We explored some common challenges faced by undergraduate students when studying linear algebra, particularly when dealing with algorithmic thinking skills required for topics such as matrix factorization, focusing on (orthogonal) diagonalization and singular value decomposition (SVD). To address these challenges, we introduced SageMath, a Python-based open-source computer algebra system, as a supportive tool for students performing computational tasks despite its static output nature. We further examined the potential of dynamic ChatGPT, an AI-based chatbot, by requesting examples or problem-solving assistance related to (orthogonal) diagonalization or the SVD of a specific matrix. By reinforcing essential concepts in linear algebra and enhancing computational skills through effective practice, mastering these topics can become more accessible while minimizing mistakes. Although static in nature, SageMath proved valuable for confirming calculations and handling tedious computations because of its easy-to-understand syntax and accurate solutions. However, although dynamic ChatGPT may not be fully reliable for solving linear algebra problems, the errors it produces can serve as a valuable resource for improving critical thinking skills.
Citation: Natanael Karjanto. Investigating difficulties and enhancing understanding in linear algebra: Leveraging SageMath and ChatGPT for (orthogonal) diagonalization and singular value decomposition[J]. Mathematical Biosciences and Engineering, 2023, 20(9): 16551-16595. doi: 10.3934/mbe.2023738
[1] | J. O. Akanni, S. Ajao, S. F. Abimbade, Fatmawati . Dynamical analysis of COVID-19 and tuberculosis co-infection using mathematical modelling approach. Mathematical Modelling and Control, 2024, 4(2): 208-229. doi: 10.3934/mmc.2024018 |
[2] | Mlyashimbi Helikumi, Paride O. Lolika . Dynamics and analysis of COVID-19 disease transmission: The effect of vaccination and quarantine. Mathematical Modelling and Control, 2023, 3(3): 192-209. doi: 10.3934/mmc.2023017 |
[3] | S. Y. Tchoumi, Y. Kouakep-Tchaptchie, D. J. Fotsa-Mbogne, J. C. Kamgang, J. M. Tchuenche . Optimal control of a malaria model with long-lasting insecticide-treated nets. Mathematical Modelling and Control, 2021, 1(4): 188-207. doi: 10.3934/mmc.2021018 |
[4] | Ihtisham Ul Haq, Nigar Ali, Shabir Ahmad . A fractional mathematical model for COVID-19 outbreak transmission dynamics with the impact of isolation and social distancing. Mathematical Modelling and Control, 2022, 2(4): 228-242. doi: 10.3934/mmc.2022022 |
[5] | Ankur Jyoti Kashyap, Arnab Jyoti Bordoloi, Fanitsha Mohan, Anuradha Devi . Dynamical analysis of an anthrax disease model in animals with nonlinear transmission rate. Mathematical Modelling and Control, 2023, 3(4): 370-386. doi: 10.3934/mmc.2023030 |
[6] | Alexandru Hofman, Radu Precup . On some control problems for Kolmogorov type systems. Mathematical Modelling and Control, 2022, 2(3): 90-99. doi: 10.3934/mmc.2022011 |
[7] | Monica Veronica Crankson, Olusegun Olotu, Ayodeji Sunday Afolabi, Afeez Abidemi . Modeling the vaccination control of bacterial meningitis transmission dynamics: a case study. Mathematical Modelling and Control, 2023, 3(4): 416-434. doi: 10.3934/mmc.2023033 |
[8] | Paride O. Lolika, Mlyashimbi Helikumi . Global stability analysis of a COVID-19 epidemic model with incubation delay. Mathematical Modelling and Control, 2023, 3(1): 23-38. doi: 10.3934/mmc.2023003 |
[9] | Eminugroho Ratna Sari, Nikken Prima Puspita, R. N. Farah . Prevention of dengue virus transmission: insights from host-vector mathematical model. Mathematical Modelling and Control, 2025, 5(2): 131-146. doi: 10.3934/mmc.2025010 |
[10] | Elijah B. Baloba, Baba Seidu . A mathematical model of anthrax epidemic with behavioural change. Mathematical Modelling and Control, 2022, 2(4): 243-256. doi: 10.3934/mmc.2022023 |
We explored some common challenges faced by undergraduate students when studying linear algebra, particularly when dealing with algorithmic thinking skills required for topics such as matrix factorization, focusing on (orthogonal) diagonalization and singular value decomposition (SVD). To address these challenges, we introduced SageMath, a Python-based open-source computer algebra system, as a supportive tool for students performing computational tasks despite its static output nature. We further examined the potential of dynamic ChatGPT, an AI-based chatbot, by requesting examples or problem-solving assistance related to (orthogonal) diagonalization or the SVD of a specific matrix. By reinforcing essential concepts in linear algebra and enhancing computational skills through effective practice, mastering these topics can become more accessible while minimizing mistakes. Although static in nature, SageMath proved valuable for confirming calculations and handling tedious computations because of its easy-to-understand syntax and accurate solutions. However, although dynamic ChatGPT may not be fully reliable for solving linear algebra problems, the errors it produces can serve as a valuable resource for improving critical thinking skills.
Collective behaviors often appear in many classical oscillatory systems [1,4,7,17,18,25,27,29]. Recently, such classical synchronization dynamics has been extended to a quantum regime, and it is called quantum synchronization in literature. It is worthwhile mentioning from [19,20] that quantum synchronization has attracted many researchers in the quantum optics community due to its powerful applications in quantum information and quantum computing [8,14,15,16,21,28,33,34]. Among possible candidates describing quantum synchronization, we are interested in analytical studies on quantum synchronization via Wigner's formalism [30] that was first introduced by Wigner in 1932 in order to find quantum corrections to classical statistical mechanics. For the mathematical properties of the Wigner transform, we refer the reader to [32].
To set up the stage, we begin with the Schördinger-Lohe (SL) model [19]. Let
{i∂tψj=−12Δψj+Vjψj+iκ2NN∑k=1(ψk−⟨ψj,ψk⟩⟨ψj,ψj⟩ψj),t>0,x∈Rd,ψj(0,x)=ψ0j(x),j∈[N]:={1,⋯,N}, | (1) |
where
Note that the Planck constant is assumed to be unity for simplicity. Like the classical Schrödinger equation, system (1) satisfies
In this paper, we study the emergent dynamics of the Cauchy problem to the WL model with identical potentials:
{∂twij+p⋅∇xwij+Θ[V](wij)=κ2NN∑k=1{(wkj+wik)−(∫R2d(wik+wkj)dxdp)wij},t>0,(x,p)∈R2d,wij(0,x,p)=w0ij(x,p),i,j∈[N], | (2) |
subject to initial constraints:
∫R2dw0iidxdp=1,|∫R2dw0ijdxdp−1|<1,i≠j∈[N]. | (3) |
First, we recall the following definition of the emergent dynamics as follows.
Definition 1.1. [3] System (2) exhibits complete aggregation if relative states tend to zero asymptotically.
limt→∞‖wij−wℓm‖L2(R2d)=0,i,j,ℓ,m∈[N]. |
In the sequel, we provide several comments on the Cauchy problem (2)–(3). First, the WL model (2) was first introduced in [3], and a priori asymptotic analysis has been studied only for the two-particle system with
The main results of this paper are two-fold. First, we provide the complete aggregation dynamics of (2) in a priori setting. Under the assumptions (3) on initial data, we can find an invariant set whose center plays the role of an asymptotically stable fixed point (see Lemma 3.2). Then, we obtain the uniform-boundedness of the
Second, we provide a global existence theory of (2) combining the classical methods (fixed point theorem and semigroup theory) and exponential aggregation estimates. We highlight that this paper extends the results in [3] where the existence theory was not considered even for
The rest of this paper is organized as follows. In Section 2, we introduce generalized Wigner functions and the WL distribution matrix, and study their elementary properties. We also review previous results for the WL model. In Section 3, we provide complete aggregation estimates for the WL model in a priori setting. In Section 4, we show the global existence of mild and classical solutions depending on the regularity of initial data. Finally, Section 5 is devoted to a brief summary of this paper and some remaining issues for a future work. In Appendix A, we summarize classical results on the semigroup theory to be used for the global solvability in Section 4.
Gallery of Notation: Throughout the paper, as long as there is no confusion, we simply use
⟨f,g⟩:=∫R2df(x,p)¯g(x,p)dxdp,‖f‖:=√⟨f,f⟩, |
where
(Fϕ)(p):=∫Rdϕ(x)e−ix⋅pdx,(F−1ϕ)(x):=1(2π)d∫Rdϕ(p)eix⋅pdp. |
For a given real-valued function
(Fy→pψ)(x,p):=∫Rdψ(x,y)e−iy⋅pdy. |
In this section, we introduce the
In this subsection, we show how the WL distribution matrix can be constructed from the SL model. For this, we first recall the generalized Wigner distribution and the pseudo-differential operator.
Definition 2.1. [3]
1. For any two complex-valued wave functions
w[ψ,ϕ](x,p):=1(2π)d∫Rdψ(x+y2)¯ϕ(x−y2)eip⋅ydy,(x,p)∈R2d, | (4) |
where
2. For
Θ[V](w)(x,p):=−i(2π)d∫Rd[V(x+y2)−V(x−y2)](Fp′→yw)(x,y)eip⋅ydy=−i(2π)d∫R2d[V(x+y2)−V(x−y2)]w(x,p′)ei(p−p′)⋅ydp′dy. |
Remark 1. Below, we give several comments on the generalized Wigner distribution and the pseudo-differential operator.
