Loading [MathJax]/jax/element/mml/optable/MathOperators.js
Review

Investigating difficulties and enhancing understanding in linear algebra: Leveraging SageMath and ChatGPT for (orthogonal) diagonalization and singular value decomposition

  • Received: 16 May 2023 Revised: 03 August 2023 Accepted: 09 August 2023 Published: 17 August 2023
  • We explored some common challenges faced by undergraduate students when studying linear algebra, particularly when dealing with algorithmic thinking skills required for topics such as matrix factorization, focusing on (orthogonal) diagonalization and singular value decomposition (SVD). To address these challenges, we introduced SageMath, a Python-based open-source computer algebra system, as a supportive tool for students performing computational tasks despite its static output nature. We further examined the potential of dynamic ChatGPT, an AI-based chatbot, by requesting examples or problem-solving assistance related to (orthogonal) diagonalization or the SVD of a specific matrix. By reinforcing essential concepts in linear algebra and enhancing computational skills through effective practice, mastering these topics can become more accessible while minimizing mistakes. Although static in nature, SageMath proved valuable for confirming calculations and handling tedious computations because of its easy-to-understand syntax and accurate solutions. However, although dynamic ChatGPT may not be fully reliable for solving linear algebra problems, the errors it produces can serve as a valuable resource for improving critical thinking skills.

    Citation: Natanael Karjanto. Investigating difficulties and enhancing understanding in linear algebra: Leveraging SageMath and ChatGPT for (orthogonal) diagonalization and singular value decomposition[J]. Mathematical Biosciences and Engineering, 2023, 20(9): 16551-16595. doi: 10.3934/mbe.2023738

    Related Papers:

    [1] J. O. Akanni, S. Ajao, S. F. Abimbade, Fatmawati . Dynamical analysis of COVID-19 and tuberculosis co-infection using mathematical modelling approach. Mathematical Modelling and Control, 2024, 4(2): 208-229. doi: 10.3934/mmc.2024018
    [2] Mlyashimbi Helikumi, Paride O. Lolika . Dynamics and analysis of COVID-19 disease transmission: The effect of vaccination and quarantine. Mathematical Modelling and Control, 2023, 3(3): 192-209. doi: 10.3934/mmc.2023017
    [3] S. Y. Tchoumi, Y. Kouakep-Tchaptchie, D. J. Fotsa-Mbogne, J. C. Kamgang, J. M. Tchuenche . Optimal control of a malaria model with long-lasting insecticide-treated nets. Mathematical Modelling and Control, 2021, 1(4): 188-207. doi: 10.3934/mmc.2021018
    [4] Ihtisham Ul Haq, Nigar Ali, Shabir Ahmad . A fractional mathematical model for COVID-19 outbreak transmission dynamics with the impact of isolation and social distancing. Mathematical Modelling and Control, 2022, 2(4): 228-242. doi: 10.3934/mmc.2022022
    [5] Ankur Jyoti Kashyap, Arnab Jyoti Bordoloi, Fanitsha Mohan, Anuradha Devi . Dynamical analysis of an anthrax disease model in animals with nonlinear transmission rate. Mathematical Modelling and Control, 2023, 3(4): 370-386. doi: 10.3934/mmc.2023030
    [6] Alexandru Hofman, Radu Precup . On some control problems for Kolmogorov type systems. Mathematical Modelling and Control, 2022, 2(3): 90-99. doi: 10.3934/mmc.2022011
    [7] Monica Veronica Crankson, Olusegun Olotu, Ayodeji Sunday Afolabi, Afeez Abidemi . Modeling the vaccination control of bacterial meningitis transmission dynamics: a case study. Mathematical Modelling and Control, 2023, 3(4): 416-434. doi: 10.3934/mmc.2023033
    [8] Paride O. Lolika, Mlyashimbi Helikumi . Global stability analysis of a COVID-19 epidemic model with incubation delay. Mathematical Modelling and Control, 2023, 3(1): 23-38. doi: 10.3934/mmc.2023003
    [9] Eminugroho Ratna Sari, Nikken Prima Puspita, R. N. Farah . Prevention of dengue virus transmission: insights from host-vector mathematical model. Mathematical Modelling and Control, 2025, 5(2): 131-146. doi: 10.3934/mmc.2025010
    [10] Elijah B. Baloba, Baba Seidu . A mathematical model of anthrax epidemic with behavioural change. Mathematical Modelling and Control, 2022, 2(4): 243-256. doi: 10.3934/mmc.2022023
  • We explored some common challenges faced by undergraduate students when studying linear algebra, particularly when dealing with algorithmic thinking skills required for topics such as matrix factorization, focusing on (orthogonal) diagonalization and singular value decomposition (SVD). To address these challenges, we introduced SageMath, a Python-based open-source computer algebra system, as a supportive tool for students performing computational tasks despite its static output nature. We further examined the potential of dynamic ChatGPT, an AI-based chatbot, by requesting examples or problem-solving assistance related to (orthogonal) diagonalization or the SVD of a specific matrix. By reinforcing essential concepts in linear algebra and enhancing computational skills through effective practice, mastering these topics can become more accessible while minimizing mistakes. Although static in nature, SageMath proved valuable for confirming calculations and handling tedious computations because of its easy-to-understand syntax and accurate solutions. However, although dynamic ChatGPT may not be fully reliable for solving linear algebra problems, the errors it produces can serve as a valuable resource for improving critical thinking skills.



    Collective behaviors often appear in many classical oscillatory systems [1,4,7,17,18,25,27,29]. Recently, such classical synchronization dynamics has been extended to a quantum regime, and it is called quantum synchronization in literature. It is worthwhile mentioning from [19,20] that quantum synchronization has attracted many researchers in the quantum optics community due to its powerful applications in quantum information and quantum computing [8,14,15,16,21,28,33,34]. Among possible candidates describing quantum synchronization, we are interested in analytical studies on quantum synchronization via Wigner's formalism [30] that was first introduced by Wigner in 1932 in order to find quantum corrections to classical statistical mechanics. For the mathematical properties of the Wigner transform, we refer the reader to [32].

    To set up the stage, we begin with the Schördinger-Lohe (SL) model [19]. Let ψj=ψj(t,x):R+×RdC be the wave function of the quantum system situated at the j-th node whose dynamics is governed by the Cauchy problem to the SL model:

    {itψj=12Δψj+Vjψj+iκ2NNk=1(ψkψj,ψkψj,ψjψj),t>0,xRd,ψj(0,x)=ψ0j(x),j[N]:={1,,N}, (1)

    where Vj=Vj(x):RdR is a time independent potential at the j-th node, κ denotes a (uniform) nonnegative coupling strength between nodes, and , is the standard inner product in L2(Rd).

    Note that the Planck constant is assumed to be unity for simplicity. Like the classical Schrödinger equation, system (1) satisfies L2-conservation of the wave function ψj. We refer the reader to a recent review article [9] for the emergent dynamics of the SL model (1).

