We explored some common challenges faced by undergraduate students when studying linear algebra, particularly when dealing with algorithmic thinking skills required for topics such as matrix factorization, focusing on (orthogonal) diagonalization and singular value decomposition (SVD). To address these challenges, we introduced SageMath, a Python-based open-source computer algebra system, as a supportive tool for students performing computational tasks despite its static output nature. We further examined the potential of dynamic ChatGPT, an AI-based chatbot, by requesting examples or problem-solving assistance related to (orthogonal) diagonalization or the SVD of a specific matrix. By reinforcing essential concepts in linear algebra and enhancing computational skills through effective practice, mastering these topics can become more accessible while minimizing mistakes. Although static in nature, SageMath proved valuable for confirming calculations and handling tedious computations because of its easy-to-understand syntax and accurate solutions. However, although dynamic ChatGPT may not be fully reliable for solving linear algebra problems, the errors it produces can serve as a valuable resource for improving critical thinking skills.
Citation: Natanael Karjanto. Investigating difficulties and enhancing understanding in linear algebra: Leveraging SageMath and ChatGPT for (orthogonal) diagonalization and singular value decomposition[J]. Mathematical Biosciences and Engineering, 2023, 20(9): 16551-16595. doi: 10.3934/mbe.2023738
[1] | Mehmet Kunt, Artion Kashuri, Tingsong Du, Abdul Wakil Baidar . Quantum Montgomery identity and quantum estimates of Ostrowski type inequalities. AIMS Mathematics, 2020, 5(6): 5439-5457. doi: 10.3934/math.2020349 |
[2] | Marwa M. Tharwat, Marwa M. Ahmed, Ammara Nosheen, Khuram Ali Khan, Iram Shahzadi, Dumitru Baleanu, Ahmed A. El-Deeb . Dynamic inequalities of Grüss, Ostrowski and Trapezoid type via diamond-$ \alpha $ integrals and Montgomery identity. AIMS Mathematics, 2024, 9(5): 12778-12799. doi: 10.3934/math.2024624 |
[3] | Atiqe Ur Rahman, Khuram Ali Khan, Ammara Nosheen, Muhammad Saeed, Thongchai Botmart, Nehad Ali Shah . Weighted Ostrowski type inequalities via Montgomery identity involving double integrals on time scales. AIMS Mathematics, 2022, 7(9): 16657-16672. doi: 10.3934/math.2022913 |
[4] | Bandar Bin-Mohsin, Muhammad Uzair Awan, Muhammad Zakria Javed, Sadia Talib, Hüseyin Budak, Muhammad Aslam Noor, Khalida Inayat Noor . On some classical integral inequalities in the setting of new post quantum integrals. AIMS Mathematics, 2023, 8(1): 1995-2017. doi: 10.3934/math.2023103 |
[5] | Humaira Kalsoom, Muhammad Amer Latif, Muhammad Idrees, Muhammad Arif, Zabidin Salleh . Quantum Hermite-Hadamard type inequalities for generalized strongly preinvex functions. AIMS Mathematics, 2021, 6(12): 13291-13310. doi: 10.3934/math.2021769 |
[6] | Da Shi, Ghulam Farid, Abd Elmotaleb A. M. A. Elamin, Wajida Akram, Abdullah A. Alahmari, B. A. Younis . Generalizations of some $ q $-integral inequalities of Hölder, Ostrowski and Grüss type. AIMS Mathematics, 2023, 8(10): 23459-23471. doi: 10.3934/math.20231192 |
[7] | Humaira Kalsoom, Muhammad Idrees, Artion Kashuri, Muhammad Uzair Awan, Yu-Ming Chu . Some New $(p_1p_2,q_1q_2)$-Estimates of Ostrowski-type integral inequalities via n-polynomials s-type convexity. AIMS Mathematics, 2020, 5(6): 7122-7144. doi: 10.3934/math.2020456 |
[8] | Muhammad Amer Latif, Mehmet Kunt, Sever Silvestru Dragomir, İmdat İşcan . Post-quantum trapezoid type inequalities. AIMS Mathematics, 2020, 5(4): 4011-4026. doi: 10.3934/math.2020258 |
[9] | Mustafa Gürbüz, Yakup Taşdan, Erhan Set . Ostrowski type inequalities via the Katugampola fractional integrals. AIMS Mathematics, 2020, 5(1): 42-53. doi: 10.3934/math.2020004 |
[10] | Miguel Vivas-Cortez, Muhammad Aamir Ali, Hüseyin Budak, Ifra Bashir Sial . Post-quantum Ostrowski type integral inequalities for functions of two variables. AIMS Mathematics, 2022, 7(5): 8035-8063. doi: 10.3934/math.2022448 |
We explored some common challenges faced by undergraduate students when studying linear algebra, particularly when dealing with algorithmic thinking skills required for topics such as matrix factorization, focusing on (orthogonal) diagonalization and singular value decomposition (SVD). To address these challenges, we introduced SageMath, a Python-based open-source computer algebra system, as a supportive tool for students performing computational tasks despite its static output nature. We further examined the potential of dynamic ChatGPT, an AI-based chatbot, by requesting examples or problem-solving assistance related to (orthogonal) diagonalization or the SVD of a specific matrix. By reinforcing essential concepts in linear algebra and enhancing computational skills through effective practice, mastering these topics can become more accessible while minimizing mistakes. Although static in nature, SageMath proved valuable for confirming calculations and handling tedious computations because of its easy-to-understand syntax and accurate solutions. However, although dynamic ChatGPT may not be fully reliable for solving linear algebra problems, the errors it produces can serve as a valuable resource for improving critical thinking skills.
In [4] the authors obtained the following generalization of Montgomery identity for quantum calculus.
Lemma 1. [4] (Quantum Montgomery identity) Let f:[a,b]→R, be an arbitrary function with daqf quantum integrable on [a,b], then the following quantum identity holds:
f(x)−1b−ab∫af(t)daqt=(b−a)1∫0Kq,x(t)Daqf(tb+(1−t)a)d0qt | (1.1) |
where Kq,x(t) is defined by
Kq,x(t)={qt,0≤t≤x−ab−a,qt−1,x−ab−a<t≤1. | (1.2) |
Using this identity, the authors have obtained two Ostrowski type inequalities for quantum integrals and applied it in several special cases.
Unfortunately, in the proof of this lemma an error is made when calculating the integrals involving the kernel Kq,x(t) on the interval [x−ab−a,1]. Also, in the proofs of Theorem 3 and Theorem 4 a small mistake related to the convexity of |Daqf|r is made.
In the present paper we prove that the identity (1.1) and, thus, all of the consequent results are incorrect and provide corrections for these results.