1. The generalized Wigner distribution is complex conjugate symmetric in the sense that
w[ϕ,ψ](x,p)=1(2π)d∫Rdϕ(x+y2)¯ψ(x−y2)eip⋅ydy=1(2π)d∫Rd¯ψ(x+y2)ϕ(x−y2)e−ip⋅ydybyy↔−y=¯1(2π)d∫Rdψ(x+y2)¯ϕ(x−y2)eip⋅ydy=¯w[ψ,ϕ](x,p). | (5) |
2. For the case
w[ψ,ψ](x,p)=1(2π)d∫Rdψ(x+y2)¯ψ(x−y2)e−ip⋅ydy. |
Since
w[ψ,ψ]=:w[ψ]. |
Moreover, one can easily verify that
3. The
∫Rdw[ψ](x,p)dp=|ψ(x)|2. |
Moreover, the
∫R2dw[ψ,ϕ](x,p)dxdp=1(2π)d∫R3dϕ(x+y2)¯ψ(x−y2)eip⋅ydydxdp=∫Rdϕ(x)¯ψ(x)dx=⟨ϕ,ψ⟩. |
4. Since
¯Θ[V](w)(x,p)=i(2π)d∫R2d[V(x+y2)−V(x−y2)]ˉw(x,p′)e−i(p−p′)⋅ydp′dy=−i(2π)d∫R2d[V(x−y2)−V(x+y2)]ˉw(x,p′)e−i(p−p′)⋅ydp′dy=−i(2π)d∫R2d[V(x+y2)−V(x−y2)]ˉw(x,p′)ei(p−p′)⋅ydp′dybyy↔−y=Θ[V](¯w)(x,p). |
In the following lemma, we provide several properties of
Lemma 2.2. For
(i)∫R2dΘ[V](f)⋅gdxdp=−∫R2dΘ[V](g)⋅fdxdp.(ii)∫R2dΘ[V](f)dxdp=0. |
Proof. (ⅰ) We use the change of variables:
(p,p′,y)↔(p′,p,−y) |
to yield
∫R2dΘ[V](f)⋅gdxdp=−i(2π)d∫R4d[V(x+y2)−V(x−y2)]f(x,p′)g(x,p)ei(p−p′)⋅ydp′dydxdp=−i(2π)d∫R4d[V(x−y2)−V(x+y2)]f(x,p)g(x,p′)ei(p−p′)⋅ydp′dydxdp=−∫R2dΘ[V](g)⋅fdxdp. |
(ⅱ) By the definition of Definition 2.1 and Fubini's theorem, we have
∫R2dΘ[V](f)dxdp=−i(2π)d∫R4d[V(x+y2)−V(x−y2)]f(x,p′)ei(p−p′)⋅ydp′dydxdp=−i(2π)d∫R3d[V(x+y2)−V(x−y2)]eip⋅y(∫Rdf(x,p′)e−ip′⋅ydp′)dydxdp=−i(2π)d∫R3d[V(x+y2)−V(x−y2)](Fp′→yf)(x,y)eip⋅ydydxdp=−i∫Rd[V(x)−V(x)](Fp′→0f)(x,0)dx=0. |
Remark 2. If we set
∫R2dΘ[V](u)⋅ˉudxdp=−∫R2dΘ[V](ˉu)⋅udxdp=−∫R2d¯Θ[V](u)⋅udxdp=−¯∫R2dΘ[V](u)⋅ˉudxdp. |
This yields
Re[∫R2dΘ[V](u)⋅¯udxdp]=0. |
This fact was used in [23] to show the conservation of
For a given ensemble of wave functions
wij:=w[ψi,ψj],wi:=w[ψ]=w[ψi,ψi],i,j∈[N]. |
Then, the evolution of the WL distributions
∂twij+p⋅∇xwij=−i(2π)d∫R2d[Vi(x+y2)−Vj(x−y2)]wij(x,p′)ei(p−p′)⋅ydp′dy+κ2NN∑k=1[(wkj+wik)−(∫R2dwikdxdp∫R2dwiidxdp+∫R2dwkjdxdp∫R2dwjjdxdp)wij]. | (6) |
For the detailed derivation of (6), we refer the reader to [3]. Next, we show that system (6) admits conservation laws.
Lemma 2.3. Let
Proof. (ⅰ) It follows from (6) that
∂twii+∇x⋅(pwii)+Θ[Vi](wii)=κ2NN∑k=1[(wki+wik)−(∫R2dwikdxdp∫R2dwiidxdp+∫R2dwkidxdp∫R2dwiidxdp)wii]. | (7) |
Now, we integrate (7) over
ddt∫R2dwii(t,x,p)dxdp=0. |
(ⅱ) For the second assertion, we follow a similar calculation in (ⅰ).
Remark 3.
∂tw+p⋅∇xw+Θ[V](w)=0. |
Then by Lemma 2.3, one has
ddt∫R2dw(t,x,p)dxdp=0. | (8) |
However, it is worthwhile mentioning that since
w=w[ψ] |
for a solution
∫R2dw(t,x,p)dxdp=‖ψ(t)‖2L2,t>0. |
Thus, the results in Lemma 2.3 is consistent with the classical theory for the Wigner equation.
‖w(t)‖2=‖ψ(t)‖4. |
Hence, the linear Wigner equation enjoys
From now on, we are concerned with the following special situation:
Vi=Vand∫R2dw0i(x,p)dxdp=1,i∈[N]. | (9) |
In this case, the
∫R2dwi(t,x,p)dxdp=∫R2dw0i(x,p)dxdp=1,t≥0,i∈[N],∫R2dwij(t,x,p,)dxdp=∫R2dw0ij(x,p)dxdp,t≥0,i,j∈[N]. |
Hence, the Cauchy problem for system (6) with (9) can be further simplified as follows:
{∂twij+p⋅∇xwij+Θ[V](wij)=κ2NN∑k=1[(wik+wkj)−(∫R2d(wik+wkj)dxdp)wij],t>0,(x,p)∈R2d,wij(0,x,p)=w0ij(x,p),i,j∈[N]. |
In this subsection, we briefly recall the result from [3] for a two-body system. Extension to the many-body system will be discussed in the following two sections separately. We set
w+12:=Re[w12],z12(t):=∫R2dw12(t,x,p)dxdp,R12(t):=Re[z12(t)]. | (10) |
Then,
{∂tw1+p⋅∇xw1+Θ[V](w1)=κ2(w+12−R12w1),t>0,∂tw2+p⋅∇xw2+Θ[V](w2)=κ2(w+12−R12w2),∂tw12+p⋅∇xw12+Θ[V](w12)=κ4(w1+w2−2z12w12),(w1(0),w2(0),w12(0))=(w01,w02,w012), | (11) |
subject to constraints:
∫R2dw01dxdp=∫R2dw02dxdp=1,|∫R2dw012dxdp|≤1,∫R2dw012dxdp≠−1. | (12) |
Theorem 2.4. [3] Let
|1−z12(t)|≲ |
where
Proof. (ⅰ) The first estimate follows from the following ODE:
\dot z_{12} = \frac{\kappa}{2}(1-z_{12}^2), \quad t > 0. |
This can be integrated explicitly:
\begin{equation} z_{12}(t) = \frac{ (1+z_{12}^0)e^{\kappa t} - (1-z_{12}^0)}{(1+z_{12}^0)e^{\kappa t} + (1-z_{12}^0)}, \quad t > 0, \end{equation} | (13) |
where
\begin{equation} z_{12}^0 \in \mathbb R, \quad z_{12}^0 < -1 \quad \text{or}\quad z_{12}^0 > 1, \end{equation} | (14) |
then the denominator of the right-hand side of (13) can be zero, and hence
\lim\limits_{t\to T_*-} z_{12}(t) = \infty, \quad T_* = \frac1 \kappa \ln \frac{ 1-z_{12}^0}{1+z_{12}^0}. |
In other words, for initial data satisfying (14),
(ⅱ) It is easy to see that
\begin{equation} \partial_t(w_1-w_2)+p\cdot\nabla_x(w_1-w_2)+\Theta[V](w_1-w_2) = -\frac{\kappa R_{12}}{2}(w_1-w_2). \end{equation} | (15) |
We multiply (15) by
\begin{equation*} \frac{ \mathrm{d}}{ \mathrm{d}t}\|w_1(t)-w_2(t)\|_{L^2}^2 = -\kappa R_{12}(t)\|w_1(t)-w_2(t)\|_{L^2}^2. \end{equation*} |
Then, Grönwall's inequality and the first estimate
Before we close this section, we introduce elementary estimates to be used in the following sections.
Lemma 2.5. Let
\begin{equation} y' \leq \alpha_1e^{-\beta_1 t}y + \alpha_2 e^{-\beta_2 t}, \quad t > 0. \end{equation} | (16) |
Then, the following assertions hold.
1. If
\alpha_1 < 0, \quad \beta_1 = 0, \quad \alpha_2 > 0, \quad \beta_2 > 0, |
there exist uniform positive constants
y(t) \leq C_0e^{-D_0 t}, \quad t \geq 0. |
2. If
\alpha_1 > 0, \quad \beta_1 > 0, \quad \alpha_2 = 0, |
there exists a uniform constant
y(t) \leq C_1 y_0, \quad t \geq 0. |
Proof. (ⅰ) By the comparison principle of ODE and method of integrating factor, we have
y(t) \leq \left( y_0 + \frac{\alpha_2}{\alpha_1 + \beta_2}\right) e^{\alpha_1 t} - \frac{\alpha_2}{\alpha_1 + \beta_2} e^{-\beta_2t}, \quad t \geq 0. |
Hence, there exist uniform positive constants
y(t) \leq C_0e^{-D_0 t}, \quad t \geq 0. |
(ⅱ) We multiply (16) with the integrating factor
\begin{equation*} \label{B-6} \exp{ \left(-\int_0^t \alpha_1 e^{-\beta_1 s} ds\right) } = \exp{ \left( -\frac{\alpha_1}{\beta_1} (1-e^{-\beta_1 t}) \right) } \end{equation*} |
to find
y(t) \leq y_0 e^{ \frac{\alpha_1}{\beta_1} (1-e^{-\beta_1t}) } \leq e^\frac{\alpha_1}{\beta_1}y_0 = : C_1y_0, \quad t \geq 0. |
In this section, we present complete aggregation estimates for (2)–(3) in a priori setting. Our first result can be stated as follows.
Theorem 3.1. Let
\begin{equation} \lim\limits_{t\to\infty} \|w_{ik} - w_{jm}\| = 0, \quad i, j, k, m \in [N]. \end{equation} | (17) |
Proof. Since the proof is rather lengthy, we introduce a strategy toward the proof. We first claim:
\lim\limits_{t\to\infty} \|w_{ik} - w_{jk} \| = 0, \quad k\neq i, j \in [N]. |
For this, the key idea is to derive Grönwall's type differential inequality for
\begin{equation} \frac{ \mathrm{d}}{ \mathrm{d}t} \sum\limits_{k = 1}^N \|w_{ik}-w_{jk}\|^2 \leq - \kappa \Big ( 1- C_1 e^{- \kappa t} \Big ) \sum\limits_{k = 1}^N \|w_{ik}-w_{jk}\|^2 + C_2 e^{- \kappa t}, \quad t > 0. \end{equation} | (18) |
Then, we apply Lemma 2.5 to derive the desired zero convergence for
\|w_{ik} - w_{jm} \| \leq \|w_{ik} - w_{jk} \| + \|w_{jk} - w_{jm}\| = \|w_{ik} - w_{jk} \| + \|w_{kj} - w_{mj}\|. |
The derivation of (18) will be given in Section 3.2 after some preparatory estimates in Section 3.1.
In this subsection, we study basic estimates for (2)–(3) that will be used in the derivation of (18). We set
\begin{equation*} \label{C-2-2} z_{ij}(t) : = \int_{\mathbb{R}^{2d}}w_{ij}(t, x, p) \mathrm{d} x \mathrm{d} p, \quad i, j \in [N], \quad t > 0. \end{equation*} |
Then, it follows from Lemma 2.3 that
\begin{equation} z_i : = z_{ii} = 1, \quad i \in [N]. \end{equation} | (19) |
On the other hand, we integrate (2) with respect to
\begin{equation} \frac{dz_{ij}}{dt} = \frac{ \kappa}{2N} \sum\limits_{k = 1}^N (z_{ik} + z_{kj}) (1-z_{ij}), \quad t > 0. \end{equation} | (20) |
Due to (19), it is natural to consider the maximal diameter for the set
\mathcal{D}({\mathcal Z}(t)) : = \max\limits_{1\leq i, j\leq N} |1-z_{ij}(t)|, \quad t > 0, \quad \mathcal D(\mathcal Z^0): = \mathcal D(\mathcal Z(0)), |
which is expected to converge to zero under a suitable condition.