    In this paper, we study the emergent dynamics of the Cauchy problem to the WL model with identical potentials:

    {twij+pxwij+Θ[V](wij)=κ2NNk=1{(wkj+wik)(R2d(wik+wkj)dxdp)wij},t>0,(x,p)R2d,wij(0,x,p)=w0ij(x,p),i,j[N], (2)

    subject to initial constraints:

    R2dw0iidxdp=1,|R2dw0ijdxdp1|<1,ij[N]. (3)

    First, we recall the following definition of the emergent dynamics as follows.

    Definition 1.1. [3] System (2) exhibits complete aggregation if relative states tend to zero asymptotically.

    limtwijwmL2(R2d)=0,i,j,,m[N].

    In the sequel, we provide several comments on the Cauchy problem (2)–(3). First, the WL model (2) was first introduced in [3], and a priori asymptotic analysis has been studied only for the two-particle system with N=2. Second, one notices that (2) is equipped with the identical potential V for all i,j. In fact, potentials for the corresponding SL model (1) would be non-identical in general. However, for the simplicity of mathematical representation, identical potentials are considered in both [3] and our analysis of this work. Third, initial data are restricted to a suitable class. For (3)1, it is usually assumed for the classical Wigner equation so that conservation laws hold under the assumption. Precisely, it corresponds to the mass conservation for a classical Schrödinger equation (see Remark 1). Hence, it would be reasonable to employ (3)1. On the other hand, the assumption (3)2 does not appear in the study of the classical Wigner equation consisting of a single equation, whereas (2) contains N2 equations. Later, we will see from Corollary 1 that (3)2 guarantees the uniform L2-boundedness. We refer the reader to [5,6,10,11,13,22,23,26,35] for the Wigner and Wigner-type equations.

    The main results of this paper are two-fold. First, we provide the complete aggregation dynamics of (2) in a priori setting. Under the assumptions (3) on initial data, we can find an invariant set whose center plays the role of an asymptotically stable fixed point (see Lemma 3.2). Then, we obtain the uniform-boundedness of the L2-norm of a solution to the WL model and show that the L2-norms of all relative states tend to zero (see Corollary 1). For details, we refer to Theorem 3.1 in Section 3.

    Second, we provide a global existence theory of (2) combining the classical methods (fixed point theorem and semigroup theory) and exponential aggregation estimates. We highlight that this paper extends the results in [3] where the existence theory was not considered even for N=2, whereas a priori aggregation estimates were established only for N=2. For this, we first define a suitable function space X which is a subset of L2(R2d). Then, we recast the WL model as a first-order matrix-valued PDE on X and apply the fixed point theorem to show that the WL model admits a global mild solution. Furthermore, if more regularity assumptions on initial data are imposed, then we show tha a global classical solution can be obtained from the semigroup approach (see Theorem 4.1).

    The rest of this paper is organized as follows. In Section 2, we introduce generalized Wigner functions and the WL distribution matrix, and study their elementary properties. We also review previous results for the WL model. In Section 3, we provide complete aggregation estimates for the WL model in a priori setting. In Section 4, we show the global existence of mild and classical solutions depending on the regularity of initial data. Finally, Section 5 is devoted to a brief summary of this paper and some remaining issues for a future work. In Appendix A, we summarize classical results on the semigroup theory to be used for the global solvability in Section 4.

    Gallery of Notation: Throughout the paper, as long as there is no confusion, we simply use R2d instead of Rdx×Rdp or R2dx,p. Let f=f(x,p) and g=g(x,p) be two functions in L2(R2d). Then, the standard L2-inner product and the L2-norm are defined by

    f,g:=R2df(x,p)¯g(x,p)dxdp,f:=f,f,

    where ¯g(x,p) is the complex conjugate of g(x,p)C. We set the Fourier transform and its inverse transform as follows:

    (Fϕ)(p):=Rdϕ(x)eixpdx,(F1ϕ)(x):=1(2π)dRdϕ(p)eixpdp.

    For a given real-valued function ψ with two set of variables x,yRd, we define the Fourier transform in y variable as follows:

    (Fypψ)(x,p):=Rdψ(x,y)eiypdy.

    In this section, we introduce the N×N Wigner-Lohe (WL) distribution matrix associated with the SL model (1), and its governing model "the Wigner-Lohe model", and review the emergent behaviors of the 2×2 Wigner-Lohe model in [3].

    In this subsection, we show how the WL distribution matrix can be constructed from the SL model. For this, we first recall the generalized Wigner distribution and the pseudo-differential operator.

    Definition 2.1. [3]

    1. For any two complex-valued wave functions ψ,ϕL2(Rd), the generalized Wigner distribution w[ψ,ϕ] is defined by

    w[ψ,ϕ](x,p):=1(2π)dRdψ(x+y2)¯ϕ(xy2)eipydy,(x,p)R2d, (4)

    where ¯ψ is the complex conjugate of ψ.

    2. For VL(Rd) and wL2(R2d), we define the pseudo-differential operator Θ[V] as

    Θ[V](w)(x,p):=i(2π)dRd[V(x+y2)V(xy2)](Fpyw)(x,y)eipydy=i(2π)dR2d[V(x+y2)V(xy2)]w(x,p)ei(pp)ydpdy.

    Remark 1. Below, we give several comments on the generalized Wigner distribution and the pseudo-differential operator.

    1. The generalized Wigner distribution is complex conjugate symmetric in the sense that

    w[ϕ,ψ](x,p)=1(2π)dRdϕ(x+y2)¯ψ(xy2)eipydy=1(2π)dRd¯ψ(x+y2)ϕ(xy2)eipydybyyy=¯1(2π)dRdψ(x+y2)¯ϕ(xy2)eipydy=¯w[ψ,ϕ](x,p). (5)

    2. For the case ψ=ϕ, two definitions (4) and (5) yield the standard Wigner function [12]:

    w[ψ,ψ](x,p)=1(2π)dRdψ(x+y2)¯ψ(xy2)eipydy.

    Since w[ψ,ψ] coincide with the standard Wigner function, we simply denote

    w[ψ,ψ]=:w[ψ].

    Moreover, one can easily verify that w[ψ] is real-valued.

    3. The p-integral of w[ψ]=w[ψ,ψ] is the modulus square of ψ:

    Rdw[ψ](x,p)dp=|ψ(x)|2.

    Moreover, the (x,p)-integral of w[ψ,ϕ] is the inner product of ψ and ϕ:

    R2dw[ψ,ϕ](x,p)dxdp=1(2π)dR3dϕ(x+y2)¯ψ(xy2)eipydydxdp=Rdϕ(x)¯ψ(x)dx=ϕ,ψ.

    4. Since V is real-valued, one also has

    ¯Θ[V](w)(x,p)=i(2π)dR2d[V(x+y2)V(xy2)]ˉw(x,p)ei(pp)ydpdy=i(2π)dR2d[V(xy2)V(x+y2)]ˉw(x,p)ei(pp)ydpdy=i(2π)dR2d[V(x+y2)V(xy2)]ˉw(x,p)ei(pp)ydpdybyyy=Θ[V](¯w)(x,p).

    In the following lemma, we provide several properties of Θ[V](w) in Definition 2.1.