The q-derivative of a function f:[a,b]→R for q∈⟨0,1⟩ (see [5] or [2] for a=0) is given by
Daqf(x)=f(x)−f(a+q(x−a))(1−q)(x−a),forx∈⟨a,b]Daqf(a)=limx→aDaqf(x) |
We say that f:[a,b]→R is q-differentiable if limx→aDaqf(x) exists. The q-derivative is a discretization of the ordinary derivative and if f is a differentiable function then ([1,3])
limq→1 Daqf(x)=f′(x). |
Further, the q-integral of f is defined by
x∫af(t)daqt=(1−q)(x−a)∞∑k=0qkf(a+qk(x−a)), x∈[a,b]. |
If the series on the right hand-side is convergent, then the q-integral ∫xaf(t)daqt exists and f:[a,b]→R is said to be q-integrable on [a,x]. If f is continuous on [a,b] the series (1−q)(x−a)∞∑k=0qkf(a+qk(x−a)) tends to the Riemann integral of f as q→1 ([1], [3])
limq→1x∫af(t)daqt=x∫af(t)dt. |
If c∈⟨a,x⟩ the q-integral is defined by
x∫cf(t)daqt=x∫af(t)daqt−c∫af(t)daqt. |
Obviously, the q-integral depends on the values of f at the points outside the interval of integration and an important difference between the definite q-integral and Riemann integral is that even if we are integrating a function over the interval [c,x], a<c<x<b, for q-integral we have to take into account its behavior at t=a as well as its values on [a,x]. This is the main reason for mistakes made in [4] since in the proof of Lemma 1 the following error was made:
1∫x−ab−aKq,x(t)Daqf(tb+(1−t)a)d0qt=1∫0(qt−1)Daqf(tb+(1−t)a)d0qt−x−ab−a∫0(qt−1)Daqf(tb+(1−t)a)d0qt. |
But Kq,x(t)≠(qt−1) for t∈[0,1] or for t∈[0,x−ab−a], so the equality does not hold.
Now, we give a proof that the quantum Montgomery identity (1.1) is not correct, since it does not hold for all x∈[a,b]. As we shall see, the identity (1.1) is valid only if x=a+qm+1(b−a) for some m∈N∪{0}. We have
(b−a)1∫0Kq,x(t)Daqf(tb+(1−t)a)d0qt=(b−a)(1−q)∞∑k=0qkKq,x(qk)Daqf(a+qk(b−a)). |
For q∈⟨0,1⟩ let m∈N∪{0} be such that
qm+1≤x−ab−a<qm, |
in other words
m=⌈logqx−ab−a⌉−1. |
Then
Kq,x(qk)={qk+1−1,k≤m,qk+1,k≥m+1, |
and
(b−a)(1−q)∞∑k=0qkKq,x(qk)Daqf(a+qk(b−a))=(b−a)(1−q)(m∑k=0qk(qk+1−1)f(a+qk(b−a))−f(a+qk+1(b−a))(1−q)qk(b−a)+∞∑k=m+1qk(qk+1)f(a+qk(b−a))−f(a+qk+1(b−a))(1−q)qk(b−a))=−m∑k=0(f(a+qk(b−a))−f(a+qk+1(b−a)))+∞∑k=0qk+1(f(a+qk(b−a))−f(a+qk+1(b−a)))=f(a+qm+1(b−a))−f(b)+∞∑k=0qk+1(f(a+qk(b−a))−f(a+qk+1(b−a))). |
If we put S=∞∑k=0qkf(a+qk(b−a))=1(1−q)(b−a)b∫af(t)daqt, we have
∞∑k=0(qk+1)(f(a+qk(b−a))−f(a+qk+1(b−a)))=qS−(S−f(b)) |
and
1b−ab∫af(t)daqt+(b−a)1∫0Kq,x(t)Daqf(tb+(1−t)a)d0qt=1b−ab∫af(t)daqt+(f(a+qm+1(b−a))−f(b))+qS−(S−f(b))=(1−q)S+f(a+qm+1(b−a))−f(b)+qS−S+f(b)=f(a+qm+1(b−a)) |
which is obviously not equal to f(x), unless x=a+qm+1(b−a).
This is no surprise since Jackson integral takes into account only f(a+qk(x−a)) for k∈N∪{0}. Thus, we have proved the next lemma which is a corrected version of Lemma 1 from [4].
Lemma 2. (Quantum Montgomery identity) Let f:[a,b]→R, be an arbitrary function with Daqf quantum integrable on [a,b], then for all x∈⟨a,b⟩ the following quantum identity holds:
f(a+q⌈logqx−ab−a⌉(b−a))−1b−ab∫af(t)daqt=(b−a)1∫0Kq,x(t)Daqf(tb+(1−t)a)d0qt |
where Kq,x(t) is defined by
Kq,x(t)={qt,0≤t≤x−ab−a,qt−1,x−ab−a<t≤1. |
In Theorem 3 and Theorem 4 from [4] the authors have used the identity (1.1) to derive Ostrowski type inequalities for functions f for which Daqf is quantum integrable on [a,b] and |Daqf|r, r≥1 is a convex function. Since these inequalities depends on the validity of Lemma 1, our discussion invalidates all the results from [4].
More precisely, in all the inequalities an additional assumption x=a+qm(b−a) for some m∈N∪{0} should be added. In Theorems 3 and 4 |Daqf(a)|r and |Daqf(b)|r should be swapped, since in the proofs of Theorem 3 and Theorem 4, when applying the convexity of |Daqf|r the following mistake was made
|Daqf(tb+(1−t)a)|r≤t|Daqf(a)|r+(1−t)|Daqf(b)|r. |
Lastly, the integral K4(a,b,x,q) is incorrectly computed and should read:
K4(a,b,x,q)=1−q1+q(b−xb−a)+q1+q(b−xb−a)2. |
The main goal of this paper was to point out that some results in [4] are not correct. We have concentrated on Lemma 3 (Quantum Montgomery identity). The statement of that Lemma is not correct as we have shown. We also found and analyzed the mistake in the proof of Lemma 3.
However, we went one step further and stated and proved the correct version of Lemma 3 (it is Lemma 2 in our paper). We have also explained how can all inequalities derived from Quantum Montgomery identity be corrected.
Domagoj Kovačević was supported by the QuantiXLie Centre of Excellence, a project co financed by the Croatian Government and European Union through the European Regional Development Fund-the Competitiveness and Cohesion Operational Programme (Grant KK.01.1.1.01.0004).
The authors declare that they have no competing interests.
After our Correction was accepted we were contacted by the first author of [4], Professor Kunt, who suggested an alternate way to correct the results of [4].
The incorrect version of Montgomery identity from [4]
f(x)−1b−ab∫af(t)daqt=(b−a)1∫0Kq,x(t)Daqf(tb+(1−t)a)d0qt |
can be fixed in two ways: either by changing the left hand side or by changing the right hand side of this equation. In Lemma 2 we showed how to fix the identity by correcting the left hand side. This makes it easier to salvage the rest of results in [4], as all the results remain valid with the added assumption that x=a+qm(b−a) for some m∈N∪{0}.