Lemma 3.2. (Existence of a positively invariant set) Let
\begin{equation} \mathcal D(\mathcal Z^0) < 1. \end{equation} | (21) |
Then, one has
\mathcal D(\mathcal Z(t)) < 1, \quad t > 0. |
Proof. It follows from (20) that
\begin{equation} \frac{ \mathrm{d}}{ \mathrm{d}t} (1 - z_{ij}) = -\frac{ \kappa}{2N} \sum\limits_{k = 1}^N (z_{ik} + z_{kj}) (1-z_{ij}), \quad t > 0. \end{equation} | (22) |
Then, (22) gives
\begin{equation} |1-z_{ij}(t)| = |1-z_{ij}^0| \exp\left[ -\frac{ \kappa}{2N} \sum\limits_{k = 1}^N \int_0^t (R_{ik} + R_{kj}) \mathrm{d} s \right], \quad t > 0, \end{equation} | (23) |
where
\mathcal T: = \{ T \in (0, \infty) : \mathcal D(\mathcal Z(t)) < 1, \quad t\in [0, T)\}, \quad T_* : = \sup \mathcal{T}. |
By the assumption on initial data, the set
T_* = \infty. |
Suppose to the contrary, i.e.,
T_* < \infty. |
Then, one has
\begin{equation} \lim\limits_{t\to T_*} \mathcal D(\mathcal Z(t)) = 1. \end{equation} | (24) |
On the other hand, we observe
\max\limits_{i \neq j} |1-z_{ij}(t)| < 1\quad \Longrightarrow\quad \min\limits_{i \neq j} R_{ij}(t) > 0, \quad t\in [0, T_*). |
For
\mathcal D(\mathcal Z(t)) = 1-z_{i_t j_t}. |
Hence, (23) yields
1 = \mathcal D(\mathcal Z(T_*)) = \mathcal D(\mathcal Z^0) \exp \left[ {-\frac{ \kappa}{2N} \sum\limits_{k = 1}^N \int_0^{T_*} (R_{i_tk} + R_{kj_t} ) \mathrm{d} s} \right ] < 1, |
which contradicts (24). Since
T_* = \infty, |
and the set
Remark 4. Lemma 3.2 says that if initial data satisfy (21):
\left|\int_{\mathbb{R}^{2d}}w^0_{ij} \mathrm{d} x \mathrm{d} p - 1\right| < 1, \quad i, j\in[N], |
then one has
\left|\int_{\mathbb{R}^{2d}}w_{ij}(t, x, p) \mathrm{d} x \mathrm{d} p - 1\right| < 1, \quad i, j\in[N], \quad t > 0. |
Thus, the
As a direct consequence of Lemma 3.2, we can also show the uniform
\mathcal R(\mathcal W(t)) : = \max\limits_{1\leq i, j\leq N} \|w_{ij}(t) \|, \quad t > 0. |
Corollary 1. Let
1. The functional
\begin{equation*} \mathcal D( \mathcal Z(t)) \leq \frac{\mathcal D(\mathcal Z^0) e^{- \kappa t}}{\mathcal D(\mathcal Z^0) e^{- \kappa t} + 1 - \mathcal D(\mathcal Z^0)} \leq \frac{\mathcal D(\mathcal Z^0) }{1 - \mathcal D(\mathcal Z^0)}e^{- \kappa t}, \quad t > 0. \end{equation*} |
2. The functional
\sup\limits_{0\leq t < \infty} \mathcal R(\mathcal W(t)) \leq {\mathcal R}^\infty. |
Proof. (ⅰ) It follows from (20) that
\begin{align*} \frac {\mathrm{d}} {\mathrm{d}t} (1-z_{ij}) = - \kappa(1-z_{ij}) + \frac{ \kappa}{2N} \sum\limits_{k = 1}^N ( 1-z_{ik} + 1-z_{kj})(1-z_{ij}). \end{align*} |
Then, we find a differential inequality for
\frac {\mathrm{d}} {\mathrm{d}t} \mathcal D(\mathcal Z) \leq - \kappa \mathcal D(\mathcal Z) + \kappa \mathcal D(\mathcal Z)^2, \quad t > 0. |
Lastly, we use initial data (21) together with the above Riccati differential inequality to give the desired result.
(ⅱ) We multiply
\begin{align} \begin{aligned} & \frac12 \partial_t |w_{ij}|^2 + \frac12 p\cdot \nabla_x |w_{ij}|^2 +\text{Re}\left[ \Theta[V](w_{ij})\overline w_{ij}\right] \\ & \quad\quad\quad\quad \quad = \frac{ \kappa}{2N} \sum\limits_{k = 1}^N \mbox{Re}\left[ \Big( w_{ik} + w_{kj} - (z_{ik} + z_{kj}) w_{ij}\Big)\overline w_{ij} \right]. \end{aligned} \end{align} | (25) |
Now, we integrate (25) with respect to
\begin{align} \begin{aligned} & \frac{ \mathrm{d}}{ \mathrm{d}t} \int_{ \mathbb R^{2d}} |w_{ij}|^2 \mathrm{d} x \mathrm{d} p \\ & \quad = -\int_{ \mathbb R^{2d}}p\cdot \nabla_x |w_{ij}|^2 dx dp - \int_{ \mathbb R^{2d}} \text{Re}\left[ \overline w_{ij} \Theta[V](w_{ij}) \right] \mathrm{d} x \mathrm{d} p \\ & \quad + \frac{ \kappa}{N} \sum\limits_{k = 1}^N \int_{ \mathbb R^{2d}} \text{Re}\left[\overline w_{ij}\Big( w_{ik} + w_{kj} - (z_{ik} + z_{kj}) w_{ij}\Big)\right] \mathrm{d} x \mathrm{d} p \\ & \quad = : \mathcal I_{11} + \mathcal I_{12} + \mathcal I_{13} . \end{aligned} \end{align} | (26) |
Below, we present estimates for
● Case A.1 (Estimate of
\begin{align*} \mathcal I_{11} = - \int_{ \mathbb R^{2d}}p\cdot \nabla_x |w_{ij}|^2 \mathrm{d} x \mathrm{d} p = 0. \end{align*} |
● Case A.2 (Estimate of
\mathcal I_{12} = 0. |
● Case A.3 (Estimate of
\begin{align*} &\int_{ \mathbb R^{2d}} \Big( \overline w_{ij} w_{ik} +\overline w_{ij} w_{kj} - (z_{ik} + z_{kj} )|w_{ij}|^2 \Big) \mathrm{d} x \mathrm{d} p \\ & \quad = -2\|w_{ij}\|^2 + \int_{ \mathbb R^{2d}} ( \overline w_{ij} w_{ik} + \overline w_{ij} w_{kj}) \mathrm{d} x \mathrm{d} p + (1-z_{ik} + 1-z_{kj}) \|w_{ij}\|^2 \\ & \quad \leq -2\|w_{ij}\|^2 +2 \mathcal R(\mathcal W) ^2 + 2\mathcal D(\mathcal Z) \mathcal R(\mathcal W) ^2. \end{align*} |
In (26), we collect all the estimates in Case A.1–Case A.3 to derive
\begin{align*} \frac {\mathrm{d}} {\mathrm{d}t} \|w_{ij}\|^2 \leq -2 \kappa \|w_{ij}\|^2 + 2 \kappa\mathcal R(\mathcal W) ^2 + 2 \kappa \mathcal D(\mathcal Z) \mathcal R(\mathcal W)^2, \quad t > 0. \end{align*} |
This yields
\begin{equation} \frac {\mathrm{d}} {\mathrm{d}t} \mathcal R(\mathcal W)^2 \leq 2 \kappa \mathcal D(\mathcal Z) \mathcal R(\mathcal W)^2, \quad t > 0. \end{equation} | (27) |
Since
In this subsection, we are ready to provide the proof of Theorem 3.1. First, we claim:
\begin{equation} \lim\limits_{t\to\infty} \|w_{ik} - w_{jk} \| = 0, \quad k \neq i, j. \end{equation} | (28) |
Note that if one verifies (28), then (17) follows from the triangle inequality:
\|w_{ik} - w_{jm} \| \leq \|w_{ik} - w_{jk} \| + \|w_{jk} - w_{jm}\| = \|w_{ik} - w_{jk} \| + \|w_{kj} - w_{mj}\|. |
We consider the difference between
\begin{align} \begin{aligned} &\partial_t (w_{ik}-w_{jk}) + p \cdot \nabla_x (w_{ik}-w_{jk}) + \Theta[V](w_{ik} -w_{jk}) \\ & \quad -\frac{ \kappa}{2N} \sum\limits_{\ell = 1}^N \Big[ (w_{i\ell}-w_{j\ell}) -(z_{i\ell}w_{ik} - z_{j\ell}w_{jk}) -z_{\ell k}(w_{ik}-w_{jk}) \Big ] = 0. \end{aligned} \end{align} | (29) |
Similar to the proof of Corollary 1, we multiply
\begin{align} \begin{aligned} &\frac{ \mathrm{d}}{ \mathrm{d}t} \|w_{ik}-w_{jk}\|^2 \\ & \quad = : - \int_{ \mathbb R^{2d}} p\cdot \nabla_x|w_{ik}-w_{jk}|^2 \mathrm{d} x \mathrm{d} p \\ & \quad -\int_{ \mathbb R^{2d}} 2\text{Re}\Big[ (\overline w_{ik}-\overline w_{jk})\Theta[V](w_{ik}-w_{jk}) \Big] \mathrm{d} x \mathrm{d} p \\ & \quad + \frac{ \kappa}{N} \sum\limits_{\ell = 1}^N \int_{ \mathbb R^{2d}} \text{Re}( \mathcal J_{ijk\ell}) \; \mathrm{d} x \mathrm{d} p \\ & \quad = : \mathcal I_{21} + \mathcal I_{22} +\mathcal I_{23}. \end{aligned} \end{align} | (30) |
Below, we present estimates of
● Case B.1 (Estimates of
\mathcal I_{21} = \mathcal I_{22} = 0. |
● Case B.2 (Estimate of
\begin{align*} \mathcal J_{ijk\ell} & = (\overline w_{ik} - \overline w_{jk})(w_{i\ell} -w_{j\ell}) - z_{i\ell}|w_{ik}-w_{jk}|^2 \\ & \quad \quad \quad \quad \quad \quad + (z_{i\ell}-z_{j\ell})w_{jk}(\overline w_{ik} - \overline w_{jk}) -z_{\ell k} |w_{ik}-w_{jk}|^2 \\ & = (\overline w_{ik} - \overline w_{jk})(w_{i\ell} -w_{j\ell}) -(z_{i\ell} + z_{\ell k})|w_{ik}-w_{jk}|^2\\&\qquad + (z_{i\ell}-z_{j\ell})w_{jk}(\overline w_{ik} - \overline w_{jk}). \end{align*} |
In (30), we combine all the estimates Case B.1–Case B.2 to find
