-fractional derivative on time scales, we generalized a number of Bennett and Leindler Hardy-type inequalities to a general time scale. Besides that, in order to obtain some new inequalities as special cases, we also extended our inequalities to discrete and continuous calculus. In order to illustrate the theorems for each type of inequality applied to various time scales such as R, hZ, ¯qZ and Z as a sub case of hZ. For future studies researchers may obtain some different generalizations for dynamic Hardy inequality and its companion inequalities by using the results presented in this paper.
The authors extend their appreciation to the Research Supporting Project number (RSP-2022/167), King Saud University, Riyadh, Saudi Arabia.
The authors declare that there is no competing interest.
[1] |
A. Abdeldaim, A. A. El-Deeb, On generalized of certain retarded nonlinear integral inequalities and its applications in retarded integro-differential equations, Appl. Math. Comput., 256 (2015), 375–380. https://doi.org/10.1016/j.amc.2015.01.047 doi: 10.1016/j.amc.2015.01.047
![]() |
[2] |
R. P. Agarwal, M. Bohner, A. Peterson, Inequalities on time scales: A survey, Math. Inequal. Appl., 4 (2001), 535–557. https://doi.org/10.7153/mia-04-48 doi: 10.7153/mia-04-48
![]() |
[3] | R. P. Agarwal, D. O'Regan, S. H. Saker, Hardy type inequalities on time scales, Springer, Cham, 2016. |
[4] | G. Bennett, Some elementary inequalities, Ⅱ, Q. J. Math., 39 (1988), 385–400. |
[5] | M. Bohner, A. Peterson, Dynamic equations on time scales, Birkhauser Boston, Inc., Boston, 2001. |
[6] |
E. T. Copson, Note on series of positive terms, J. Lond. Math. Soc., 1 (1928), 49–51. https://doi.org/10.1112/jlms/s1-3.1.49 doi: 10.1112/jlms/s1-3.1.49
![]() |
[7] |
E. T. Copson, Some integral inequalities, P. Roy. Soc. Edinb. A, 75 (1976), 157–164. https://doi.org/10.1017/S0308210500017868 doi: 10.1017/S0308210500017868
![]() |
[8] |
T. Donchev, A. Nosheen, J. Pečarić, Hardy-type inequalities on time scale via convexity in several variables, ISRN Math. Anal., 2013. https://doi.org/10.1155/2013/903196 doi: 10.1155/2013/903196
![]() |
[9] |
A. A. El-Deeb, Some Gronwall-Bellman type inequalities on time scales for Volterra-Fredholm dynamic integral equations, J. Egypt Math. Soc., 26 (2018), 1–17. https://doi.org/10.21608/JOMES.2018.9457 doi: 10.21608/JOMES.2018.9457
![]() |
[10] |
A. A. El-Deeb, A variety of nonlinear retarded integral inequalities of Gronwall type and their applications, Adv. Math. Inequal. Appl., 2018. https://doi.org/10.1007/978-981-13-3013-1_8 doi: 10.1007/978-981-13-3013-1_8
![]() |
[11] |
A. A. El-Deeb, H. A. El-Sennary, Z. A. Khan, Some reverse inequalities of Hardy type on time scales, Adv. Differ. Equ., 2020 (2020), 1–18. https://doi.org/10.1186/s13662-020-02857-w doi: 10.1186/s13662-020-02857-w
![]() |
[12] |
A. A. El-Deeb, S. D. Makharesh, D. Baleanu, Dynamic Hilbert-type inequalities with fenchel-legendre transform, Symmetry, 12 (2020), 582. https://doi.org/10.3390/sym12040582 doi: 10.3390/sym12040582
![]() |
[13] |
G. H. Hardy, Note on a theorem of Hilbert, Math. Z., 6 (1920), 314–317. https://doi.org/10.1007/BF01199965 doi: 10.1007/BF01199965
![]() |