Professor Kunt suggested correcting the right hand side of this equation to obtain the identity:
f(x)−1b−a∫baf(t)daqt=(b−a)[∫x−ab−a0qtDaqf(tb+(1−t)a)d0qt+∫1x−ab−a(qt−1)Daqf(tb+(1−t)a)d0qt]. (∗) |
By doing so, the proofs of all the remaining results have to be corrected as the bound used
|∫1x−ab−a(qt−1)Daqf(tb+(1−t)a)d0qt|≤∫1x−ab−a|(qt−1)Daqf(tb+(1−t)a)|d0qt |
does not hold for q-integrals in general. This is discussed, for example, on page 12 in [1,Section 1.3.1,Remark (ii)].
When x−ab−a=qm or equivalently x=a+qm(b−a) for some m∈N∪{0} the bound above does hold, which is why there is no need to change the rest of the results in [4] if one takes our approach. Nevertheless, we list below the results that can be obtained using identity (3.1). The results below are due to Professor Kunt.
Theorem 3 in [4] should be as follows:
Theorem 3. Let f:[a,b]→R be an arbitrary function with Daqf is quantum integrable on [a,b]. If |Daqf|r, r≥1 is a convex function, then the following quantum integral inequality holds:
|f(x)−1b−a∫baf(t)daqt|≤(b−a)[(11+q)1−1r[|Daqf(b)|r1(1+q)(1+q+q2)+|Daqf(a)|rq1+q+q2]1r+(x−ab−a)[|Daqf(b)|r(x−ab−a)11+q+|Daqf(a)|r(1−(x−ab−a)11+q)]1r] | (3.1) |
for all x∈[a,b].
Proof. Using convexity of |Daqf|r, we have that
|Daqf(tb+(1−t)a)|r≤t|Daqf(b)|r+(1−t)|Daqf(a)|r. | (3.2) |
By using (∗), quantum power mean inequality and (3.2), we have that
|f(x)−1b−a∫baf(t)daqt| | (3.3) |
=(b−a)|∫x−ab−a0qtDaqf(tb+(1−t)a)d0qt+∫1x−ab−a(qt−1)Daqf(tb+(1−t)a)d0qt|=(b−a)|∫10(qt−1)Daqf(tb+(1−t)a)d0qt+∫x−ab−a0Daqf(tb+(1−t)a)d0qt|≤(b−a)|∫10(qt−1)Daqf(tb+(1−t)a)d0qt|+|∫x−ab−a0Daqf(tb+(1−t)a)d0qt| |
≤(b−a)[∫10(1−qt)|Daqf(tb+(1−t)a)|d0qt+∫x−ab−a0|Daqf(tb+(1−t)a)|d0qt] |
≤(b−a)[(∫101−qtd0qt)1−1r(∫10(1−qt)|Daqf(tb+(1−t)a)|rd0qt)1r+(∫x−ab−a0d0qt)1−1r(∫x−ab−a0|Daqf(tb+(1−t)a)|rd0qt)1r]≤(b−a)[(∫10(1−qt)d0qt)1−1r×(|Daqf(b)|r∫10(1−qt)td0q+|Daqf(a)|r∫10(1−qt)(1−t)d0qt)1r+(∫x−ab−a0d0qt)1−1r×(|Daqf(b)|r∫x−ab−a0td0qt+|Daqf(a)|r∫x−ab−a0(1−t)d0qt)1r] |
On the other hand, calculating the following quantum integrals we have
∫10(1−qt)d0qt=(1−q)∞∑n=0qn(1−qn+1)=(1−q)[11−q−q1−q2]=11+q, | (3.4) |
∫10(1−qt)td0qt=(1−q)∞∑n=0qn[(1−qn+1)qn]=(1−q)[11−q2−q1−q3]=11+q−q1+q+q2=1(1+q)(1+q+q2), | (3.5) |
∫10(1−qt)(1−t)d0qt=∫101−qtd0qt−∫10(1−qt)td0qt=11+q−1(1+q)(1+q+q2)=q1+q+q2, | (3.6) |
∫x−ab−a0d0qt=(1−q)(x−ab−a)∞∑n=0qn=x−ab−a, | (3.7) |
∫x−ab−a0td0qt=(1−q)(x−ab−a)∞∑n=0qn(qn(x−ab−a))=(x−ab−a)211+q, | (3.8) |
∫x−ab−a0(1−t)d0qt=∫x−ab−a0d0qt−∫x−ab−a0td0qt=x−ab−a−(x−ab−a)211+q=(x−ab−a)[1−(x−ab−a)11+q]. | (3.9) |
Using (3.4)–(3.9) in (3.3), we have (3.1).
Theorem 4 in [4] should be as follows:
Theorem 4. Let f:[a,b]→R be an arbitrary function with Daqf is quantum integrable on [a,b]. If |Daqf|r, r>1 and 1r+1p=1 is convex function, then the following quantum integral inequality holds:
|f(x)−1b−a∫baf(t)daqt| | (3.10) |
≤(b−a)[(∫10(1−qt)pd0qt)1p(|Daqf(b)|r11+q+|Daqf(a)|rq1+q)1r+(x−ab−a)[|Daqf(b)|r(x−ab−a)11+q+|Daqf(a)|r(1−(x−ab−a)11+q)]1r] |
for all x∈[a,b].
Proof. By using (∗) and quantum Hölder inequality, we have
|f(x)−1b−a∫baf(t)daqt|≤(b−a)|∫10(qt−1)Daqf(tb+(1−t)a)d0qt|+|∫x−ab−a0Daqf(tb+(1−t)a)d0qt|≤(b−a)[∫10(1−qt)|Daqf(tb+(1−t)a)|d0qt+∫x−ab−a0|Daqf(tb+(1−t)a)|d0qt]≤(b−a)[(∫10(1−qt)pd0qt)1p(∫10|Daqf(tb+(1−t)a)|rd0qt)1r+(∫x−ab−a0d0qt)1p(∫x−ab−a0|Daqf(tb+(1−t)a)|rd0qt)1r]≤(b−a)[(∫10(1−qt)pd0qt)1p(∫10[t|Daqf(b)|r+(1−t)|Daqf(a)|r]d0qt)1r+(∫x−ab−a0d0qt)1p(∫x−ab−a0[t|Daqf(b)|r+(1−t)|Daqf(a)|r]d0qt)1r]≤(b−a)[(∫10(1−qt)pd0qt)1p(|Daqf(b)|r∫10td0qt+|Daqf(a)|r∫10(1−t)d0qt)1r+(∫x−ab−a0d0qt)1p(|Daqf(b)|r∫x−ab−a0td0qt+|Daqf(a)|r∫x−ab−a0(1−t)d0qt)1r]=(b−a)[(∫10(1−qt)pd0qt)1p(|Daqf(b)|r11+q+|Daqf(a)|rq1+q)1r+(x−ab−a)[|Daqf(b)|r(x−ab−a)11+q+|Daqf(a)|r(1−(x−ab−a)11+q)]1r]. |
We conclude this section by noting that the bounds obtained in the original paper [4] which, as we have previously shown, do hold with the added assumption x=a+qm(b−a) for some m∈N∪{0}, are tighter than the bounds obtained above by Professor Kunt. Professor Kunt's bounds, however, hold for all x∈[a,b].