\begin{align} \begin{aligned} &\frac{ \mathrm{d}}{ \mathrm{d}t} \|w_{ik}-w_{jk}\|^2 \\ & \quad \leq \frac{ \kappa}{N}\sum\limits_{\ell = 1}^N \int_{ \mathbb R^{2d}} \Big( |w_{ik}-w_{jk}||w_{i\ell}-w_{j\ell}| -\text{Re}(z_{i\ell}+z_{\ell k})|w_{ik}-w_{jk}|^2 \\ & \quad + |z_{i\ell}-z_{j\ell} ||w_{jk}| |w_{ik}-w_{jk}|\Big) \mathrm{d} x \mathrm{d} p \\ & \quad \leq \frac{ \kappa}{N}\sum\limits_{\ell = 1}^N \Big( \|w_{ik}-w_{jk}\| \|w_{i\ell}-w_{j\ell}\| -\text{Re}(z_{i\ell} + z_{\ell k})\|w_{ik}-w_{jk}\|^2 \\ & \quad + |z_{i\ell}-z_{j\ell}| \|w_{jk}\| \|w_{ik}-w_{jk}\|\Big). \end{aligned} \end{align} | (31) |
If we use Corollary 1 with
\begin{align} \begin{aligned} \frac{ \mathrm{d}}{ \mathrm{d}t} \|w_{ik}-w_{jk}\|^2 &\leq -2 \kappa ( 1- \alpha e^{- \kappa t})\|w_{ik}-w_{jk}\|^2 \\ & \quad +\frac{ \kappa}{N} \sum\limits_{\ell = 1}^N \|w_{ik}-w_{jk}\| \|w_{i\ell}-w_{j\ell}\| \\ & \quad + \frac{ \kappa\mathcal R^\infty}{N} \sum\limits_{\ell = 1}^N |z_{i\ell}- z_{j\ell} | \|w_{ik} - w_{jk}\|. \end{aligned} \end{align} | (32) |
We sum up (32) with respect to
\begin{align} \begin{aligned} & \frac{ \mathrm{d}}{ \mathrm{d}t} \sum\limits_{k = 1}^N \|w_{ik}-w_{jk}\|^2 \\ &\leq -2 \kappa ( 1- \alpha e^{- \kappa t})\sum\limits_{k = 1}^N \|w_{ik}-w_{jk}\|^2 \\ & \quad +\frac{ \kappa}{N} \sum\limits_{k, \ell = 1}^N \|w_{ik}-w_{jk}\| \|w_{i\ell}-w_{j\ell}\|\\ & \quad + \frac{ \kappa\mathcal R^\infty}{N} \sum\limits_{\ell = 1}^N |z_{i\ell}- z_{j\ell} | \sum\limits_{k = 1}^N\|w_{ik} - w_{jk}\| \\ & = : -2 \kappa ( 1- \alpha e^{- \kappa t}) \sum\limits_{k = 1}^N \|w_{ik}-w_{jk}\|^2 +\mathcal I_{31} + \mathcal I_{32}. \end{aligned} \end{align} | (33) |
● Case C.1 (Estimate of
\begin{align} \begin{aligned} \mathcal I_{31} & = \frac{ \kappa}{N} \sum\limits_{k, \ell = 1}^N \|w_{ik}-w_{jk}\| \|w_{i\ell}-w_{j\ell}\| = \frac \kappa N \left(\sum\limits_{k = 1}^N \|w_{ik} - w_{jk}\|\right)^2\\ & \leq \kappa \sum\limits_{k = 1}^N \|w_{ik}-w_{jk}\|^2. \end{aligned} \end{align} | (34) |
● Case C.2 (Estimate of
\begin{equation} \mathcal I_{32} = \frac{ \kappa\mathcal R^\infty}{N} \sum\limits_{\ell = 1}^N |z_{i\ell}-1+1- z_{j\ell} | \sum\limits_{k = 1}^N\|w_{ik} - w_{jk}\| \leq 4 N \kappa |{\mathcal R}^\infty|^2 \alpha e^{- \kappa t}. \end{equation} | (35) |
In (33), we combine all the estimates (34) and (35) to derive
\begin{align*} \frac{ \mathrm{d}}{ \mathrm{d}t} \sum\limits_{k = 1}^N \|w_{ik}-w_{jk}\|^2 \leq - \kappa ( 1- 2\alpha e^{- \kappa t}) \sum\limits_{k = 1}^N \|w_{ik}-w_{jk}\|^2 + 4 N \kappa |{\mathcal R}^\infty|^2 \alpha e^{- \kappa t}. \end{align*} |
Finally, we use Lemma 2.5 to establish (28). This completes the proof of Theorem 3.1.
In this section, we show the global existence of a unique mild solution to the Cauchy problem for the WL model (2) following the fixed point approach in [23] where a linear Wigner equation is considered. For this, we define a subset
\begin{align} \begin{aligned} &\mathcal{X}: = \left\{f \in L^2( \mathbb R^{2d}) : \; \left| \int_{ \mathbb R^{2d}} f \mathrm{d} x \mathrm{d} p \right| < \infty \right\}, \\ & \; \; \|f\|_{\mathcal{X}} : = \|f\| + \left|\int f \mathrm{d} x \mathrm{d} p\right|, \; \; A: = -p \cdot \nabla_x. \end{aligned} \end{align} | (36) |
Then, it is easy to check that
D(A) : = \left \{f \in \mathcal{X} :p \cdot \nabla_x f \in L^2( \mathbb R^{2d}) \right \} \subseteq {\mathcal X}. |
For the WL model as a perturbation of the linear Wigner equation, it is strongly believed that
Theorem 4.1. For
1. If initial data and the potential satisfy
w_{ij}^0 \in \mathcal X, \quad i, j\in [N], \quad {{and}} \quad V \in L^{\infty}(\mathbb{R}^d), |
then there exists a unique mild solution to the Cauchy problem
w_{ij} \in {C}([0, T];\mathcal X), \quad i, j\in [N]. |
2. If we impose further regularity on initial data and the potential
w_{ij}^0 \in D(A), \quad i, j\in [N], \quad {{and}} \quad V \in L^{\infty}(\mathbb{R}^d) \cap L^{2}(\mathbb{R}^d), |
then there exists a unique classical solution to the Cauchy problem
w_{ij} \in {C}([0, T];\mathcal{X}) \cap { C}^1([0, T];D(A)), \quad i, j \in [N]. |
Proof. Since the proof is rather lengthy, we provide the proofs in Section 4.2 and Section 4.3.
In this subsection, we follow the same strategy in [23] in which the linear Wigner equation has been treated by means of the semigroup approach. First, we begin with an elementary property of the transport operator
Lemma 4.2. Let
Aw_{ij} \in L^2( \mathbb R^{2d}). |
In other words, the transport operator
Proof. Since a solution
\sup\limits_{0\leq t < \infty} \|p\cdot \nabla_x w_{ij}\| < \infty, \quad i, j\in [N]. |
By straightforward calculations, we observe
\begin{align} \begin{aligned} &\frac{1}{2}\frac{ \mathrm{d}}{ \mathrm{d}t}\|p \cdot \nabla_x w_{ij}\|^2 \\ & \quad = \text{Re} \langle p\cdot \nabla_x \partial_t w_{ij}, p\cdot \nabla_xw_{ij} \rangle \\ & \quad = \mathrm{Re}\langle p \cdot \nabla_x (- p \cdot \nabla_x w_{ij}), p \cdot \nabla_x w_{ij} \rangle - \langle p \cdot \nabla_x (\Theta w_{ij}), p \cdot \nabla_x w_{ij} \rangle\\ & \quad + \frac{ \kappa}{2N} \sum\limits_{k = 1}^N \text{Re} \langle p\cdot \nabla_x (w_{ik} + w_{kj} - (z_{ik} + z_{kj})w_{ij} ) , p\cdot \nabla_xw_{ij} \rangle \\ & \quad = : \mathcal{I}_{41} + \mathcal{I}_{42} + \mathcal{I}_{43}. \end{aligned} \end{align} | (37) |
Below, we estimate
● Case C.1 (Estimate of
\begin{align*} & -\langle p \cdot \nabla_x ( p \cdot \nabla_x w_{ij}), p \cdot \nabla_x w_{ij} \rangle = -\left \langle \sum\limits_{j = 1}^N p_j \partial_j (p \cdot \nabla_x w_{ij}), p \cdot \nabla_x w_{ij}\right \rangle\\ & \quad = \left \langle p \cdot \nabla_x w_{ij}, \sum\limits_{j = 1}^N p_j \partial_j (p \cdot \nabla_x w_{ij})\right \rangle = \overline{\langle p \cdot \nabla_x ( p \cdot \nabla_x w_{ij}), p \cdot \nabla_x w_{ij} \rangle}. \end{align*} |
Hence, we see that
\mathcal I_{41} = 0. |
● Case C.2 (Estimate of
\begin{align*} \langle p \cdot \nabla_x (\Theta w_{ij}), p \cdot \nabla_x w_{ij} \rangle = \langle \Theta[V]( p\cdot \nabla_xw_{ij}), p\cdot \nabla_x w_{ij}\rangle. \end{align*} |
By the skew-Hermitian property of
\mathcal I_{42} = 0. |
● Case C.3 (Estimate of
\begin{align*} \begin{aligned} & \langle p\cdot \nabla_x (w_{ik} + w_{kj} - (z_{ik} + z_{kj})w_{ij} ) , p\cdot \nabla_xw_{ij} \rangle \\ & \quad = \langle p\cdot \nabla_x(w_{ik} + w_{kj}), p\cdot\nabla_x w_{ij}\rangle -(z_{ik}+z_{kj})\|p\cdot \nabla_xw_{ij}\|^2 \\ & \quad = -2\|p\cdot \nabla_xw_{ij}\|^2 + (1-z_{ik} + 1-z_{kj}) \|p\cdot \nabla_xw_{ij}\|^2\\ & \quad + \langle p\cdot \nabla_x(w_{ik} + w_{kj}), p\cdot\nabla_x w_{ij}\rangle \\ & \quad \leq -2\|p\cdot \nabla_xw_{ij}\|^2 + |1-z_{ik} + 1-z_{kj}| \|p\cdot \nabla_xw_{ij}\|^2 \\ & \quad + \| p\cdot\nabla_x w_{ij} \| \big( \|p\cdot\nabla_x w_{ik}\| + \|p\cdot\nabla_x w_{kj}\|\big). \end{aligned} \end{align*} |
In (37), we collect all the estimates in Case C.1–Case C.3 to find
\begin{align} \begin{aligned} \frac{1}{2}\frac{ \mathrm{d}}{ \mathrm{d}t}\|p \cdot \nabla_x w_{ij}\|^2 & \leq - \kappa \|p\cdot \nabla_xw_{ij}\|^2 + \kappa \mathcal D(\mathcal Z) \|p\cdot \nabla_xw_{ij}\|^2 \\ & \quad + \frac{ \kappa}{2N}\sum\limits_{k = 1}^N \| p\cdot\nabla_x w_{ij} \| \big( \|p\cdot\nabla_x w_{ik}\| + \|p\cdot\nabla_x w_{kj}\|\big). \end{aligned} \end{align} | (38) |
We sum up (38) with respect to
\frac{1}{2}\frac{ \mathrm{d}}{ \mathrm{d}t} \sum\limits_{i, j = 1}^N \|p \cdot \nabla_x w_{ij}\|^2 \leq \kappa \mathcal D(\mathcal Z) \sum\limits_{i, j = 1}^N \|p \cdot \nabla_x w_{ij}\|^2. |
It follows from Corollary 1 that
In this subsection, we show that the Cauchy problem for the WL model admits a unique mild solution.