    Lemma 2.2. For f,gL2(R2d), one has the following relations:

    (i)R2dΘ[V](f)gdxdp=R2dΘ[V](g)fdxdp.(ii)R2dΘ[V](f)dxdp=0.

    Proof. (ⅰ) We use the change of variables:

    (p,p,y)(p,p,y)

    to yield

    R2dΘ[V](f)gdxdp=i(2π)dR4d[V(x+y2)V(xy2)]f(x,p)g(x,p)ei(pp)ydpdydxdp=i(2π)dR4d[V(xy2)V(x+y2)]f(x,p)g(x,p)ei(pp)ydpdydxdp=R2dΘ[V](g)fdxdp.

    (ⅱ) By the definition of Definition 2.1 and Fubini's theorem, we have

    R2dΘ[V](f)dxdp=i(2π)dR4d[V(x+y2)V(xy2)]f(x,p)ei(pp)ydpdydxdp=i(2π)dR3d[V(x+y2)V(xy2)]eipy(Rdf(x,p)eipydp)dydxdp=i(2π)dR3d[V(x+y2)V(xy2)](Fpyf)(x,y)eipydydxdp=iRd[V(x)V(x)](Fp0f)(x,0)dx=0.

    Remark 2. If we set f=u and g=¯u in Lemma 2.2, and recall Remark 2.2(4), then one has

    R2dΘ[V](u)ˉudxdp=R2dΘ[V](ˉu)udxdp=R2d¯Θ[V](u)udxdp=¯R2dΘ[V](u)ˉudxdp.

    This yields

    Re[R2dΘ[V](u)¯udxdp]=0.

    This fact was used in [23] to show the conservation of L2-norm for the solution to the quantum Liouville equation, which can be considered as a special case of the WL model with κ=0.

    For a given ensemble of wave functions {ψj} which is a solution to the SL model (1), we set

    wij:=w[ψi,ψj],wi:=w[ψ]=w[ψi,ψi],i,j[N].

    Then, the evolution of the WL distributions {wij} is given by the following coupled system:

    twij+pxwij=i(2π)dR2d[Vi(x+y2)Vj(xy2)]wij(x,p)ei(pp)ydpdy+κ2NNk=1[(wkj+wik)(R2dwikdxdpR2dwiidxdp+R2dwkjdxdpR2dwjjdxdp)wij]. (6)

    For the detailed derivation of (6), we refer the reader to [3]. Next, we show that system (6) admits conservation laws.

    Lemma 2.3. Let {wij} be a solution to (6) which rapidly decays to zero at infinity. Then, one has

    (i)ddtR2dwii(t,x,p)dxdp=0,t>0,i[N].

    (ii)ddtR2dwij(t,x,p)dxdp=Rd(Vi(x)Vj(x))wij(t,x,0)dx,t>0,i,j[N].

    Proof. (ⅰ) It follows from (6) that

    twii+x(pwii)+Θ[Vi](wii)=κ2NNk=1[(wki+wik)(R2dwikdxdpR2dwiidxdp+R2dwkidxdpR2dwiidxdp)wii]. (7)

    Now, we integrate (7) over (x,p)R2d and then use the zero far field assumption on wij and the second estimate of Lemma 2.3 to see

    ddtR2dwii(t,x,p)dxdp=0.

    (ⅱ) For the second assertion, we follow a similar calculation in (ⅰ).

    Remark 3. (i) Consider the linear Wigner equation:

    tw+pxw+Θ[V](w)=0.

    Then by Lemma 2.3, one has

    ddtR2dw(t,x,p)dxdp=0. (8)

    However, it is worthwhile mentioning that since w(t,x,p) can take negative values, the L1-norm of w would not be conserved in general. In fact, the relation (8) corresponds to the L2-conservation of the Schrödinger equation. If we assume that

    w=w[ψ]

    for a solution ψ to the linear Schrödinger equation, then the following relation holds (see Remark 1 (3)):

    R2dw(t,x,p)dxdp=ψ(t)2L2,t>0.

    Thus, the results in Lemma 2.3 is consistent with the classical theory for the Wigner equation.

    (ii) It follows from Moyal's identity [31] that

    w(t)2=ψ(t)4.

    Hence, the linear Wigner equation enjoys L2-conservation (but not L1-conservation).

    (iii) We have shown in Lemma 2.3 that diagonal elements {wi} satisfy conservation laws. However the off-diagonal elements do not satisfy conservation laws. Hence, conservation laws hold for system (6) with identical potentials.

    From now on, we are concerned with the following special situation:

    Vi=VandR2dw0i(x,p)dxdp=1,i[N]. (9)

    In this case, the (x,p)-integrals of {wij} are constants along the dynamics (6) (see Lemma 2.3):

    R2dwi(t,x,p)dxdp=R2dw0i(x,p)dxdp=1,t0,i[N],R2dwij(t,x,p,)dxdp=R2dw0ij(x,p)dxdp,t0,i,j[N].

    Hence, the Cauchy problem for system (6) with (9) can be further simplified as follows:

    {twij+pxwij+Θ[V](wij)=κ2NNk=1[(wik+wkj)(R2d(wik+wkj)dxdp)wij],t>0,(x,p)R2d,wij(0,x,p)=w0ij(x,p),i,j[N].

    In this subsection, we briefly recall the result from [3] for a two-body system. Extension to the many-body system will be discussed in the following two sections separately. We set

    w+12:=Re[w12],z12(t):=R2dw12(t,x,p)dxdp,R12(t):=Re[z12(t)]. (10)

    Then, (w1,w2,w12) satisfies the Cauchy problem:

    {tw1+pxw1+Θ[V](w1)=κ2(w+12R12w1),t>0,tw2+pxw2+Θ[V](w2)=κ2(w+12R12w2),tw12+pxw12+Θ[V](w12)=κ4(w1+w22z12w12),(w1(0),w2(0),w12(0))=(w01,w02,w012), (11)

    subject to constraints:

    R2dw01dxdp=R2dw02dxdp=1,|R2dw012dxdp|1,R2dw012dxdp1. (12)

    Theorem 2.4. [3] Let (w1,w2,w12) be a solution to (11)(12). Then, we have

    |1z12(t)|

    where z_{12} is defined in (10).

    Proof. (ⅰ) The first estimate follows from the following ODE:

    \dot z_{12} = \frac{\kappa}{2}(1-z_{12}^2), \quad t > 0.

    This can be integrated explicitly:

    \begin{equation} z_{12}(t) = \frac{ (1+z_{12}^0)e^{\kappa t} - (1-z_{12}^0)}{(1+z_{12}^0)e^{\kappa t} + (1-z_{12}^0)}, \quad t > 0, \end{equation} (13)

    where z_{12}^0 = z_{12}(0) . If we assume that

    \begin{equation} z_{12}^0 \in \mathbb R, \quad z_{12}^0 < -1 \quad \text{or}\quad z_{12}^0 > 1, \end{equation} (14)

    then the denominator of the right-hand side of (13) can be zero, and hence z_{12}(t) can blow up in finite-time. Precisely, there exists 0<T_* <\infty such that

    \lim\limits_{t\to T_*-} z_{12}(t) = \infty, \quad T_* = \frac1 \kappa \ln \frac{ 1-z_{12}^0}{1+z_{12}^0}.