[1] | S. Andrilli, D. Hecker, Elementary Linear Algebra, Sixth edition, Academic Press, Cambridge, Massachusetts, US, 2022. https://doi.org/10.1016/C2019-0-03227-X |
[2] | H. Anton, C. Rorres, Elementary Linear Algebra: Applications Version, 12th edition, John Wiley & Sons, New York, US, 2013. |
[3] | S. Axler, Linear Algebra Done Right, Third edition, Springer, Berlin Heidelberg, Germany, 2015. https://doi.org/10.1007/978-3-319-11080-6 |
[4] | R. Baker, K. L. Kuttler, Linear Algebra with Applications, World Scientific, Singapore, 2021. https://doi.org/10.1142/9111 |
[5] | T. S. Blyth, E. F. Robertson, Basic Linear Algebra, Springer Science & Business Media, Berlin, Germany, 2002. https://doi.org/10.1007/978-1-4471-0681-4 |
[6] | O. Bretscher, Elementary Linear Algebra with Applications, Fifth edition, Pearson Education, London, England, UK, 2018. |
[7] | S. Boyd, L. Vandenberghe, Introduction to Applied Linear Algebra: Vectors, Matrices, and Least Squares, Cambridge University Press, Cambridge, England, UK, 2018. https://doi.org/10.1017/9781108583664 |
[8] | S. H. Friedberg, A. J. Insel, L. E. Spence, Linear Algebra, Fifth edition, Pearson Education, London, England, UK, 2013. |
[9] | R. O. Hill, Elementary Linear Algebra, Academic Press, Cambridge, Massachusetts, US, 2014. |
[10] | K. Hoffman, R. Kunze, Linear Algebra, Second edition, Pearson Education, India, 2015. |
[11] | L. Johnson, D. Riess, J. Arnold, Introduction to Linear Algebra, Fifth edition, Pearson Education, London, England, UK, 2017. |
[12] | B. Kolman, D. Hill, Elementary Linear Algebra with Applications, Ninth edition, Pearson Education, London, England, UK, 2017. |
[13] | K. L. Kuttler, Elementary Linear Algebra, Independently published, 2021. |
[14] | S. Lang, Introduction to Linear Algebra, Second edition, Springer Science & Business Media, Berlin Heidelberg, Germany, 1997. https://doi.org/10.1007/978-1-4612-1070-2 |
[15] | R. Larson, Elementary Linear Algebra, Eight edition, Cengage Learning, Boston, Massachusetts, US, 2016. |
[16] | P. D. Lax, Linear Algebra and Its Applications, Second edition, John Wiley & Sons, New York, US, 2007. |
[17] | D. C. Lay, S. R. Lay, J. McDonald, Linear Algebra and its Applications, Sixth edition, Pearson Education, London, England, UK, 2021. |
[18] | L. Mirsky, An Introduction to Linear Algebra, Dover Publications, Mineola, New York, US, 2013. |
[19] | L. Spence, A. Insel, S. Friedberg, Elementary Linear Algebra, Second edition, Pearson Education, London, England, UK, 2017. |
[20] | G. Strang, Linear Algebra and Its Applications, Fourth edition, Thomson, Brooks/Cole, Belmont, California, US, Cengage Learning, Boston, Massachusetts, US, 2006. |
[21] | T. S. Barcelos, R. Muñoz-Soto, R. Villarroel, E. Merino, I. F. Silveira, Mathematics learning through computational thinking activities: A systematic literature review, J. Universal Comput. Sci., 24 (2018), 815–845. |
[22] | M. Stephens, D. M. Kadijevich, Computational/algorithmic thinking, in Encyclopedia of Mathematics Education (Ed., S. Lerman), Springer, Cham, Switzerland, (2020), 117–123. https://doi.org/10.1007/978-3-030-15789-0_100044 |
[23] |
W. Sung, J. Ahn, J. B. Black, Introducing computational thinking to young learners: Practicing computational perspectives through embodiment in mathematics education, Technol. Knowled. Learn., 22 (2017), 443–463. https://doi.org/10.1007/s10758-017-9328-x doi: 10.1007/s10758-017-9328-x
![]() |
[24] |
D. Weintrop, E. Beheshti, M. Horn, K. Orton, K. Jona, L. Trouille, U. Wilensky, Defining computational thinking for mathematics and science classrooms, J. Sci. Educ. Technol., 25 (2016), 127–147. https://doi.org/10.1007/s10956-015-9581-5 doi: 10.1007/s10956-015-9581-5
![]() |
[25] | S. Boyd, L. Vandenberghe, Convex Optimization, Cambridge University Press, Cambridge, England, UK, 2004. https://doi.org/10.1017/CBO9780511804441 |
[26] | L. N. Trefethen, D. Bau, Numerical Linear Algebra, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, Pennsylvania, US, 1997. https://doi.org/10.1137/1.9780898719574 |
[27] | S. R. Bennett, Linear Algebra for Data Science with Examples in R, Github, San Francisco, California, US, 2021. Available from https://shainarace.github.io/LinearAlgebra/. Retrieved August 17, 2023. |
[28] | M. Cohen, Practical Linear Algebra for Data Science: From Core Concepts to Applications Using Python, O'Reilly Media, Sebastopol, California, US, 2022. |
[29] | G. H. Golub, C. F. Van Loan, Matrix Computations, John Hopkins University Press, Charles Village, Baltimore, Maryland, US, 2013. https://doi.org/10.56021/9781421407944 |
[30] | P. N. Klein, Coding the Matrix: Linear Algebra through Applications to Computer Science, Newtonian Press, Newton, Massachusetts, US, 2013. |
[31] | G. Strang, Linear Algebra and Learning from Data, Wellesley-Cambridge Press, Wellesley, Massachusetts, US, 2019. |
[32] | C. C. Aggarwal, Linear Algebra and Optimization for Machine Learning: A Textbook, Springer, Cham, Switzerland, 2020. https://doi.org/10.1007/978-3-030-40344-7 |
[33] | R. Yoshida, Linear Algebra and Its Applications with R, CRC Press, Boca Raton, Florida, US, 2021. https://doi.org/10.1201/9781003042259 |
[34] |
G. Gadanidis, R. Cendros, L. Floyd, I, Namukasa, Computational thinking in mathematics teacher education, Contempor. Issues Technol. Teacher Educ., 17 (2017), 458–477. https://doi.org/10.1163/9789004418967_008 doi: 10.1163/9789004418967_008
![]() |
[35] |
A. Yadav, C. Stephenson, H. Hong, Computational thinking for teacher education, Commun. ACM, 60 (2017), 55–62. https://doi.org/10.1145/2994591 doi: 10.1145/2994591
![]() |