First, we rewrite (2) as a matrix form to apply the fixed point theorem. For
\begin{align} \begin{aligned} & \partial_t W + p\cdot \nabla_x W + \Theta[V](W) \\ & \quad = \frac{ \kappa}{2N} \left( E_{ij} W C_j + R_i W E_{ij} - W \int_{ \mathbb R^{2d}} ( E_{ij} W C_j + R_i W E_{ij}) \mathrm{d} x \mathrm{d} p \right), \end{aligned} \end{align} | (39) |
where
\begin{cases} {\bf{X}} : = \left\{ F = (F_{ij}) \in ( L^2( \mathbb R^{2d}) )^{\otimes N^2}\; \; :\; \; \left| \int_{ \mathbb R^{2d}} F_{ij} \mathrm{d} x \mathrm{d} p \right| < \infty, \quad i, j \in [N] \right\}, \\ \|F\|_{{\bf{X}}} : = \|F\|_{L^2( \mathbb R^{2d})^{\otimes N^2}} + \left| \int_{ \mathbb R^{2d}} F \mathrm{d} x \mathrm{d} p \right|: = \max\limits_{i, j}\bigg(\|F_{ij}\| + \left| \int_{ \mathbb R^{2d}} F_{ij} \mathrm{d} x \mathrm{d} p \right|\bigg). \end{cases} |
Then,
C([0, T]; {\bf{X}}) |
equipped with the norm
{ \vert\kern-0.25ex \vert\kern-0.25ex \vert {F} \vert\kern-0.25ex \vert\kern-0.25ex \vert}: = \sup\limits_{0 \leq t \leq T} \|F(t) \|_{{\bf{X}}}. |
Now, we are concerned with the global solvability of (39). Let
\begin{equation} \begin{cases} \partial_t W + p\cdot \nabla_x W + \Theta[V](W) \\ \quad = \frac{ \kappa}{2N} \left( E_{ij} W C_j + R_i W E_{ij} - W \int_{ \mathbb R^{2d}} ( E_{ij} G C_j + R_i G E_{ij}) \mathrm{d} x \mathrm{d} p \right), \\ W(0) = W^0. \end{cases} \end{equation} | (40) |
We need to check well-definedness and strict contraction of
● (Well-definedness of
● (Strict contraction): for
{ \vert\kern-0.25ex \vert\kern-0.25ex \vert {W- \overline W } \vert\kern-0.25ex \vert\kern-0.25ex \vert} \leq C { \vert\kern-0.25ex \vert\kern-0.25ex \vert {G -\overline G} \vert\kern-0.25ex \vert\kern-0.25ex \vert} . |
If we set
\begin{align*} &\partial_t w_{ij} + p \cdot \nabla_x w_{ij} + \Theta[V](\omega_{ij})\\& = \frac{ \kappa}{2N} \sum\limits_{k = 1}^N \left[ w_{ik} + w_{kj} - w_{ij} \left( \int_{ \mathbb R^{2d}} (g_{ik} + g_{kj}) \mathrm{d} x \mathrm{d} p \right)\right], \\ &\partial_t\overline w_{ij} + p \cdot \nabla_x \overline w_{ij} + \Theta[V](\overline \omega_{ij})\\& = \frac{ \kappa}{2N} \sum\limits_{k = 1}^N \left[ \overline w_{ik} + \overline w_{kj} - \overline w_{ij} \left( \int_{ \mathbb R^{2d}} (\overline g_{ik} + \overline g_{kj}) \mathrm{d} x \mathrm{d} p \right)\right]. \end{align*} |
For simplicity, we set
q_{ij}(t) : = \int_{ \mathbb R^{2d}} g_{ij} \mathrm{d} x \mathrm{d} p, \quad \overline q_{ij} (t) : = \int_{ \mathbb R^{2d}} \overline g_{ij} \mathrm{d} x \mathrm{d} p. |
By straightforward calculation,
\begin{equation} \frac12\frac {\mathrm{d}} {\mathrm{d}t} \max\limits_{1\leq i, j\leq N} \|w_{ij} - \overline w_{ij}\| \leq C \max\limits_{1\leq i, j\leq N} \|w_{ij} - \overline w_{ij}\| + \max\limits_{1\leq i, j\leq N} \|\omega_{ij}\| \max\limits_{1\leq i, j \leq N} \left| q_{ij} - \overline q_{ij} \right| . \end{equation} | (41) |
In addition, we observe
\begin{equation} \frac {\mathrm{d}} {\mathrm{d}t} \max\limits_{1\leq i, j\leq N} |z_{ij} - \overline z_{ij}| \leq C \max\limits_{1\leq i, j\leq N} |z_{ij} - \overline z_{ij}| + \tilde C \max\limits_{1\leq i, j\leq N} |q_{ij} - \overline q_{ij}|. \end{equation} | (42) |
It follows from Corollary 1 that
\max\limits_{1\leq i, j\leq N } \|w_{ij}(t) \| \leq \mathcal R^\infty, \quad t > 0. |
Then, (41) and (42) yield
\begin{equation} \frac {\mathrm{d}} {\mathrm{d}t} \|W- \overline W\|_{{\bf{X}}} \leq C_1 \|W- \overline W\|_{{\bf{X}}} + e^{C_2t} \|G- \overline G\|_{{\bf{X}}}, \end{equation} | (43) |
and integrate the relation (43) to find
\begin{align*} \|W- \overline W\|_{\bf{X}} \leq \|W^0- \overline W^0\|_{\bf{X}} + C_1 \int_0^t \|W- \overline W\|_{\bf{X}} \mathrm{d} s + e^{C_2T} \int_0^t \|G- \overline G \|_{\bf{X}} \mathrm{d} s. \end{align*} |
Since
\begin{align*} { \vert\kern-0.25ex \vert\kern-0.25ex \vert {W- \overline W} \vert\kern-0.25ex \vert\kern-0.25ex \vert} & = \sup\limits_{0\leq t \leq T} \|W-\overline W\|_{\bf{X}} \leq Te^{(C_1+C_2)T} \sup\limits_{0\leq t \leq T} \|G- \overline G \|_{\bf{X}}\\ & = Te^{(C_1+C_2)T} { \vert\kern-0.25ex \vert\kern-0.25ex \vert {G- \overline G} \vert\kern-0.25ex \vert\kern-0.25ex \vert}. \end{align*} |
If
W(t) = W_n(t-nT), \quad t \in [nT, (n+1)T], \quad n\geq0. |
Hence,
Next, we are concerned with a global classical solution. In order to apply Theorem A.2(2) in Appendix A for a classical solution to the Cauchy problem (2)–(3), we have to show the continuously differentiability of the coupling term containing
For
\begin{equation*} \label{E-12} (F(W))_{(i, j)}: = \frac{\kappa}{2N}\sum\limits_{k = 1}^N(z_{ik} + z_{kj})w_{ij} = \frac{ \kappa}{2N} \sum\limits_{k = 1}^N \left( \int_{ \mathbb R^{2d}} (w_{ik} + w_{kj}) \mathrm{d} x \mathrm{d} p \right)w_{ij}, \end{equation*} |
which is nonlinear with respect to the argument
Lemma 4.3. For
\begin{align*} \|F(U) - F(V)\|_{\bf{X}} \leq C\|U -V \|_{{\bf{X}}}. \end{align*} |
Then, the functional derivative, denoted by
Proof. For
\mathrm{D}F(U)(V) : = \lim\limits_{\tau \to 0} \frac{ F(U + \tau V) - F(U) }{\tau} = \frac{ \mathrm{d}}{ \mathrm{d} \tau} F(U+ \tau V) \biggl|_{\tau = 0}. |
At each point
\begin{align*} (\mathrm{D}F(U)(V))_{(i, j)} = \frac{\kappa}{2N}\sum\limits_{k = 1}^N \left(u_{ij} \int_{ \mathbb R^{2d}}(v_{ik} + v_{kj}) \mathrm{d} x \mathrm{d} p + v_{ij}\int_{ \mathbb R^{2d}}(u_{ik} + u_{kj}) \mathrm{d} x \mathrm{d} p\right). \end{align*} |
Since
\|\mathrm{D}F(U)(V) \|_{\bf{X}}\leq 2 \kappa \|U\|_{{\bf{X}}} \cdot \|V\|_{{\bf{X}}}. |
Therefore, we verified that
\|F(U) - F(V)\|_{\bf{X}} \leq \|U- V \|_{\bf{X}} \cdot \sup\limits_{t \in [0, 1]}\|\mathrm{D}F(tU + (1-t)V)\|_{ \text{op}}. |
Here,
\|F(U) - F(V)\|_{\bf{X}} \leq 2\kappa \sup\limits_{t \in [0, 1]}\|tU + (1-t)V\|_{\bf{X}} \cdot \|U - V \|_{\bf{X}}. |
This shows that
Now, we are ready to provide the second assertion of Theorem 4.1 by applying semigroup theory.
● Step A (the linear Wigner equation on
\begin{equation} \partial_t w_{ij} + p \cdot \nabla_x w_{ij} + \Theta[V](w_{ij}) = 0. \end{equation} | (44) |
Since (44) on
\|\Theta[V]w\|_{\mathcal{X}} = \|\Theta[V]w\|. |
Since
w_{ij} \in C([0, T];\mathcal{X}) \cap C^1([0, T];D(A)). |
For details, we refer the reader to [23,Theorem 1].
● Step B (the WL model on
w_{ij}\in C([0, T];\mathcal{X}) \cap C^1([0, T];D(A)), \quad i, j \in [N]. |
This completes the proof.
In this paper, we have studied the complete aggregation estimate and the global existence of the Wigner-Lohe(WL) model which describes quantum synchronization in the Wigner picture. By taking the Wigner transform on the Schrödinger-Lohe model with identical potentials, we formally derived the WL model which is an integro-differential equation. Compared to the linear Wigner equation, one of the main difficulty to deal with the WL model lies in the lack of conservation laws. However, fortunately, we can overcome the loss of several conserved quantities via collective dynamics. For the WL model, we first establish complete aggregation estimates that can be achieved with an exponential convergence rate in a priori setting. Next, we show that the WL model admits a unique global mild solution by the standard fixed point theorem and if we impose further regularity on initial data, a unique global classical solution can be obtained by using the semigroup theory. Of course, there are still lots of untouched issues. For instance, we focused on the identical WL model where external one-body potentials are assumed to be the same. Thus, the extension of collective dynamics and global solvability of the WL model with non-identical potentials are left for a future work.
In this appendix, we briefly summarize several results in [24] on the semigroup theory to show the existence of evolution equations. The first theorem deals with the bounded perturbation of a linear equation.
Theorem A.1. [24] Let
(i) A is the infinitestimal generator of a
\|T(t)\| \leq Me^{\omega t}. |
(ii)
Then,
\|S(t)\| \leq Me^{(\omega + M\|B\|)t}. |
Consider the following abstract Cauchy problem:
\begin{equation} \begin{cases} \frac{ \mathrm{d} u(t)}{ \mathrm{d}t} + Au(t) = f(t, u(t)), \quad t > t_0, \\ u(t_0) = u_0. \end{cases} \end{equation} | (45) |
In next theorem, we recall the result on the mild and classical solutions of (45).
Theorem A.2. [24] The following assertions hold.