    In other words, for initial data satisfying (14), z_{12}(t) would not be bounded. Thus, \text{Re} z_{12}^0 should be not be small enough to prevent a finite-time blow-up, and such condition is realized as (12). Of course, condition (12) would not be optimal in the sense to guarantee the finite-time blow-up.

    (ⅱ) It is easy to see that w_1-w_2 satisfies

    \begin{equation} \partial_t(w_1-w_2)+p\cdot\nabla_x(w_1-w_2)+\Theta[V](w_1-w_2) = -\frac{\kappa R_{12}}{2}(w_1-w_2). \end{equation} (15)

    We multiply (15) by 2(w_1-w_2) and integrate the resulting relation to obtain

    \begin{equation*} \frac{ \mathrm{d}}{ \mathrm{d}t}\|w_1(t)-w_2(t)\|_{L^2}^2 = -\kappa R_{12}(t)\|w_1(t)-w_2(t)\|_{L^2}^2. \end{equation*}

    Then, Grönwall's inequality and the first estimate |1-z_{12}(t)|\lesssim e^{-\kappa t} yield the desired second estimate.

    Before we close this section, we introduce elementary estimates to be used in the following sections.

    Lemma 2.5. Let y:\; \mathbb R_+ \to \mathbb R_+ be a {\mathcal C}^1 -function satisfying a differential inequality:

    \begin{equation} y' \leq \alpha_1e^{-\beta_1 t}y + \alpha_2 e^{-\beta_2 t}, \quad t > 0. \end{equation} (16)

    Then, the following assertions hold.

    1. If \alpha_i and \beta_i satisfy

    \alpha_1 < 0, \quad \beta_1 = 0, \quad \alpha_2 > 0, \quad \beta_2 > 0,

    there exist uniform positive constants C_0 and D_0>0 such that

    y(t) \leq C_0e^{-D_0 t}, \quad t \geq 0.

    2. If \alpha_i and \beta_i satisfy

    \alpha_1 > 0, \quad \beta_1 > 0, \quad \alpha_2 = 0,

    there exists a uniform constant C_1 such that

    y(t) \leq C_1 y_0, \quad t \geq 0.

    Proof. (ⅰ) By the comparison principle of ODE and method of integrating factor, we have

    y(t) \leq \left( y_0 + \frac{\alpha_2}{\alpha_1 + \beta_2}\right) e^{\alpha_1 t} - \frac{\alpha_2}{\alpha_1 + \beta_2} e^{-\beta_2t}, \quad t \geq 0.

    Hence, there exist uniform positive constants C_0 and D_0>0 such that

    y(t) \leq C_0e^{-D_0 t}, \quad t \geq 0.

    (ⅱ) We multiply (16) with the integrating factor

    \begin{equation*} \label{B-6} \exp{ \left(-\int_0^t \alpha_1 e^{-\beta_1 s} ds\right) } = \exp{ \left( -\frac{\alpha_1}{\beta_1} (1-e^{-\beta_1 t}) \right) } \end{equation*}

    to find

    y(t) \leq y_0 e^{ \frac{\alpha_1}{\beta_1} (1-e^{-\beta_1t}) } \leq e^\frac{\alpha_1}{\beta_1}y_0 = : C_1y_0, \quad t \geq 0.

    In this section, we present complete aggregation estimates for (2)–(3) in a priori setting. Our first result can be stated as follows.

    Theorem 3.1. Let w_{ij} be a sufficiently smooth solution to (2)-(3). Then, the complete aggregation emerges asymptotically:

    \begin{equation} \lim\limits_{t\to\infty} \|w_{ik} - w_{jm}\| = 0, \quad i, j, k, m \in [N]. \end{equation} (17)

    Proof. Since the proof is rather lengthy, we introduce a strategy toward the proof. We first claim:

    \lim\limits_{t\to\infty} \|w_{ik} - w_{jk} \| = 0, \quad k\neq i, j \in [N].

    For this, the key idea is to derive Grönwall's type differential inequality for \sum_{k = 1}^N \|w_{ik}-w_{jk}\|^2 . To be more specific, we will show that there exist two positive constants C_1 and C_2 such that

    \begin{equation} \frac{ \mathrm{d}}{ \mathrm{d}t} \sum\limits_{k = 1}^N \|w_{ik}-w_{jk}\|^2 \leq - \kappa \Big ( 1- C_1 e^{- \kappa t} \Big ) \sum\limits_{k = 1}^N \|w_{ik}-w_{jk}\|^2 + C_2 e^{- \kappa t}, \quad t > 0. \end{equation} (18)

    Then, we apply Lemma 2.5 to derive the desired zero convergence for \|w_{ik} - w_{jk}\| . Finally, the triangle inequality gives the desired result:

    \|w_{ik} - w_{jm} \| \leq \|w_{ik} - w_{jk} \| + \|w_{jk} - w_{jm}\| = \|w_{ik} - w_{jk} \| + \|w_{kj} - w_{mj}\|.

    The derivation of (18) will be given in Section 3.2 after some preparatory estimates in Section 3.1.

    In this subsection, we study basic estimates for (2)–(3) that will be used in the derivation of (18). We set

    \begin{equation*} \label{C-2-2} z_{ij}(t) : = \int_{\mathbb{R}^{2d}}w_{ij}(t, x, p) \mathrm{d} x \mathrm{d} p, \quad i, j \in [N], \quad t > 0. \end{equation*}

    Then, it follows from Lemma 2.3 that

    \begin{equation} z_i : = z_{ii} = 1, \quad i \in [N]. \end{equation} (19)

    On the other hand, we integrate (2) with respect to (x, p)\in \mathbb R^{2d} to find the finite-dimensional dynamics for z_{ij} :

    \begin{equation} \frac{dz_{ij}}{dt} = \frac{ \kappa}{2N} \sum\limits_{k = 1}^N (z_{ik} + z_{kj}) (1-z_{ij}), \quad t > 0. \end{equation} (20)

    Due to (19), it is natural to consider the maximal diameter for the set \{ 1-z_{ij} \} :

    \mathcal{D}({\mathcal Z}(t)) : = \max\limits_{1\leq i, j\leq N} |1-z_{ij}(t)|, \quad t > 0, \quad \mathcal D(\mathcal Z^0): = \mathcal D(\mathcal Z(0)),

    which is expected to converge to zero under a suitable condition.

    Lemma 3.2. (Existence of a positively invariant set) Let \{w_{ij}\} be a solution to (2)-(3) satisfying the relation:

    \begin{equation} \mathcal D(\mathcal Z^0) < 1. \end{equation} (21)

    Then, one has

    \mathcal D(\mathcal Z(t)) < 1, \quad t > 0.