[36] | H. Abdi, Singular value decomposition (SVD) and generalized singular value decomposition (GSVD), in Encyclopedia of Measurement and Statistics (Ed., N. J. Salkind), Sage Publications, Thousand Oaks, California, US, (2007), 907–912. |
[37] |
A. G. Akritas, G. I. Malaschonok, Applications of singular-value decomposition (SVD), Math. Comput. Simul., 67 (2004), 15–31. https://doi.org/10.1016/j.matcom.2004.05.005 doi: 10.1016/j.matcom.2004.05.005
![]() |
[38] |
H. Andrews, C. Patterson, Singular value decompositions and digital image processing, IEEE Transact. Acoust. Speech Signal Process., 24 (1976), 26–53. https://doi.org/10.1109/TASSP.1976.1162766 doi: 10.1109/TASSP.1976.1162766
![]() |
[39] |
E. Biglieri, K. Yao, K. Some properties of singular value decomposition and their applications to digital signal processing, Signal Process., 18 (1989), 277–289. https://doi.org/10.1016/0165-1684(89)90039-X doi: 10.1016/0165-1684(89)90039-X
![]() |
[40] | J. Bisgard, Analysis and Linear Algebra: The Singular Value Decomposition and Applications, American Mathematical Society, Providence, Rhode Island, US, 2021. https://doi.org/10.1090/stml/094 |
[41] |
S. L. Freire, T. J. Ulrych, Application of singular value decomposition to vertical seismic profiling, Geophysics, 53 (1988), 778–785. https://doi.org/10.1190/1.1442513 doi: 10.1190/1.1442513
![]() |
[42] | E. R. Henry, J. Hofrichter, Singular value decomposition: Application to analysis of experimental data, in Essential Numerical Computer Methods (Eds., L. Brand, M. L. Johnson), volume 210 of Methods in Enzymology, Academic Press, Burlington, Massachusetts, US, (1992), 129–192. https://doi.org/10.1016/0076-6879(92)10010-B |
[43] |
V. Klema, A. Laub, A. The singular value decomposition: Its computation and some applications, IEEE Transact. Autom. Control, 25(1980), 164–176. https://doi.org/10.1109/TAC.1980.1102314 doi: 10.1109/TAC.1980.1102314
![]() |
[44] | K. Lange, Singular value decomposition, in Numerical Analysis for Statisticians (Ed., K. Lange), Statistics and Computing, Springer, New York, US, (2010), 129–142. https://doi.org/10.1007/978-1-4419-5945-4_9 |
[45] |
A. A. Maciejewski, C. A. Klein, The singular value decomposition: Computation and applications to robotics, Int. J. Robot. Res., 8 (1989), 63–79. https://doi.org/10.1177/027836498900800605 doi: 10.1177/027836498900800605
![]() |
[46] |
J. Mandel, Use of the singular value decomposition in regression analysis, Am. Statist., 36 (1982), 15–24. https://doi.org/10.1080/00031305.1982.10482771 doi: 10.1080/00031305.1982.10482771
![]() |
[47] | A. Yildiz Ulus, Teaching the "diagonalization concept" in linear algebra with technology: A case study at Galatasaray University, Turkish Online J. Educ. Technology-TOJET, 12 (2013), 119–130. |
[48] | Z. Lazar, Teaching the Singular Value Decomposition of Matrices: A Computational Approach, Masters' thesis, Concordia University, Montreal, Quebec, Canada, 2012. |
[49] |
M. Zandieh, M. Wawro, C. Rasmussen, An example of inquiry in linear algebra: The roles of symbolizing and brokering, PRIMUS, 27(2017), 96–124. https://doi.org/10.1080/10511970.2016.1199618 doi: 10.1080/10511970.2016.1199618
![]() |
[50] | B. Buchberger, G. E. Collins, R. Loos, R. Albrecht, (Eds.), Computer Algebra: Symbolic and Algebraic Computation, Second edition, Springer Science & Business Media, Berlin Heidelberg, Germany, 1983. |
[51] | V. Chudnovsky, R. D. Jenks, (Eds.), Computers in Mathematics, CRC Press, Boca Raton, Florida, US, 1990. |
[52] | J. S. Cohen, Computer Algebra and Symbolic Computation: Elementary Algorithms, CRC Press, Boca Raton, Florida, US, 2002. https://doi.org/10.1201/9781439863695 |
[53] | J. S. Cohen, Computer Algebra and Symbolic Computation: Mathematical Methods, CRC Press, Boca Raton, Florida, US, 2003. https://doi.org/10.1201/9781439863701 |
[54] | J. H. Davenport, Y. Siret, É. Tournier, Computer Algebra: Systems and Algorithms for Algebraic Computation, Second edition, Academic Press, Cambridge, Massachusetts, US, 1993. |
[55] | J. T. Fey, (Ed.), Computer Algebra Systems in Secondary School Mathematics Education, National Council of Teachers of Mathematics (NCTM), Reston, Virginia, US, 2003. |
[56] |
K. J. Fuchs, Computer algebra systems in mathematics education: Teacher training programs, challenges and new aims, Zentralblatt für Didaktik der Mathematik, 35 (2003), 20–23. https://doi.org/10.1007/BF02652762 doi: 10.1007/BF02652762
![]() |
[57] | K. O. Geddes, S. R. Czapor, G. Labahn, Algorithms for Computer Algebra, Springer Science & Business Media, Berlin Heidelberg, Germany, 1992. https://doi.org/10.1007/b102438 |
[58] | J. Grabmeier, E. Kaltofen, V. Weispfenning, (Eds.), Computer Algebra Handbook: Foundations, Applications, Systems, Springer, Berlin Heidelberg, Germany, 2003. https://doi.org/10.1007/978-3-642-55826-9 |
[59] | D. Harper, C. Wooff, D. Hodgkinson, A Guide to Computer Algebra Systems, John Wiley & Sons, New York, US, 1991. |
[60] | W. Koepf, Computer Algebra: An Algorithm-Oriented Introduction, Springer Nature, Berlin Heidelberg, Germany, 2021. https://doi.org/10.1007/978-3-030-78017-3 |
[61] | E. A. Lamagna, Computer Algebra: Concepts and Techniques, CRC Press, Boca Raton, Florida, US, 2019. https://doi.org/10.1201/9781315107011 |
[62] | G. Simon, Interoperability Between Computer Algebra Systems, Wilhelm-Schickard-Institut für Informatik (WSI), Tübingen, Germany, 1996. |
[63] | N. M. Soiffer, The Design of A User Interface for Computer Algebra Systems, PhD thesis, University of California, Berkeley, California, US, 1992. |
[64] | J. von zur Gathen, J. Gerhard, Modern Computer Algebra, Third edition, Cambridge University Press, Cambridge, England, UK, 2013. https://doi.org/10.1017/CBO9781139856065 |