1. Let
2. Let
Finally, we recall Gâteaux's mean value theorem. We denote the directional derivative of
Lemma A.3. [2,Proposition A.2] Let
\|f(y) - f(x) \|_Y \leq \|x-y\|_X \sup\limits_{0 \leq \theta \leq 1} \|Df(\theta x + (1-\theta)y\|_{\mathcal{L}(X, Y)}, |
where
\delta_v f(x) : = \lim\limits_{t \rightarrow \infty} \frac{f(x+tv) - f(x)}{t}. |
[1] | S. Andrilli, D. Hecker, Elementary Linear Algebra, Sixth edition, Academic Press, Cambridge, Massachusetts, US, 2022. https://doi.org/10.1016/C2019-0-03227-X |
[2] | H. Anton, C. Rorres, Elementary Linear Algebra: Applications Version, 12th edition, John Wiley & Sons, New York, US, 2013. |
[3] | S. Axler, Linear Algebra Done Right, Third edition, Springer, Berlin Heidelberg, Germany, 2015. https://doi.org/10.1007/978-3-319-11080-6 |
[4] | R. Baker, K. L. Kuttler, Linear Algebra with Applications, World Scientific, Singapore, 2021. https://doi.org/10.1142/9111 |
[5] | T. S. Blyth, E. F. Robertson, Basic Linear Algebra, Springer Science & Business Media, Berlin, Germany, 2002. https://doi.org/10.1007/978-1-4471-0681-4 |
[6] | O. Bretscher, Elementary Linear Algebra with Applications, Fifth edition, Pearson Education, London, England, UK, 2018. |
[7] | S. Boyd, L. Vandenberghe, Introduction to Applied Linear Algebra: Vectors, Matrices, and Least Squares, Cambridge University Press, Cambridge, England, UK, 2018. https://doi.org/10.1017/9781108583664 |
[8] | S. H. Friedberg, A. J. Insel, L. E. Spence, Linear Algebra, Fifth edition, Pearson Education, London, England, UK, 2013. |
[9] | R. O. Hill, Elementary Linear Algebra, Academic Press, Cambridge, Massachusetts, US, 2014. |
[10] | K. Hoffman, R. Kunze, Linear Algebra, Second edition, Pearson Education, India, 2015. |
[11] | L. Johnson, D. Riess, J. Arnold, Introduction to Linear Algebra, Fifth edition, Pearson Education, London, England, UK, 2017. |
[12] | B. Kolman, D. Hill, Elementary Linear Algebra with Applications, Ninth edition, Pearson Education, London, England, UK, 2017. |
[13] | K. L. Kuttler, Elementary Linear Algebra, Independently published, 2021. |
[14] | S. Lang, Introduction to Linear Algebra, Second edition, Springer Science & Business Media, Berlin Heidelberg, Germany, 1997. https://doi.org/10.1007/978-1-4612-1070-2 |
[15] | R. Larson, Elementary Linear Algebra, Eight edition, Cengage Learning, Boston, Massachusetts, US, 2016. |
[16] | P. D. Lax, Linear Algebra and Its Applications, Second edition, John Wiley & Sons, New York, US, 2007. |
[17] | D. C. Lay, S. R. Lay, J. McDonald, Linear Algebra and its Applications, Sixth edition, Pearson Education, London, England, UK, 2021. |
[18] | L. Mirsky, An Introduction to Linear Algebra, Dover Publications, Mineola, New York, US, 2013. |
[19] | L. Spence, A. Insel, S. Friedberg, Elementary Linear Algebra, Second edition, Pearson Education, London, England, UK, 2017. |
[20] | G. Strang, Linear Algebra and Its Applications, Fourth edition, Thomson, Brooks/Cole, Belmont, California, US, Cengage Learning, Boston, Massachusetts, US, 2006. |
[21] | T. S. Barcelos, R. Muñoz-Soto, R. Villarroel, E. Merino, I. F. Silveira, Mathematics learning through computational thinking activities: A systematic literature review, J. Universal Comput. Sci., 24 (2018), 815–845. |
[22] | M. Stephens, D. M. Kadijevich, Computational/algorithmic thinking, in Encyclopedia of Mathematics Education (Ed., S. Lerman), Springer, Cham, Switzerland, (2020), 117–123. https://doi.org/10.1007/978-3-030-15789-0_100044 |
[23] |
W. Sung, J. Ahn, J. B. Black, Introducing computational thinking to young learners: Practicing computational perspectives through embodiment in mathematics education, Technol. Knowled. Learn., 22 (2017), 443–463. https://doi.org/10.1007/s10758-017-9328-x doi: 10.1007/s10758-017-9328-x
![]() |
[24] |
D. Weintrop, E. Beheshti, M. Horn, K. Orton, K. Jona, L. Trouille, U. Wilensky, Defining computational thinking for mathematics and science classrooms, J. Sci. Educ. Technol., 25 (2016), 127–147. https://doi.org/10.1007/s10956-015-9581-5 doi: 10.1007/s10956-015-9581-5
![]() |
[25] | S. Boyd, L. Vandenberghe, Convex Optimization, Cambridge University Press, Cambridge, England, UK, 2004. https://doi.org/10.1017/CBO9780511804441 |
[26] | L. N. Trefethen, D. Bau, Numerical Linear Algebra, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, Pennsylvania, US, 1997. https://doi.org/10.1137/1.9780898719574 |
[27] | S. R. Bennett, Linear Algebra for Data Science with Examples in R, Github, San Francisco, California, US, 2021. Available from https://shainarace.github.io/LinearAlgebra/. Retrieved August 17, 2023. |
[28] | M. Cohen, Practical Linear Algebra for Data Science: From Core Concepts to Applications Using Python, O'Reilly Media, Sebastopol, California, US, 2022. |
[29] | G. H. Golub, C. F. Van Loan, Matrix Computations, John Hopkins University Press, Charles Village, Baltimore, Maryland, US, 2013. https://doi.org/10.56021/9781421407944 |
[30] | P. N. Klein, Coding the Matrix: Linear Algebra through Applications to Computer Science, Newtonian Press, Newton, Massachusetts, US, 2013. |
[31] | G. Strang, Linear Algebra and Learning from Data, Wellesley-Cambridge Press, Wellesley, Massachusetts, US, 2019. |
[32] | C. C. Aggarwal, Linear Algebra and Optimization for Machine Learning: A Textbook, Springer, Cham, Switzerland, 2020. https://doi.org/10.1007/978-3-030-40344-7 |
[33] | R. Yoshida, Linear Algebra and Its Applications with R, CRC Press, Boca Raton, Florida, US, 2021. https://doi.org/10.1201/9781003042259 |
[34] |
G. Gadanidis, R. Cendros, L. Floyd, I, Namukasa, Computational thinking in mathematics teacher education, Contempor. Issues Technol. Teacher Educ., 17 (2017), 458–477. https://doi.org/10.1163/9789004418967_008 doi: 10.1163/9789004418967_008
![]() |
[35] |
A. Yadav, C. Stephenson, H. Hong, Computational thinking for teacher education, Commun. ACM, 60 (2017), 55–62. https://doi.org/10.1145/2994591 doi: 10.1145/2994591
![]() |
[36] | H. Abdi, Singular value decomposition (SVD) and generalized singular value decomposition (GSVD), in Encyclopedia of Measurement and Statistics (Ed., N. J. Salkind), Sage Publications, Thousand Oaks, California, US, (2007), 907–912. |
[37] |
A. G. Akritas, G. I. Malaschonok, Applications of singular-value decomposition (SVD), Math. Comput. Simul., 67 (2004), 15–31. https://doi.org/10.1016/j.matcom.2004.05.005 doi: 10.1016/j.matcom.2004.05.005
![]() |
[38] |
H. Andrews, C. Patterson, Singular value decompositions and digital image processing, IEEE Transact. Acoust. Speech Signal Process., 24 (1976), 26–53. https://doi.org/10.1109/TASSP.1976.1162766 doi: 10.1109/TASSP.1976.1162766
![]() |
[39] |
E. Biglieri, K. Yao, K. Some properties of singular value decomposition and their applications to digital signal processing, Signal Process., 18 (1989), 277–289. https://doi.org/10.1016/0165-1684(89)90039-X doi: 10.1016/0165-1684(89)90039-X
![]() |
[40] | J. Bisgard, Analysis and Linear Algebra: The Singular Value Decomposition and Applications, American Mathematical Society, Providence, Rhode Island, US, 2021. https://doi.org/10.1090/stml/094 |
[41] |
S. L. Freire, T. J. Ulrych, Application of singular value decomposition to vertical seismic profiling, Geophysics, 53 (1988), 778–785. https://doi.org/10.1190/1.1442513 doi: 10.1190/1.1442513
![]() |
[42] | E. R. Henry, J. Hofrichter, Singular value decomposition: Application to analysis of experimental data, in Essential Numerical Computer Methods (Eds., L. Brand, M. L. Johnson), volume 210 of Methods in Enzymology, Academic Press, Burlington, Massachusetts, US, (1992), 129–192. https://doi.org/10.1016/0076-6879(92)10010-B |
[43] |
V. Klema, A. Laub, A. The singular value decomposition: Its computation and some applications, IEEE Transact. Autom. Control, 25(1980), 164–176. https://doi.org/10.1109/TAC.1980.1102314 doi: 10.1109/TAC.1980.1102314
![]() |
[44] | K. Lange, Singular value decomposition, in Numerical Analysis for Statisticians (Ed., K. Lange), Statistics and Computing, Springer, New York, US, (2010), 129–142. https://doi.org/10.1007/978-1-4419-5945-4_9 |
[45] |
A. A. Maciejewski, C. A. Klein, The singular value decomposition: Computation and applications to robotics, Int. J. Robot. Res., 8 (1989), 63–79. https://doi.org/10.1177/027836498900800605 doi: 10.1177/027836498900800605
![]() |
[46] |
J. Mandel, Use of the singular value decomposition in regression analysis, Am. Statist., 36 (1982), 15–24. https://doi.org/10.1080/00031305.1982.10482771 doi: 10.1080/00031305.1982.10482771
![]() |
[47] | A. Yildiz Ulus, Teaching the "diagonalization concept" in linear algebra with technology: A case study at Galatasaray University, Turkish Online J. Educ. Technology-TOJET, 12 (2013), 119–130. |
[48] | Z. Lazar, Teaching the Singular Value Decomposition of Matrices: A Computational Approach, Masters' thesis, Concordia University, Montreal, Quebec, Canada, 2012. |
[49] |
M. Zandieh, M. Wawro, C. Rasmussen, An example of inquiry in linear algebra: The roles of symbolizing and brokering, PRIMUS, 27(2017), 96–124. https://doi.org/10.1080/10511970.2016.1199618 doi: 10.1080/10511970.2016.1199618
![]() |
[50] | B. Buchberger, G. E. Collins, R. Loos, R. Albrecht, (Eds.), Computer Algebra: Symbolic and Algebraic Computation, Second edition, Springer Science & Business Media, Berlin Heidelberg, Germany, 1983. |
[51] | V. Chudnovsky, R. D. Jenks, (Eds.), Computers in Mathematics, CRC Press, Boca Raton, Florida, US, 1990. |
[52] | J. S. Cohen, Computer Algebra and Symbolic Computation: Elementary Algorithms, CRC Press, Boca Raton, Florida, US, 2002. https://doi.org/10.1201/9781439863695 |