[14] | G. H. Hardy, Notes on some points in the integral calculus (LX), Messenger Math., 54 (1925), 150–156. |
[15] |
R. Hilscher, A time scales version of a Wirtinger-type inequality and applications, J. Comput. Appl. Math., 141 (2002), 219–226. https://doi.org/10.1016/S0377-0427(01)00447-2 doi: 10.1016/S0377-0427(01)00447-2
![]() |
[16] |
Z. Kayar, B. Kaymakçalan, N. N. Pelen, Bennett-Leindler type inequalities for nabla time scale calculus, Mediterr. J. Math., 18 (2021), 1–18. https://doi.org/10.1007/s00009-020-01674-5 doi: 10.1007/s00009-020-01674-5
![]() |
[17] | L. Leindler, Some inequalities pertaining to bennett's results, Acta Sci. Math., 58 (1994), 261–280. |
[18] |
J. A. Oguntuase, L. E. Persson, Time scales Hardy-type inequalities via superquadracity, Ann. Funct. Anal., 5 (2014), 61–73. https://doi.org/10.15352/afa/1396833503 doi: 10.15352/afa/1396833503
![]() |
[19] | U. M. Ozkan, H. Yildirim, Hardy-Knopp-type inequalities on time scales, Dynam. Syst. Appl., 17 (2008), 477–486. |
[20] |
P. Řehák, Hardy inequality on time scales and its application to half-linear dynamic equations, J. Inequal. Appl., 2005 (2005), 495–507. https://doi.org/10.1155/JIA.2005.495 doi: 10.1155/JIA.2005.495
![]() |
[21] |
S. H. Saker, D. O'Regan, R. P. Agarwal, Dynamic inequalities of Hardy and Copson type on time scales, Analysis, 34 (2014), 391–402. https://doi.org/10.1515/anly-2012-1234 doi: 10.1515/anly-2012-1234
![]() |
[22] | M. Zakarya, M. Altanji, G. H. AlNemer, A. El-Hamid, A. Hoda, C. Cesarano, et al., Fractional reverse coposn's inequalities via conformable calculus on time scales, Symmetry, 13 (2017), 542. |
[23] |
A. A. El-Deeb, S. D. Makharesh, S. S. Askar, J. Awrejcewicz, A variety of Nabla Hardy's type inequality on time scales, Mathematics, 10 (2022), 722. https://doi.org/10.3390/math10050722 doi: 10.3390/math10050722
![]() |
[24] |
A. A. El-Deeb, D. Baleanu, Some new dynamic Gronwall-Bellman-Pachpatte type inequalities with delay on time scales and certain applications, J. Inequal. Appl., 2022 (2022), 45. https://doi.org/10.1186/s13660-022-02778-0 doi: 10.1186/s13660-022-02778-0
![]() |
[25] |
A. A. El-Deeb, O. Moaaz, D. Baleanu, S. S. Askar, A variety of dynamic α-conformable Steffensen-type inequality on a time scale measure space, AIMS Math., 7 (2022), 11382–11398. https://doi.org/10.3934/math.2022635 doi: 10.3934/math.2022635
![]() |
[26] |
A. A. El-Deeb, E. Akın, B. Kaymakçalan, Generalization of Mitrinović-Pečarić inequalities on time scales, Rocky Mt. J. Math., 51 (2021), 1909–1918. https://doi.org/10.1216/rmj.2021.51.1909 doi: 10.1216/rmj.2021.51.1909
![]() |
[27] |
A. A. El-Deeb, S. D. Makharesh, E. R. Nwaeze, O. S. Iyiola, D. Baleanu, On nabla conformable fractional Hardy-type inequalities on arbitrary time scales, J. Inequal. Appl., 192 (2021). https://doi.org/10.1186/s13660-021-02723-7 doi: 10.1186/s13660-021-02723-7
![]() |
[28] |
A. A. El-Deeb, J. Awrejcewicz, Novel fractional dynamic Hardy-Hilbert-type inequalities on time scales with applications, Mathematics, 9 (2021), 2964. https://doi.org/10.3390/math9222964 doi: 10.3390/math9222964
![]() |
[29] | M. R. S. Rahmat, M. S. M. Noorani, A new conformable nabla derivative and its application on arbitrary time scales, Adv. Differ. Equ., 2021 (2021), 1–27. |