[65] | M. J. Wester, Computer Algebra Systems: A Practical Guide, John Wiley & Sons, New York, US, 1999. |
[66] | Z. Hannan, wxMaxima for Calculus I, wxMaxima for Calculus II, Solano Community College, Fairfield, California, US, 2015. Available from https://wxmaximafor.wordpress.com/. Last accessed August 17, 2023. |
[67] | M. Kanagasabapathy, Introduction to wxMaxima for Scientific Computations, BPB Publications, New Delhi, India, 2018. |
[68] | S. Kadry, P. Awad, Mathematics for Engineers and Science Labs Using Maxima, CRC Press, Boca Raton, Florida, US, 2019. https://doi.org/10.1201/9780429469718 |
[69] | F. Senese, Symbolic Mathematics for Chemists: A Guide for Maxima Users, John Wiley & Sons, Hoboken, New Jersey, US, 2019. |
[70] | T. K. Timberlake, J. W. Mixon, Classical Mechanics with Maxima, Springer, New York, US, 2016. https://doi.org/10.1007/978-1-4939-3207-8 |
[71] | M. L. Abell, J. P. Braselton, Mathematica by Example, Sixth edition, Academic Press, London, England, UK and Cambridge, Massachusetts, US, 2022. https://doi.org/10.1016/C2013-0-10266-8 |
[72] | A. Grozin, Introduction to Mathematica® for Physicists, Springer, Cham, Switzerland, 2014. https://doi.org/10.1007/978-3-319-00894-3 |
[73] | R. Maeder, Programming in Mathematica, Second edition, Addison-Wesley Longman Publishing, Boston, Massachusetts, US, 1991. |
[74] | M. Trott, The Mathematica Guidebook for Symbolics, Springer Science & Business Media New York, US, 2007. https://doi.org/10.1007/0-387-28815-5 |
[75] | S. Wagon, Mathematica in Action, Second edition, Springer-Verlag, New York, US, 1999. https://doi.org/10.1007/978-0-387-75477-2 |
[76] | S. Wolfram, The MATHEMATICA® Book, Fifth edition, Wolfram Media, Champaign, Illinois, US, 2003. |
[77] | M. L. Abell, J. P. Braselton, Maple by Example, Third edition, Elsevier, Burlington, Massachusetts, US, 2005. |
[78] | W. P. Fox, W. Bauldry, Advanced Problem Solving Using Maple: A First Course, Chapman and Hall/CRC Press, Boca Raton, Florida, US, 2019. https://doi.org/10.1201/9780429469633 |
[79] | W. P. Fox, W. Bauldry, Advanced Problem Solving Using Maple: Applied Mathematics, Operations Research, Business Analytics, and Decision Analysis, Chapman and Hall/CRC Press, Boca Raton, Florida, US, 2020. https://doi.org/10.1201/9780429469626 |
[80] | F. Garvan, The Maple Book, Chapman and Hall/CRC Press, Boca Raton, Florida, US, 2001. https://doi.org/10.1201/9781420035605 |
[81] | J. Carette, Understanding expression simplification, in Proceedings of the 2004 International Symposium on Symbolic and Algebraic Computation, ISSAC'04, July 4–7, 2004, Santander, Spain, (2004), 72–79. https://doi.org/10.1145/1005285.1005298 |
[82] | A. Heck, Introduction to Maple, Third edition, Springer, New York, US, 2003. https://doi.org/10.1007/978-1-4613-0023-6 |
[83] | S. Attaway, MATLAB: A Practical Introduction to Programming and Problem Solving, Sixth edition, Butterworth-Heinemann, Oxford, England, UK, 2013. https://doi.org/10.1016/C2011-0-07060-6 |
[84] | T. A. Davis, MATLAB Primer, Eight edition, CRC Press, Boca Raton, Florida, US, 2010. https://doi.org/10.1201/9781439828632 |
[85] | D. M. Etter, Introduction to MATLAB, Fourth edition, Pearson, New York, US, 2017. |
[86] | D. J. Higham, N. J. Higham, MATLAB Guide, Third edition, SIAM, Philadelphia, Pennsylvania, US, 2017. https://doi.org/10.1137/1.9781611974669 |
[87] | D. T. Valentine, B. Hahn, Essential MATLAB for Engineers and Scientists, Eight edition, Academic Press, Cambridge, Massachusetts, US, 2022. |
[88] | G. V. Bard, Sage for Undergraduates, American Mathematical Society, Providence, Rhode Island, US, 2015. https://doi.org/10.1090/mbk/143 |
[89] | C. Finch, Sage Beginner's Guide, Packt Publishing, Birmingham, England, UK, 2011. |
[90] | D. Joyner, W. Stein, Sage Tutorial, CreateSpace Independent Publishing Platform, Scotts Valley, California, US, 2008. |
[91] | V. Kumar, Basic of SageMath: Mathematics (Practical), Amazon Kindle Direct Publishing, Seattle, Washington, US, 2022. |
[92] | P. Szabó, J. Galanda, Sage math for education and research, in 2017 15th International Conference on Emerging eLearning Technologies and Applications (ICETA), Institute of Electrical and Electronics Engineers (IEEE), Manhattan, New York, US, (2017), 1–4. https://doi.org/10.1109/ICETA.2017.8102535 |
[93] | P. Zimmermann, A. Casamayou, N. Cohen, G. Connan, T. Dumont, L. Fousse, et al., in Computational Mathematics with SageMath, SIAM, Philadelphia, Pennsylvania, US, 2018. https://doi.org/10.1137/1.9781611975468 |
[94] | S. Frieder, L. Pinchetti, R. R. Griffiths, T. Salvatori, T. Lukasiewicz, P. C. Petersen, et al., Mathematical capabilities of ChatGPT, arXiv preprint, (2023). arXiv: 2301.13867. |
[95] | P. Shakarian, A. Koyyalamudi, N. Ngu, L. Mareedu, An independent evaluation of ChatGPT on mathematical word problems (MWP), arXiv preprint, arXiv: 2302.13814. |
[96] | A. Azaria, ChatGPT usage and limitations, HAL preprint, hal-03913837, 2022. https://doi.org/10.31219/osf.io/5ue7n |
[97] | A. Borji, A categorical archive of ChatGPT failures, arXiv preprint, arXiv: 2302.03494. |
[98] | X. Q. Dao, N. B. Le, ChatGPT is good but Bing Chat is better for Vietnamese students, arXiv preprint, arXiv: 2307.08272. |
[99] | P. Nguyen, P. Nguyen, P. Bruneau, L. Cao, J. Wang, H. Truong, H. Evaluation of mathematics performance of Google Bard on the mathematics test of the Vietnamese national high school graduation examination, preprint, 2023. https://doi.org/10.36227/techrxiv.23691876 |
[100] | M. M. Meerschaert, Mathematical Modeling, Fourth edition, Academic Press, Waltham, Massachusetts, US, 2013. https://doi.org/10.1016/C2010-0-66940-9 |