[53] | J. S. Cohen, Computer Algebra and Symbolic Computation: Mathematical Methods, CRC Press, Boca Raton, Florida, US, 2003. https://doi.org/10.1201/9781439863701 |
[54] | J. H. Davenport, Y. Siret, É. Tournier, Computer Algebra: Systems and Algorithms for Algebraic Computation, Second edition, Academic Press, Cambridge, Massachusetts, US, 1993. |
[55] | J. T. Fey, (Ed.), Computer Algebra Systems in Secondary School Mathematics Education, National Council of Teachers of Mathematics (NCTM), Reston, Virginia, US, 2003. |
[56] |
K. J. Fuchs, Computer algebra systems in mathematics education: Teacher training programs, challenges and new aims, Zentralblatt für Didaktik der Mathematik, 35 (2003), 20–23. https://doi.org/10.1007/BF02652762 doi: 10.1007/BF02652762
![]() |
[57] | K. O. Geddes, S. R. Czapor, G. Labahn, Algorithms for Computer Algebra, Springer Science & Business Media, Berlin Heidelberg, Germany, 1992. https://doi.org/10.1007/b102438 |
[58] | J. Grabmeier, E. Kaltofen, V. Weispfenning, (Eds.), Computer Algebra Handbook: Foundations, Applications, Systems, Springer, Berlin Heidelberg, Germany, 2003. https://doi.org/10.1007/978-3-642-55826-9 |
[59] | D. Harper, C. Wooff, D. Hodgkinson, A Guide to Computer Algebra Systems, John Wiley & Sons, New York, US, 1991. |
[60] | W. Koepf, Computer Algebra: An Algorithm-Oriented Introduction, Springer Nature, Berlin Heidelberg, Germany, 2021. https://doi.org/10.1007/978-3-030-78017-3 |
[61] | E. A. Lamagna, Computer Algebra: Concepts and Techniques, CRC Press, Boca Raton, Florida, US, 2019. https://doi.org/10.1201/9781315107011 |
[62] | G. Simon, Interoperability Between Computer Algebra Systems, Wilhelm-Schickard-Institut für Informatik (WSI), Tübingen, Germany, 1996. |
[63] | N. M. Soiffer, The Design of A User Interface for Computer Algebra Systems, PhD thesis, University of California, Berkeley, California, US, 1992. |
[64] | J. von zur Gathen, J. Gerhard, Modern Computer Algebra, Third edition, Cambridge University Press, Cambridge, England, UK, 2013. https://doi.org/10.1017/CBO9781139856065 |
[65] | M. J. Wester, Computer Algebra Systems: A Practical Guide, John Wiley & Sons, New York, US, 1999. |
[66] | Z. Hannan, wxMaxima for Calculus I, wxMaxima for Calculus II, Solano Community College, Fairfield, California, US, 2015. Available from https://wxmaximafor.wordpress.com/. Last accessed August 17, 2023. |
[67] | M. Kanagasabapathy, Introduction to wxMaxima for Scientific Computations, BPB Publications, New Delhi, India, 2018. |
[68] | S. Kadry, P. Awad, Mathematics for Engineers and Science Labs Using Maxima, CRC Press, Boca Raton, Florida, US, 2019. https://doi.org/10.1201/9780429469718 |
[69] | F. Senese, Symbolic Mathematics for Chemists: A Guide for Maxima Users, John Wiley & Sons, Hoboken, New Jersey, US, 2019. |
[70] | T. K. Timberlake, J. W. Mixon, Classical Mechanics with Maxima, Springer, New York, US, 2016. https://doi.org/10.1007/978-1-4939-3207-8 |
[71] | M. L. Abell, J. P. Braselton, Mathematica by Example, Sixth edition, Academic Press, London, England, UK and Cambridge, Massachusetts, US, 2022. https://doi.org/10.1016/C2013-0-10266-8 |
[72] | A. Grozin, Introduction to Mathematica® for Physicists, Springer, Cham, Switzerland, 2014. https://doi.org/10.1007/978-3-319-00894-3 |
[73] | R. Maeder, Programming in Mathematica, Second edition, Addison-Wesley Longman Publishing, Boston, Massachusetts, US, 1991. |
[74] | M. Trott, The Mathematica Guidebook for Symbolics, Springer Science & Business Media New York, US, 2007. https://doi.org/10.1007/0-387-28815-5 |
[75] | S. Wagon, Mathematica in Action, Second edition, Springer-Verlag, New York, US, 1999. https://doi.org/10.1007/978-0-387-75477-2 |
[76] | S. Wolfram, The MATHEMATICA® Book, Fifth edition, Wolfram Media, Champaign, Illinois, US, 2003. |
[77] | M. L. Abell, J. P. Braselton, Maple by Example, Third edition, Elsevier, Burlington, Massachusetts, US, 2005. |
[78] | W. P. Fox, W. Bauldry, Advanced Problem Solving Using Maple: A First Course, Chapman and Hall/CRC Press, Boca Raton, Florida, US, 2019. https://doi.org/10.1201/9780429469633 |
[79] | W. P. Fox, W. Bauldry, Advanced Problem Solving Using Maple: Applied Mathematics, Operations Research, Business Analytics, and Decision Analysis, Chapman and Hall/CRC Press, Boca Raton, Florida, US, 2020. https://doi.org/10.1201/9780429469626 |
[80] | F. Garvan, The Maple Book, Chapman and Hall/CRC Press, Boca Raton, Florida, US, 2001. https://doi.org/10.1201/9781420035605 |
[81] | J. Carette, Understanding expression simplification, in Proceedings of the 2004 International Symposium on Symbolic and Algebraic Computation, ISSAC'04, July 4–7, 2004, Santander, Spain, (2004), 72–79. https://doi.org/10.1145/1005285.1005298 |
[82] | A. Heck, Introduction to Maple, Third edition, Springer, New York, US, 2003. https://doi.org/10.1007/978-1-4613-0023-6 |
[83] | S. Attaway, MATLAB: A Practical Introduction to Programming and Problem Solving, Sixth edition, Butterworth-Heinemann, Oxford, England, UK, 2013. https://doi.org/10.1016/C2011-0-07060-6 |
[84] | T. A. Davis, MATLAB Primer, Eight edition, CRC Press, Boca Raton, Florida, US, 2010. https://doi.org/10.1201/9781439828632 |
[85] | D. M. Etter, Introduction to MATLAB, Fourth edition, Pearson, New York, US, 2017. |
[86] | D. J. Higham, N. J. Higham, MATLAB Guide, Third edition, SIAM, Philadelphia, Pennsylvania, US, 2017. https://doi.org/10.1137/1.9781611974669 |
[87] | D. T. Valentine, B. Hahn, Essential MATLAB for Engineers and Scientists, Eight edition, Academic Press, Cambridge, Massachusetts, US, 2022. |
[88] | G. V. Bard, Sage for Undergraduates, American Mathematical Society, Providence, Rhode Island, US, 2015. https://doi.org/10.1090/mbk/143 |
[89] | C. Finch, Sage Beginner's Guide, Packt Publishing, Birmingham, England, UK, 2011. |
[90] | D. Joyner, W. Stein, Sage Tutorial, CreateSpace Independent Publishing Platform, Scotts Valley, California, US, 2008. |
[91] | V. Kumar, Basic of SageMath: Mathematics (Practical), Amazon Kindle Direct Publishing, Seattle, Washington, US, 2022. |
[92] | P. Szabó, J. Galanda, Sage math for education and research, in 2017 15th International Conference on Emerging eLearning Technologies and Applications (ICETA), Institute of Electrical and Electronics Engineers (IEEE), Manhattan, New York, US, (2017), 1–4. https://doi.org/10.1109/ICETA.2017.8102535 |
[93] | P. Zimmermann, A. Casamayou, N. Cohen, G. Connan, T. Dumont, L. Fousse, et al., in Computational Mathematics with SageMath, SIAM, Philadelphia, Pennsylvania, US, 2018. https://doi.org/10.1137/1.9781611975468 |
[94] | S. Frieder, L. Pinchetti, R. R. Griffiths, T. Salvatori, T. Lukasiewicz, P. C. Petersen, et al., Mathematical capabilities of ChatGPT, arXiv preprint, (2023). arXiv: 2301.13867. |
[95] | P. Shakarian, A. Koyyalamudi, N. Ngu, L. Mareedu, An independent evaluation of ChatGPT on mathematical word problems (MWP), arXiv preprint, arXiv: 2302.13814. |
[96] | A. Azaria, ChatGPT usage and limitations, HAL preprint, hal-03913837, 2022. https://doi.org/10.31219/osf.io/5ue7n |
[97] | A. Borji, A categorical archive of ChatGPT failures, arXiv preprint, arXiv: 2302.03494. |
[98] | X. Q. Dao, N. B. Le, ChatGPT is good but Bing Chat is better for Vietnamese students, arXiv preprint, arXiv: 2307.08272. |
[99] | P. Nguyen, P. Nguyen, P. Bruneau, L. Cao, J. Wang, H. Truong, H. Evaluation of mathematics performance of Google Bard on the mathematics test of the Vietnamese national high school graduation examination, preprint, 2023. https://doi.org/10.36227/techrxiv.23691876 |
[100] | M. M. Meerschaert, Mathematical Modeling, Fourth edition, Academic Press, Waltham, Massachusetts, US, 2013. https://doi.org/10.1016/C2010-0-66940-9 |
[101] |
J. M. Cushing, Matrix models and population dynamics, Math. Biol., 14 (2009), 47–150. https://doi.org/10.1090/pcms/014/04 doi: 10.1090/pcms/014/04
![]() |
[102] | W. E. Boyce, R. C. DiPrima, D. B. Meade, Elementary Differential Equations and Boundary Value Problems, 12th edition, John Wiley & Sons, New York, US, 2022. |
[103] | S. J. Leon, L. de Pillis, Linear Algebra with Applications, 10th edition, Pearson Education, Upper Saddle River, New Jersey, US, 2020. |
[104] |
M. P. S. Chawla, PCA and ICA processing methods for removal of artifacts and noise in electrocardiograms: A survey and comparison, Appl. Soft Comput., 11 (2011), 2216–2226. https://doi.org/10.1016/j.asoc.2010.08.001 doi: 10.1016/j.asoc.2010.08.001
![]() |
[105] | A. Cichocki, S. I. Amari, Adaptive Blind Signal and Image Processing: Learning Algorithms and Applications, John Wiley & Sons, Hoboken, New Jersey, US, 2002. https://doi.org/10.1002/0470845899 |
[106] |
M. Ringnér, What is principal component analysis?, Nat. Biotechnol., 26 (2008), 303–304. https://doi.org/10.1038/nbt0308-303 doi: 10.1038/nbt0308-303
![]() |
[107] | S. Sanei, J. A. Chambers, EEG Signal Processing and Machine Learning, John Wiley & Sons, Hoboken, New Jersey, US, 2021. https://doi.org/10.1002/9781119386957 |
[108] |
M. W. Blows, A tale of two matrices: multivariate approaches in evolutionary biology, J. Evolut. Biol., 20 (2007), 1–8. https://doi.org/10.1111/j.1420-9101.2006.01164.x doi: 10.1111/j.1420-9101.2006.01164.x
![]() |
[109] |
G. Abraham, M. Inouye, Fast principal component analysis of large-scale genome-wide data, PloS One, 9 (2014), e93766. https://doi.org/10.1371/journal.pone.0093766 doi: 10.1371/journal.pone.0093766
![]() |
[110] |