    Proof. It follows from (20) that

    \begin{equation} \frac{ \mathrm{d}}{ \mathrm{d}t} (1 - z_{ij}) = -\frac{ \kappa}{2N} \sum\limits_{k = 1}^N (z_{ik} + z_{kj}) (1-z_{ij}), \quad t > 0. \end{equation} (22)

    Then, (22) gives

    \begin{equation} |1-z_{ij}(t)| = |1-z_{ij}^0| \exp\left[ -\frac{ \kappa}{2N} \sum\limits_{k = 1}^N \int_0^t (R_{ik} + R_{kj}) \mathrm{d} s \right], \quad t > 0, \end{equation} (23)

    where R_{ij} : = \mathrm{Re}(z_{ij}) . Now, we define a set and its supremum:

    \mathcal T: = \{ T \in (0, \infty) : \mathcal D(\mathcal Z(t)) < 1, \quad t\in [0, T)\}, \quad T_* : = \sup \mathcal{T}.

    By the assumption on initial data, the set {\mathcal T} is not empty. We claim:

    T_* = \infty.

    Suppose to the contrary, i.e.,

    T_* < \infty.

    Then, one has

    \begin{equation} \lim\limits_{t\to T_*} \mathcal D(\mathcal Z(t)) = 1. \end{equation} (24)

    On the other hand, we observe

    \max\limits_{i \neq j} |1-z_{ij}(t)| < 1\quad \Longrightarrow\quad \min\limits_{i \neq j} R_{ij}(t) > 0, \quad t\in [0, T_*).

    For t>0 , let (i_t, j_t) be the extremal indices satisfying

    \mathcal D(\mathcal Z(t)) = 1-z_{i_t j_t}.

    Hence, (23) yields

    1 = \mathcal D(\mathcal Z(T_*)) = \mathcal D(\mathcal Z^0) \exp \left[ {-\frac{ \kappa}{2N} \sum\limits_{k = 1}^N \int_0^{T_*} (R_{i_tk} + R_{kj_t} ) \mathrm{d} s} \right ] < 1,

    which contradicts (24). Since R_{ik}(t) does not blow up in finite time, one has

    T_* = \infty,

    and the set \{\mathcal D(\mathcal Z(t))<1\} is positively invariant along the flow (20).

    Remark 4. Lemma 3.2 says that if initial data satisfy (21):

    \left|\int_{\mathbb{R}^{2d}}w^0_{ij} \mathrm{d} x \mathrm{d} p - 1\right| < 1, \quad i, j\in[N],

    then one has

    \left|\int_{\mathbb{R}^{2d}}w_{ij}(t, x, p) \mathrm{d} x \mathrm{d} p - 1\right| < 1, \quad i, j\in[N], \quad t > 0.

    Thus, the (x, p) -integral of w_{ij} is uniformly bounded in time.

    As a direct consequence of Lemma 3.2, we can also show the uniform L^2 - boundedness of w_{ij} . For this, we define

    \mathcal R(\mathcal W(t)) : = \max\limits_{1\leq i, j\leq N} \|w_{ij}(t) \|, \quad t > 0.

    Corollary 1. Let w_{ij} be a solution to (2)-(3) with initial data satisfying the relation (21). Then, the following assertions hold.

    1. The functional \mathcal{D}(\mathcal{Z}(t)) decays to zero at least exponentially. In particular, one has

    \begin{equation*} \mathcal D( \mathcal Z(t)) \leq \frac{\mathcal D(\mathcal Z^0) e^{- \kappa t}}{\mathcal D(\mathcal Z^0) e^{- \kappa t} + 1 - \mathcal D(\mathcal Z^0)} \leq \frac{\mathcal D(\mathcal Z^0) }{1 - \mathcal D(\mathcal Z^0)}e^{- \kappa t}, \quad t > 0. \end{equation*}

    2. The functional \mathcal R(\mathcal W(t)) is uniformly bounded in time. Precisely, there exists a uniform positive constant {\mathcal R}^\infty such that

    \sup\limits_{0\leq t < \infty} \mathcal R(\mathcal W(t)) \leq {\mathcal R}^\infty.

    Proof. (ⅰ) It follows from (20) that

    \begin{align*} \frac {\mathrm{d}} {\mathrm{d}t} (1-z_{ij}) = - \kappa(1-z_{ij}) + \frac{ \kappa}{2N} \sum\limits_{k = 1}^N ( 1-z_{ik} + 1-z_{kj})(1-z_{ij}). \end{align*}

    Then, we find a differential inequality for \mathcal D(\mathcal Z) :

    \frac {\mathrm{d}} {\mathrm{d}t} \mathcal D(\mathcal Z) \leq - \kappa \mathcal D(\mathcal Z) + \kappa \mathcal D(\mathcal Z)^2, \quad t > 0.

    Lastly, we use initial data (21) together with the above Riccati differential inequality to give the desired result.

    (ⅱ) We multiply \overline w_{ij} with (2) and take real parts for the resulting relation to obtain

    \begin{align} \begin{aligned} & \frac12 \partial_t |w_{ij}|^2 + \frac12 p\cdot \nabla_x |w_{ij}|^2 +\text{Re}\left[ \Theta[V](w_{ij})\overline w_{ij}\right] \\ & \quad\quad\quad\quad \quad = \frac{ \kappa}{2N} \sum\limits_{k = 1}^N \mbox{Re}\left[ \Big( w_{ik} + w_{kj} - (z_{ik} + z_{kj}) w_{ij}\Big)\overline w_{ij} \right]. \end{aligned} \end{align} (25)

    Now, we integrate (25) with respect to (x, p)\in \mathbb R^{2d} to find

    \begin{align} \begin{aligned} & \frac{ \mathrm{d}}{ \mathrm{d}t} \int_{ \mathbb R^{2d}} |w_{ij}|^2 \mathrm{d} x \mathrm{d} p \\ & \quad = -\int_{ \mathbb R^{2d}}p\cdot \nabla_x |w_{ij}|^2 dx dp - \int_{ \mathbb R^{2d}} \text{Re}\left[ \overline w_{ij} \Theta[V](w_{ij}) \right] \mathrm{d} x \mathrm{d} p \\ & \quad + \frac{ \kappa}{N} \sum\limits_{k = 1}^N \int_{ \mathbb R^{2d}} \text{Re}\left[\overline w_{ij}\Big( w_{ik} + w_{kj} - (z_{ik} + z_{kj}) w_{ij}\Big)\right] \mathrm{d} x \mathrm{d} p \\ & \quad = : \mathcal I_{11} + \mathcal I_{12} + \mathcal I_{13} . \end{aligned} \end{align} (26)

    Below, we present estimates for \mathcal I_{1k}, \; k = 1, 2, 3 , respectively.

    Case A.1 (Estimate of \mathcal I_{11} ): By integration by parts, we see

    \begin{align*} \mathcal I_{11} = - \int_{ \mathbb R^{2d}}p\cdot \nabla_x |w_{ij}|^2 \mathrm{d} x \mathrm{d} p = 0. \end{align*}

    Case A.2 (Estimate of \mathcal I_{12} ): It directly follows from Remark 2 that

    \mathcal I_{12} = 0.