[101] |
J. M. Cushing, Matrix models and population dynamics, Math. Biol., 14 (2009), 47–150. https://doi.org/10.1090/pcms/014/04 doi: 10.1090/pcms/014/04
![]() |
[102] | W. E. Boyce, R. C. DiPrima, D. B. Meade, Elementary Differential Equations and Boundary Value Problems, 12th edition, John Wiley & Sons, New York, US, 2022. |
[103] | S. J. Leon, L. de Pillis, Linear Algebra with Applications, 10th edition, Pearson Education, Upper Saddle River, New Jersey, US, 2020. |
[104] |
M. P. S. Chawla, PCA and ICA processing methods for removal of artifacts and noise in electrocardiograms: A survey and comparison, Appl. Soft Comput., 11 (2011), 2216–2226. https://doi.org/10.1016/j.asoc.2010.08.001 doi: 10.1016/j.asoc.2010.08.001
![]() |
[105] | A. Cichocki, S. I. Amari, Adaptive Blind Signal and Image Processing: Learning Algorithms and Applications, John Wiley & Sons, Hoboken, New Jersey, US, 2002. https://doi.org/10.1002/0470845899 |
[106] |
M. Ringnér, What is principal component analysis?, Nat. Biotechnol., 26 (2008), 303–304. https://doi.org/10.1038/nbt0308-303 doi: 10.1038/nbt0308-303
![]() |
[107] | S. Sanei, J. A. Chambers, EEG Signal Processing and Machine Learning, John Wiley & Sons, Hoboken, New Jersey, US, 2021. https://doi.org/10.1002/9781119386957 |
[108] |
M. W. Blows, A tale of two matrices: multivariate approaches in evolutionary biology, J. Evolut. Biol., 20 (2007), 1–8. https://doi.org/10.1111/j.1420-9101.2006.01164.x doi: 10.1111/j.1420-9101.2006.01164.x
![]() |
[109] |
G. Abraham, M. Inouye, Fast principal component analysis of large-scale genome-wide data, PloS One, 9 (2014), e93766. https://doi.org/10.1371/journal.pone.0093766 doi: 10.1371/journal.pone.0093766
![]() |
[110] |
N. Duforet-Frebourg, K. Luu, G. Laval, E. Bazin, M. G. Blum, Detecting genomic signatures of natural selection with principal component analysis: Application to the 1000 genomes data, Molecular Biol. Evolut., 33 (2016), 1082–1093. https://doi.org/10.1093/molbev/msv334 doi: 10.1093/molbev/msv334
![]() |
[111] |
X. Zheng, B. S. Weir, Eigenanalysis of SNP data with an identity by descent interpretation, Theor. Population Biol., 107 (2016), 65–76. https://doi.org/10.1016/j.tpb.2015.09.004 doi: 10.1016/j.tpb.2015.09.004
![]() |
[112] |
N. Abu-Shikhah, F. Elkarmi, Medium-term electric load forecasting using singular value decomposition, Energy, 36 (2011), 4259–4271. https://doi.org/10.1016/j.energy.2011.04.017 doi: 10.1016/j.energy.2011.04.017
![]() |
[113] |
L. Cai, N. F. Thornhill, B. C. Pal, Multivariate detection of power system disturbances based on fourth order moment and singular value decomposition, IEEE Transactions on Power Systems, 32 (2017), 4289–4297. https://doi.org/10.1109/TPWRS.2016.2633321 doi: 10.1109/TPWRS.2016.2633321
![]() |
[114] | K. Ellithy, M. Shaheen, M. Al-Athba, A. Al-Subaie, S. Al-Mohannadi, S. Al-Okkah, S. Abu-Eidah, Voltage stability evaluation of real power transmission system using singular value decomposition technique, in 2008 IEEE Second International Power and Energy Conference, IEEE, Manhattan, New York, US, (2008), 1691–1695. https://doi.org/10.1109/PECON.2008.4762751 |
[115] |
A. M. A. Hamdan, An investigation of the significance of singular value decomposition in power system dynamics, Int. J. Electr. Power Energy Syst., 21 (1999), 417–424. https://doi.org/10.1016/S0142-0615(99)00011-3 doi: 10.1016/S0142-0615(99)00011-3
![]() |
[116] |
C. Madtharad, S. Premrudeepreechacharn, N. R. Watson, Power system state estimation using singular value decomposition, Electr. Power Syst. Res., 67 (2003), 99–107. https://doi.org/10.1016/S0378-7796(03)00080-4 doi: 10.1016/S0378-7796(03)00080-4
![]() |
[117] |
G. Kerschen, J. C. Golinval, Physical interpretation of the proper orthogonal modes using the singular value decomposition, J. Sound Vibr., 249 (2002), 849–865. https://doi.org/10.1006/jsvi.2001.3930 doi: 10.1006/jsvi.2001.3930
![]() |
[118] |
N. K. Mani, E. J. Haug, K. E. Atkinson, Application of singular value decomposition for analysis of mechanical system dynamics, J. Mechan. Design, 107 (1985), 82–87. https://doi.org/10.1115/1.3258699 doi: 10.1115/1.3258699
![]() |
[119] |
G. Sun, W. Li, Q. Luo, Q. Li, Modal identification of vibrating structures using singular value decomposition and nonlinear iteration based on high-speed digital image correlation, Thin-Walled Structures, 163 (2021), 107377. https://doi.org/10.1016/j.tws.2020.107377 doi: 10.1016/j.tws.2020.107377
![]() |
[120] |
C. Cloud, G. Li, E. H. Maslen, L. E. Barrett, W. C. Foiles, Practical applications of singular value decomposition in rotordynamics, Australian J. Mechan. Eng., 2 (2005), 21–32. https://doi.org/10.1080/14484846.2005.11464477 doi: 10.1080/14484846.2005.11464477
![]() |
[121] | D. W. Gu, P. Petkov, M. M. Konstantinov, Robust Control Design with MATLAB®, Springer Science & Business Media, London, England, UK, 2005. https://doi.org/10.1007/978-1-4471-4682-7 |
[122] | F. Lin, Robust Control Design: An Optimal Control Approach, John Wiley & Sons, Hoboken, New Jersey, US, 2007. https://doi.org/10.1002/9780470059579 |
[123] |
J. Ringwood, Multivariable control using the singular value decomposition in steel rolling with quantitative robustness assessment, Control Eng. Pract., 3 (1995), 495–503. https://doi.org/10.1016/0967-0661(95)00021-L doi: 10.1016/0967-0661(95)00021-L
![]() |
[124] | C. R. Smith III, Multivariable Process Control using Singular Value Decomposition, PhD dissertation, The University of Tennessee, Knoxville, Tennessee, US, 1981. |
[125] | G. Tao, Adaptive Control Design and Analysis, John Wiley & Sons, Hoboken, New Jersey, US, 2003. https://doi.org/10.1002/0471459100 |