N. Duforet-Frebourg, K. Luu, G. Laval, E. Bazin, M. G. Blum, Detecting genomic signatures of natural selection with principal component analysis: Application to the 1000 genomes data, Molecular Biol. Evolut., 33 (2016), 1082–1093. https://doi.org/10.1093/molbev/msv334 doi: 10.1093/molbev/msv334
![]() |
[111] |
X. Zheng, B. S. Weir, Eigenanalysis of SNP data with an identity by descent interpretation, Theor. Population Biol., 107 (2016), 65–76. https://doi.org/10.1016/j.tpb.2015.09.004 doi: 10.1016/j.tpb.2015.09.004
![]() |
[112] |
N. Abu-Shikhah, F. Elkarmi, Medium-term electric load forecasting using singular value decomposition, Energy, 36 (2011), 4259–4271. https://doi.org/10.1016/j.energy.2011.04.017 doi: 10.1016/j.energy.2011.04.017
![]() |
[113] |
L. Cai, N. F. Thornhill, B. C. Pal, Multivariate detection of power system disturbances based on fourth order moment and singular value decomposition, IEEE Transactions on Power Systems, 32 (2017), 4289–4297. https://doi.org/10.1109/TPWRS.2016.2633321 doi: 10.1109/TPWRS.2016.2633321
![]() |
[114] | K. Ellithy, M. Shaheen, M. Al-Athba, A. Al-Subaie, S. Al-Mohannadi, S. Al-Okkah, S. Abu-Eidah, Voltage stability evaluation of real power transmission system using singular value decomposition technique, in 2008 IEEE Second International Power and Energy Conference, IEEE, Manhattan, New York, US, (2008), 1691–1695. https://doi.org/10.1109/PECON.2008.4762751 |
[115] |
A. M. A. Hamdan, An investigation of the significance of singular value decomposition in power system dynamics, Int. J. Electr. Power Energy Syst., 21 (1999), 417–424. https://doi.org/10.1016/S0142-0615(99)00011-3 doi: 10.1016/S0142-0615(99)00011-3
![]() |
[116] |
C. Madtharad, S. Premrudeepreechacharn, N. R. Watson, Power system state estimation using singular value decomposition, Electr. Power Syst. Res., 67 (2003), 99–107. https://doi.org/10.1016/S0378-7796(03)00080-4 doi: 10.1016/S0378-7796(03)00080-4
![]() |
[117] |
G. Kerschen, J. C. Golinval, Physical interpretation of the proper orthogonal modes using the singular value decomposition, J. Sound Vibr., 249 (2002), 849–865. https://doi.org/10.1006/jsvi.2001.3930 doi: 10.1006/jsvi.2001.3930
![]() |
[118] |
N. K. Mani, E. J. Haug, K. E. Atkinson, Application of singular value decomposition for analysis of mechanical system dynamics, J. Mechan. Design, 107 (1985), 82–87. https://doi.org/10.1115/1.3258699 doi: 10.1115/1.3258699
![]() |
[119] |
G. Sun, W. Li, Q. Luo, Q. Li, Modal identification of vibrating structures using singular value decomposition and nonlinear iteration based on high-speed digital image correlation, Thin-Walled Structures, 163 (2021), 107377. https://doi.org/10.1016/j.tws.2020.107377 doi: 10.1016/j.tws.2020.107377
![]() |
[120] |
C. Cloud, G. Li, E. H. Maslen, L. E. Barrett, W. C. Foiles, Practical applications of singular value decomposition in rotordynamics, Australian J. Mechan. Eng., 2 (2005), 21–32. https://doi.org/10.1080/14484846.2005.11464477 doi: 10.1080/14484846.2005.11464477
![]() |
[121] | D. W. Gu, P. Petkov, M. M. Konstantinov, Robust Control Design with MATLAB®, Springer Science & Business Media, London, England, UK, 2005. https://doi.org/10.1007/978-1-4471-4682-7 |
[122] | F. Lin, Robust Control Design: An Optimal Control Approach, John Wiley & Sons, Hoboken, New Jersey, US, 2007. https://doi.org/10.1002/9780470059579 |
[123] |
J. Ringwood, Multivariable control using the singular value decomposition in steel rolling with quantitative robustness assessment, Control Eng. Pract., 3 (1995), 495–503. https://doi.org/10.1016/0967-0661(95)00021-L doi: 10.1016/0967-0661(95)00021-L
![]() |
[124] | C. R. Smith III, Multivariable Process Control using Singular Value Decomposition, PhD dissertation, The University of Tennessee, Knoxville, Tennessee, US, 1981. |
[125] | G. Tao, Adaptive Control Design and Analysis, John Wiley & Sons, Hoboken, New Jersey, US, 2003. https://doi.org/10.1002/0471459100 |
[126] |
S. Gai, G. Yang, M. Wan, L. Wang, Denoising color images by reduced quaternion matrix singular value decomposition, Multidimen. Syst. Signal Process., 26 (2015), 307–320. https://doi.org/10.1007/s11045-013-0268-x doi: 10.1007/s11045-013-0268-x
![]() |
[127] |
E. Ganic, A. M. Eskicioglu, Robust embedding of visual watermarks using discrete wavelet transform and singular value decomposition, J. Electron. Imag., 14 (2005), 043004. https://doi.org/10.1117/1.2137650 doi: 10.1117/1.2137650
![]() |
[128] | R. C. Gonzalez, R. E. Woods, Digital Image Processing, Fourth edition, Pearson Education, New York, US, and Harlow, Essex, UK, 2018. |
[129] |
C. C. Lai, C. C. Tsai, Digital image watermarking using discrete wavelet transform and singular value decomposition, IEEE Transact. Instrument. Measur., 59 (2010), 3060–3063. https://doi.org/10.1109/TIM.2010.2066770 doi: 10.1109/TIM.2010.2066770
![]() |
[130] |
S. Malini, R. S. Moni, Image denoising using multiresolution singular value decomposition transform, Proced. Computer Sci., 46 (2015), 1708–1715. https://doi.org/10.1016/j.procs.2015.02.114 doi: 10.1016/j.procs.2015.02.114
![]() |
[131] | J. P. Pandey, S. L. Umrao, Digital image processing using singular value decomposition, in Proceedings of Second International Conference on Advanced Computing and Software Engineering (ICACSE), February 8–9, 2019, Kamla Nehru Institute of Technology, Sultanpur, India, (2019), 3. https://doi.org/10.2139/ssrn.3350278 |
[132] |
A. Rajwade, A. Rangarajan, A. Banerjee, Image denoising using the higher order singular value decomposition, IEEE Transact. Pattern Anal. Machine Intell., 35 (2012), 849–862. https://doi.org/10.1109/TPAMI.2012.140 doi: 10.1109/TPAMI.2012.140
![]() |
[133] | F. Renault, D. Nagamalai, M. Dhanuskodi, Advances in digital image processing and information technology, in Proceedings of the First International Conference in Digital Image Processing and Pattern Recognition, September 23–25, 2011, Tirunelveli, Tamil Nadu, India, (2011), 23–25. https://doi.org/10.1007/978-3-642-24055-3 |
[134] | J. Bisgard, Analysis and Linear Algebra: The Singular Value Decomposition and Applications, American Mathematical Society, Providence, Rhode Island, US, 2020. https://doi.org/10.1090/stml/094 |
[135] | A. Blum, J. Hopcroft, R. Kannan, Foundations of Data Science, Cambridge University Press, Cambridge, England, UK, 2020. https://doi.org/10.1017/9781108755528 |
[136] |
S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, R. Harshman, Indexing by latent semantic analysis, Journal of the American society for Information Science, 41 (1990), 391–407. https://doi.org/10.1002/(SICI)1097-4571(199009)41:6<391::AID-ASI1>3.0.CO;2-9 doi: 10.1002/(SICI)1097-4571(199009)41:6<391::AID-ASI1>3.0.CO;2-9
![]() |
[137] | T. Hastie, R. Tibshirani, J. H. Friedman, The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Springer, New York, US, 2009. https://doi.org/10.1007/978-0-387-84858-7 |
[138] |
Y. Koren, R. Bell, C. Volinsky, Matrix factorization techniques for recommender systems, Computer, 42 (2009), 30–37. https://doi.org/10.1109/MC.2009.263 doi: 10.1109/MC.2009.263
![]() |
[139] | X. Li, S. Wang, Y. Cai, Tutorial: Complexity analysis of singular value decomposition and its variants, arXiv preprint, arXiv: 1906.12085. |
[140] | F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, et al., Scikit-learn: Machine learning in Python, J. Machine Learn. Res., 12 (2011), 2825–2830. |
[141] |
J. B. Tenenbaum, V. D. Silva, J. C. Langford, A global geometric framework for nonlinear dimensionality reduction, Science, 290 (2000), 2319–2323. https://doi.org/10.1126/science.290.5500.2319 doi: 10.1126/science.290.5500.2319
![]() |
[142] | Z. Zhang, The singular value decomposition, applications and beyond, arXiv preprint, arXiv: 1510.08532. |
[143] | https://www.sagemath.org/ |
[144] |
S. M. D'Souza, L. N. Wood, Secondary students' resistance toward incorporating computer technology into mathematics learning, Math. Comput. Educ., 37 (2003), 284–295. https://doi.org/10.1007/978-94-6300-761-0_8 doi: 10.1007/978-94-6300-761-0_8
![]() |
[145] |
M. L. Niess, Guest Editorial: Preparing teachers to teach mathematics with technology, Contempor. Issues Technol. Teacher Educ., 6 (2006), 195–203. https://doi.org/10.1007/978-0-387-35596-2_69 doi: 10.1007/978-0-387-35596-2_69
![]() |
[146] |
Q. Li, Student and teacher views about technology: A tale of two cities?, J. Res. Center Educ. Technol., 39 (2007), 377–397. https://doi.org/10.1080/15391523.2007.10782488 doi: 10.1080/15391523.2007.10782488
![]() |
[147] | H. Crompton, Mathematics in the age of technology: There is a place for technology in the mathematics classroom, J. Res. Center Educ. Technol., 7 (2011), 54–66. |
[148] |
M. Prensky, Digital natives, digital immigrants Part 1, On the Horizon, 9 (2001), 1–6. https://doi.org/10.1108/10748120110424816 doi: 10.1108/10748120110424816
![]() |
[149] |
M. Prensky, Digital natives, digital immigrants Part 2: Do they really think differently?, On the Horizon, 9 (2001), 2–6. https://doi.org/10.1108/10748120110424843 doi: 10.1108/10748120110424843
![]() |
[150] | M. Prensky, H. sapiens digital: From digital immigrants and digital natives to digital wisdom, Innovate J. Online Educ., 5 (2009), 1–9. |
[151] | M. Prensky, Teaching Digital Natives: Partnering for Real Learning, Corwin Press, Thousand Oaks, California, US, 2010. |
1. | Muhammad Imran, Brett Allen McKinney, Azhar Iqbal Kashif Butt, Pasquale Palumbo, Saira Batool, Hassan Aftab, Optimal Control Strategies for Dengue and Malaria Co-Infection Disease Model, 2024, 13, 2227-7390, 43, 10.3390/math13010043 |