    Case A.3 (Estimate of \mathcal I_{13} ): We use the Cauchy-Schwarz inequality and Corollary 1 to see

    \begin{align*} &\int_{ \mathbb R^{2d}} \Big( \overline w_{ij} w_{ik} +\overline w_{ij} w_{kj} - (z_{ik} + z_{kj} )|w_{ij}|^2 \Big) \mathrm{d} x \mathrm{d} p \\ & \quad = -2\|w_{ij}\|^2 + \int_{ \mathbb R^{2d}} ( \overline w_{ij} w_{ik} + \overline w_{ij} w_{kj}) \mathrm{d} x \mathrm{d} p + (1-z_{ik} + 1-z_{kj}) \|w_{ij}\|^2 \\ & \quad \leq -2\|w_{ij}\|^2 +2 \mathcal R(\mathcal W) ^2 + 2\mathcal D(\mathcal Z) \mathcal R(\mathcal W) ^2. \end{align*}

    In (26), we collect all the estimates in Case A.1–Case A.3 to derive

    \begin{align*} \frac {\mathrm{d}} {\mathrm{d}t} \|w_{ij}\|^2 \leq -2 \kappa \|w_{ij}\|^2 + 2 \kappa\mathcal R(\mathcal W) ^2 + 2 \kappa \mathcal D(\mathcal Z) \mathcal R(\mathcal W)^2, \quad t > 0. \end{align*}

    This yields

    \begin{equation} \frac {\mathrm{d}} {\mathrm{d}t} \mathcal R(\mathcal W)^2 \leq 2 \kappa \mathcal D(\mathcal Z) \mathcal R(\mathcal W)^2, \quad t > 0. \end{equation} (27)

    Since \mathcal D(\mathcal Z) tends to zero exponentially, Lemma 2.5 and differential inequality (27) yield the desired estimate.

    In this subsection, we are ready to provide the proof of Theorem 3.1. First, we claim:

    \begin{equation} \lim\limits_{t\to\infty} \|w_{ik} - w_{jk} \| = 0, \quad k \neq i, j. \end{equation} (28)

    Note that if one verifies (28), then (17) follows from the triangle inequality:

    \|w_{ik} - w_{jm} \| \leq \|w_{ik} - w_{jk} \| + \|w_{jk} - w_{jm}\| = \|w_{ik} - w_{jk} \| + \|w_{kj} - w_{mj}\|.

    We consider the difference between w_{ik} and w_{jk} to obtain

    \begin{align} \begin{aligned} &\partial_t (w_{ik}-w_{jk}) + p \cdot \nabla_x (w_{ik}-w_{jk}) + \Theta[V](w_{ik} -w_{jk}) \\ & \quad -\frac{ \kappa}{2N} \sum\limits_{\ell = 1}^N \Big[ (w_{i\ell}-w_{j\ell}) -(z_{i\ell}w_{ik} - z_{j\ell}w_{jk}) -z_{\ell k}(w_{ik}-w_{jk}) \Big ] = 0. \end{aligned} \end{align} (29)

    Similar to the proof of Corollary 1, we multiply \overline{ w_{ik}-w_{jk}} to (29), take real parts and integrate the resulting relation with respect to (x, p)\in \mathbb R^{2d} to obtain

    \begin{align} \begin{aligned} &\frac{ \mathrm{d}}{ \mathrm{d}t} \|w_{ik}-w_{jk}\|^2 \\ & \quad = : - \int_{ \mathbb R^{2d}} p\cdot \nabla_x|w_{ik}-w_{jk}|^2 \mathrm{d} x \mathrm{d} p \\ & \quad -\int_{ \mathbb R^{2d}} 2\text{Re}\Big[ (\overline w_{ik}-\overline w_{jk})\Theta[V](w_{ik}-w_{jk}) \Big] \mathrm{d} x \mathrm{d} p \\ & \quad + \frac{ \kappa}{N} \sum\limits_{\ell = 1}^N \int_{ \mathbb R^{2d}} \text{Re}( \mathcal J_{ijk\ell}) \; \mathrm{d} x \mathrm{d} p \\ & \quad = : \mathcal I_{21} + \mathcal I_{22} +\mathcal I_{23}. \end{aligned} \end{align} (30)

    Below, we present estimates of \mathcal I_{2k}, \; k = 1, 2, 3 , respectively.

    Case B.1 (Estimates of \mathcal I_{21} and \mathcal I_{22} ): It follows from the estimates of \mathcal I_{11} and \mathcal I_{12} in Corollary 1 that

    \mathcal I_{21} = \mathcal I_{22} = 0.

    Case B.2 (Estimate of \mathcal I_{23} ): Note that

    \begin{align*} \mathcal J_{ijk\ell} & = (\overline w_{ik} - \overline w_{jk})(w_{i\ell} -w_{j\ell}) - z_{i\ell}|w_{ik}-w_{jk}|^2 \\ & \quad \quad \quad \quad \quad \quad + (z_{i\ell}-z_{j\ell})w_{jk}(\overline w_{ik} - \overline w_{jk}) -z_{\ell k} |w_{ik}-w_{jk}|^2 \\ & = (\overline w_{ik} - \overline w_{jk})(w_{i\ell} -w_{j\ell}) -(z_{i\ell} + z_{\ell k})|w_{ik}-w_{jk}|^2\\&\qquad + (z_{i\ell}-z_{j\ell})w_{jk}(\overline w_{ik} - \overline w_{jk}). \end{align*}

    In (30), we combine all the estimates Case B.1–Case B.2 to find

    \begin{align} \begin{aligned} &\frac{ \mathrm{d}}{ \mathrm{d}t} \|w_{ik}-w_{jk}\|^2 \\ & \quad \leq \frac{ \kappa}{N}\sum\limits_{\ell = 1}^N \int_{ \mathbb R^{2d}} \Big( |w_{ik}-w_{jk}||w_{i\ell}-w_{j\ell}| -\text{Re}(z_{i\ell}+z_{\ell k})|w_{ik}-w_{jk}|^2 \\ & \quad + |z_{i\ell}-z_{j\ell} ||w_{jk}| |w_{ik}-w_{jk}|\Big) \mathrm{d} x \mathrm{d} p \\ & \quad \leq \frac{ \kappa}{N}\sum\limits_{\ell = 1}^N \Big( \|w_{ik}-w_{jk}\| \|w_{i\ell}-w_{j\ell}\| -\text{Re}(z_{i\ell} + z_{\ell k})\|w_{ik}-w_{jk}\|^2 \\ & \quad + |z_{i\ell}-z_{j\ell}| \|w_{jk}\| \|w_{ik}-w_{jk}\|\Big). \end{aligned} \end{align} (31)

    If we use Corollary 1 with \alpha: = \frac{\mathcal D(\mathcal Z^0)}{ 1- \mathcal D(\mathcal Z^0)} , then (31) becomes

    \begin{align} \begin{aligned} \frac{ \mathrm{d}}{ \mathrm{d}t} \|w_{ik}-w_{jk}\|^2 &\leq -2 \kappa ( 1- \alpha e^{- \kappa t})\|w_{ik}-w_{jk}\|^2 \\ & \quad +\frac{ \kappa}{N} \sum\limits_{\ell = 1}^N \|w_{ik}-w_{jk}\| \|w_{i\ell}-w_{j\ell}\| \\ & \quad + \frac{ \kappa\mathcal R^\infty}{N} \sum\limits_{\ell = 1}^N |z_{i\ell}- z_{j\ell} | \|w_{ik} - w_{jk}\|. \end{aligned} \end{align} (32)