[126] |
S. Gai, G. Yang, M. Wan, L. Wang, Denoising color images by reduced quaternion matrix singular value decomposition, Multidimen. Syst. Signal Process., 26 (2015), 307–320. https://doi.org/10.1007/s11045-013-0268-x doi: 10.1007/s11045-013-0268-x
![]() |
[127] |
E. Ganic, A. M. Eskicioglu, Robust embedding of visual watermarks using discrete wavelet transform and singular value decomposition, J. Electron. Imag., 14 (2005), 043004. https://doi.org/10.1117/1.2137650 doi: 10.1117/1.2137650
![]() |
[128] | R. C. Gonzalez, R. E. Woods, Digital Image Processing, Fourth edition, Pearson Education, New York, US, and Harlow, Essex, UK, 2018. |
[129] |
C. C. Lai, C. C. Tsai, Digital image watermarking using discrete wavelet transform and singular value decomposition, IEEE Transact. Instrument. Measur., 59 (2010), 3060–3063. https://doi.org/10.1109/TIM.2010.2066770 doi: 10.1109/TIM.2010.2066770
![]() |
[130] |
S. Malini, R. S. Moni, Image denoising using multiresolution singular value decomposition transform, Proced. Computer Sci., 46 (2015), 1708–1715. https://doi.org/10.1016/j.procs.2015.02.114 doi: 10.1016/j.procs.2015.02.114
![]() |
[131] | J. P. Pandey, S. L. Umrao, Digital image processing using singular value decomposition, in Proceedings of Second International Conference on Advanced Computing and Software Engineering (ICACSE), February 8–9, 2019, Kamla Nehru Institute of Technology, Sultanpur, India, (2019), 3. https://doi.org/10.2139/ssrn.3350278 |
[132] |
A. Rajwade, A. Rangarajan, A. Banerjee, Image denoising using the higher order singular value decomposition, IEEE Transact. Pattern Anal. Machine Intell., 35 (2012), 849–862. https://doi.org/10.1109/TPAMI.2012.140 doi: 10.1109/TPAMI.2012.140
![]() |
[133] | F. Renault, D. Nagamalai, M. Dhanuskodi, Advances in digital image processing and information technology, in Proceedings of the First International Conference in Digital Image Processing and Pattern Recognition, September 23–25, 2011, Tirunelveli, Tamil Nadu, India, (2011), 23–25. https://doi.org/10.1007/978-3-642-24055-3 |
[134] | J. Bisgard, Analysis and Linear Algebra: The Singular Value Decomposition and Applications, American Mathematical Society, Providence, Rhode Island, US, 2020. https://doi.org/10.1090/stml/094 |
[135] | A. Blum, J. Hopcroft, R. Kannan, Foundations of Data Science, Cambridge University Press, Cambridge, England, UK, 2020. https://doi.org/10.1017/9781108755528 |
[136] |
S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, R. Harshman, Indexing by latent semantic analysis, Journal of the American society for Information Science, 41 (1990), 391–407. https://doi.org/10.1002/(SICI)1097-4571(199009)41:6<391::AID-ASI1>3.0.CO;2-9 doi: 10.1002/(SICI)1097-4571(199009)41:6<391::AID-ASI1>3.0.CO;2-9
![]() |
[137] | T. Hastie, R. Tibshirani, J. H. Friedman, The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Springer, New York, US, 2009. https://doi.org/10.1007/978-0-387-84858-7 |
[138] |
Y. Koren, R. Bell, C. Volinsky, Matrix factorization techniques for recommender systems, Computer, 42 (2009), 30–37. https://doi.org/10.1109/MC.2009.263 doi: 10.1109/MC.2009.263
![]() |
[139] | X. Li, S. Wang, Y. Cai, Tutorial: Complexity analysis of singular value decomposition and its variants, arXiv preprint, arXiv: 1906.12085. |
[140] | F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, et al., Scikit-learn: Machine learning in Python, J. Machine Learn. Res., 12 (2011), 2825–2830. |
[141] |
J. B. Tenenbaum, V. D. Silva, J. C. Langford, A global geometric framework for nonlinear dimensionality reduction, Science, 290 (2000), 2319–2323. https://doi.org/10.1126/science.290.5500.2319 doi: 10.1126/science.290.5500.2319
![]() |
[142] | Z. Zhang, The singular value decomposition, applications and beyond, arXiv preprint, arXiv: 1510.08532. |
[143] | https://www.sagemath.org/ |
[144] |
S. M. D'Souza, L. N. Wood, Secondary students' resistance toward incorporating computer technology into mathematics learning, Math. Comput. Educ., 37 (2003), 284–295. https://doi.org/10.1007/978-94-6300-761-0_8 doi: 10.1007/978-94-6300-761-0_8
![]() |
[145] |
M. L. Niess, Guest Editorial: Preparing teachers to teach mathematics with technology, Contempor. Issues Technol. Teacher Educ., 6 (2006), 195–203. https://doi.org/10.1007/978-0-387-35596-2_69 doi: 10.1007/978-0-387-35596-2_69
![]() |
[146] |
Q. Li, Student and teacher views about technology: A tale of two cities?, J. Res. Center Educ. Technol., 39 (2007), 377–397. https://doi.org/10.1080/15391523.2007.10782488 doi: 10.1080/15391523.2007.10782488
![]() |
[147] | H. Crompton, Mathematics in the age of technology: There is a place for technology in the mathematics classroom, J. Res. Center Educ. Technol., 7 (2011), 54–66. |
[148] |
M. Prensky, Digital natives, digital immigrants Part 1, On the Horizon, 9 (2001), 1–6. https://doi.org/10.1108/10748120110424816 doi: 10.1108/10748120110424816
![]() |
[149] |
M. Prensky, Digital natives, digital immigrants Part 2: Do they really think differently?, On the Horizon, 9 (2001), 2–6. https://doi.org/10.1108/10748120110424843 doi: 10.1108/10748120110424843
![]() |
[150] | M. Prensky, H. sapiens digital: From digital immigrants and digital natives to digital wisdom, Innovate J. Online Educ., 5 (2009), 1–9. |
[151] | M. Prensky, Teaching Digital Natives: Partnering for Real Learning, Corwin Press, Thousand Oaks, California, US, 2010. |
1. | Andrea Aglić Aljinović, Lana Horvat Dmitrović , Ana Žgaljić Keko , Cauchy-Schwarz inequality for shifted quantum integral operator, 2024, 51, 12236934, 106, 10.52846/ami.v51i1.1749 |