    We sum up (32) with respect to k \in [N] to get

    \begin{align} \begin{aligned} & \frac{ \mathrm{d}}{ \mathrm{d}t} \sum\limits_{k = 1}^N \|w_{ik}-w_{jk}\|^2 \\ &\leq -2 \kappa ( 1- \alpha e^{- \kappa t})\sum\limits_{k = 1}^N \|w_{ik}-w_{jk}\|^2 \\ & \quad +\frac{ \kappa}{N} \sum\limits_{k, \ell = 1}^N \|w_{ik}-w_{jk}\| \|w_{i\ell}-w_{j\ell}\|\\ & \quad + \frac{ \kappa\mathcal R^\infty}{N} \sum\limits_{\ell = 1}^N |z_{i\ell}- z_{j\ell} | \sum\limits_{k = 1}^N\|w_{ik} - w_{jk}\| \\ & = : -2 \kappa ( 1- \alpha e^{- \kappa t}) \sum\limits_{k = 1}^N \|w_{ik}-w_{jk}\|^2 +\mathcal I_{31} + \mathcal I_{32}. \end{aligned} \end{align} (33)

    Case C.1 (Estimate of \mathcal I_{31} ): we use the Cauchy-Schwarz inequality to see

    \begin{align} \begin{aligned} \mathcal I_{31} & = \frac{ \kappa}{N} \sum\limits_{k, \ell = 1}^N \|w_{ik}-w_{jk}\| \|w_{i\ell}-w_{j\ell}\| = \frac \kappa N \left(\sum\limits_{k = 1}^N \|w_{ik} - w_{jk}\|\right)^2\\ & \leq \kappa \sum\limits_{k = 1}^N \|w_{ik}-w_{jk}\|^2. \end{aligned} \end{align} (34)

    Case C.2 (Estimate of \mathcal I_{32} ): we use Corollary 1 to find

    \begin{equation} \mathcal I_{32} = \frac{ \kappa\mathcal R^\infty}{N} \sum\limits_{\ell = 1}^N |z_{i\ell}-1+1- z_{j\ell} | \sum\limits_{k = 1}^N\|w_{ik} - w_{jk}\| \leq 4 N \kappa |{\mathcal R}^\infty|^2 \alpha e^{- \kappa t}. \end{equation} (35)

    In (33), we combine all the estimates (34) and (35) to derive

    \begin{align*} \frac{ \mathrm{d}}{ \mathrm{d}t} \sum\limits_{k = 1}^N \|w_{ik}-w_{jk}\|^2 \leq - \kappa ( 1- 2\alpha e^{- \kappa t}) \sum\limits_{k = 1}^N \|w_{ik}-w_{jk}\|^2 + 4 N \kappa |{\mathcal R}^\infty|^2 \alpha e^{- \kappa t}. \end{align*}

    Finally, we use Lemma 2.5 to establish (28). This completes the proof of Theorem 3.1.

    In this section, we show the global existence of a unique mild solution to the Cauchy problem for the WL model (2) following the fixed point approach in [23] where a linear Wigner equation is considered. For this, we define a subset {\mathcal X} , a norm and a transport operator:

    \begin{align} \begin{aligned} &\mathcal{X}: = \left\{f \in L^2( \mathbb R^{2d}) : \; \left| \int_{ \mathbb R^{2d}} f \mathrm{d} x \mathrm{d} p \right| < \infty \right\}, \\ & \; \; \|f\|_{\mathcal{X}} : = \|f\| + \left|\int f \mathrm{d} x \mathrm{d} p\right|, \; \; A: = -p \cdot \nabla_x. \end{aligned} \end{align} (36)

    Then, it is easy to check that ({\mathcal X}, \| \cdot \|_{\mathcal X}) is a Banach space. In addition, since the transport operator A for the linear Wigner equation maps L^2( \mathbb R^{2d}) to L^2( \mathbb R^{2d}) , it is also useful to define the domain of A denoted by D(A) :

    D(A) : = \left \{f \in \mathcal{X} :p \cdot \nabla_x f \in L^2( \mathbb R^{2d}) \right \} \subseteq {\mathcal X}.

    For the WL model as a perturbation of the linear Wigner equation, it is strongly believed that D(A) is crucial for our analysis (Lemma 4.2). Now, we are ready to provide our second result on the global existence of mild and classical solutions to (2).

    Theorem 4.1. For T \in (0, \infty) , the following assertions hold.

    1. If initial data and the potential satisfy

    w_{ij}^0 \in \mathcal X, \quad i, j\in [N], \quad {{and}} \quad V \in L^{\infty}(\mathbb{R}^d),

    then there exists a unique mild solution to the Cauchy problem (2)-(3):

    w_{ij} \in {C}([0, T];\mathcal X), \quad i, j\in [N].

    2. If we impose further regularity on initial data and the potential

    w_{ij}^0 \in D(A), \quad i, j\in [N], \quad {{and}} \quad V \in L^{\infty}(\mathbb{R}^d) \cap L^{2}(\mathbb{R}^d),

    then there exists a unique classical solution to the Cauchy problem (2)-(3):

    w_{ij} \in {C}([0, T];\mathcal{X}) \cap { C}^1([0, T];D(A)), \quad i, j \in [N].

    Proof. Since the proof is rather lengthy, we provide the proofs in Section 4.2 and Section 4.3.

    In this subsection, we follow the same strategy in [23] in which the linear Wigner equation has been treated by means of the semigroup approach. First, we begin with an elementary property of the transport operator A in (36) for the WL model.

    Lemma 4.2. Let w_{ij} be a classical solution to (2)-(3). Then, the transport operator A = -p\cdot \nabla_x satisfies

    Aw_{ij} \in L^2( \mathbb R^{2d}).

    In other words, the transport operator A for (2) maps L^2( \mathbb R^{2d}) to L^2( \mathbb R^{2d}) .

    Proof. Since a solution \{w_{ij}\} to (2)-(3) belongs to L^2( \mathbb R^{2d}) in Corollary 1, it suffices to show that

    \sup\limits_{0\leq t < \infty} \|p\cdot \nabla_x w_{ij}\| < \infty, \quad i, j\in [N].

    By straightforward calculations, we observe

    \begin{align} \begin{aligned} &\frac{1}{2}\frac{ \mathrm{d}}{ \mathrm{d}t}\|p \cdot \nabla_x w_{ij}\|^2 \\ & \quad = \text{Re} \langle p\cdot \nabla_x \partial_t w_{ij}, p\cdot \nabla_xw_{ij} \rangle \\ & \quad = \mathrm{Re}\langle p \cdot \nabla_x (- p \cdot \nabla_x w_{ij}), p \cdot \nabla_x w_{ij} \rangle - \langle p \cdot \nabla_x (\Theta w_{ij}), p \cdot \nabla_x w_{ij} \rangle\\ & \quad + \frac{ \kappa}{2N} \sum\limits_{k = 1}^N \text{Re} \langle p\cdot \nabla_x (w_{ik} + w_{kj} - (z_{ik} + z_{kj})w_{ij} ) , p\cdot \nabla_xw_{ij} \rangle \\ & \quad = : \mathcal{I}_{41} + \mathcal{I}_{42} + \mathcal{I}_{43}. \end{aligned} \end{align} (37)

    Below, we estimate \mathcal I_{4k}, \; k = 1, 2, 3 one by one.

    Case C.1 (Estimate of \mathcal I_{41} ): we use integration by parts to find

    \begin{align*} & -\langle p \cdot \nabla_x ( p \cdot \nabla_x w_{ij}), p \cdot \nabla_x w_{ij} \rangle = -\left \langle \sum\limits_{j = 1}^N p_j \partial_j (p \cdot \nabla_x w_{ij}), p \cdot \nabla_x w_{ij}\right \rangle\\ & \quad = \left \langle p \cdot \nabla_x w_{ij}, \sum\limits_{j = 1}^N p_j \partial_j (p \cdot \nabla_x w_{ij})\right \rangle = \overline{\langle p \cdot \nabla_x ( p \cdot \nabla_x w_{ij}), p \cdot \nabla_x w_{ij} \rangle}. \end{align*}

    Hence, we see that \mathcal I_{41} vanishes:

    \mathcal I_{41} = 0.

    Case C.2 (Estimate of \mathcal I_{42} ): since \Theta[V] and -A commute particularly for w_{ij} , we get

    \begin{align*} \langle p \cdot \nabla_x (\Theta w_{ij}), p \cdot \nabla_x w_{ij} \rangle = \langle \Theta[V]( p\cdot \nabla_xw_{ij}), p\cdot \nabla_x w_{ij}\rangle. \end{align*}

    By the skew-Hermitian property of \Theta[V] in Remark 1, one has

    \mathcal I_{42} = 0.

    Case C.3 (Estimate of \mathcal I_{43} ): for the summand in \mathcal I_{43}

    \begin{align*} \begin{aligned} & \langle p\cdot \nabla_x (w_{ik} + w_{kj} - (z_{ik} + z_{kj})w_{ij} ) , p\cdot \nabla_xw_{ij} \rangle \\ & \quad = \langle p\cdot \nabla_x(w_{ik} + w_{kj}), p\cdot\nabla_x w_{ij}\rangle -(z_{ik}+z_{kj})\|p\cdot \nabla_xw_{ij}\|^2 \\ & \quad = -2\|p\cdot \nabla_xw_{ij}\|^2 + (1-z_{ik} + 1-z_{kj}) \|p\cdot \nabla_xw_{ij}\|^2\\ & \quad + \langle p\cdot \nabla_x(w_{ik} + w_{kj}), p\cdot\nabla_x w_{ij}\rangle \\ & \quad \leq -2\|p\cdot \nabla_xw_{ij}\|^2 + |1-z_{ik} + 1-z_{kj}| \|p\cdot \nabla_xw_{ij}\|^2 \\ & \quad + \| p\cdot\nabla_x w_{ij} \| \big( \|p\cdot\nabla_x w_{ik}\| + \|p\cdot\nabla_x w_{kj}\|\big). \end{aligned} \end{align*}

    In (37), we collect all the estimates in Case C.1–Case C.3 to find

    \begin{align} \begin{aligned} \frac{1}{2}\frac{ \mathrm{d}}{ \mathrm{d}t}\|p \cdot \nabla_x w_{ij}\|^2 & \leq - \kappa \|p\cdot \nabla_xw_{ij}\|^2 + \kappa \mathcal D(\mathcal Z) \|p\cdot \nabla_xw_{ij}\|^2 \\ & \quad + \frac{ \kappa}{2N}\sum\limits_{k = 1}^N \| p\cdot\nabla_x w_{ij} \| \big( \|p\cdot\nabla_x w_{ik}\| + \|p\cdot\nabla_x w_{kj}\|\big). \end{aligned} \end{align} (38)

    We sum up (38) with respect to i, j\in [N] and use the Cauchy-Schwarz inequality for the last term to derive

    \frac{1}{2}\frac{ \mathrm{d}}{ \mathrm{d}t} \sum\limits_{i, j = 1}^N \|p \cdot \nabla_x w_{ij}\|^2 \leq \kappa \mathcal D(\mathcal Z) \sum\limits_{i, j = 1}^N \|p \cdot \nabla_x w_{ij}\|^2.

    It follows from Corollary 1 that \mathcal D(\mathcal Z) tends to zero exponentially fast and Lemma 2.5 gives the desired uniform boundedness.

    In this subsection, we show that the Cauchy problem for the WL model admits a unique mild solution.

    First, we rewrite (2) as a matrix form to apply the fixed point theorem. For W = (w_{ij})_{(i, j)} ,

    \begin{align} \begin{aligned} & \partial_t W + p\cdot \nabla_x W + \Theta[V](W) \\ & \quad = \frac{ \kappa}{2N} \left( E_{ij} W C_j + R_i W E_{ij} - W \int_{ \mathbb R^{2d}} ( E_{ij} W C_j + R_i W E_{ij}) \mathrm{d} x \mathrm{d} p \right), \end{aligned} \end{align} (39)

    where E_{ij} is an N\times N matrix whose entries are all zero except for (i, j) -component being 1, R_i is an N\times N matrix whose elements in i -th row are all one, and C_j is an N\times N matrix whose elements in j -th column are all one. Here, \Theta[V](W) is understood as an N\times N matrix whose (i, j) -th component is \Theta[V](w_{ij}) , and the integral in the right-hand side is defined in a similar way. For N^2 copies of the function space \mathcal X in (36), we define a set and its norm:

    \begin{cases} {\bf{X}} : = \left\{ F = (F_{ij}) \in ( L^2( \mathbb R^{2d}) )^{\otimes N^2}\; \; :\; \; \left| \int_{ \mathbb R^{2d}} F_{ij} \mathrm{d} x \mathrm{d} p \right| < \infty, \quad i, j \in [N] \right\}, \\ \|F\|_{{\bf{X}}} : = \|F\|_{L^2( \mathbb R^{2d})^{\otimes N^2}} + \left| \int_{ \mathbb R^{2d}} F \mathrm{d} x \mathrm{d} p \right|: = \max\limits_{i, j}\bigg(\|F_{ij}\| + \left| \int_{ \mathbb R^{2d}} F_{ij} \mathrm{d} x \mathrm{d} p \right|\bigg). \end{cases}

    Then, {\bf{X}} becomes a Banach space. For the time variable, we use the sup norm. Thus, we consider the Banach space

    C([0, T]; {\bf{X}})

    equipped with the norm

    { \vert\kern-0.25ex \vert\kern-0.25ex \vert {F} \vert\kern-0.25ex \vert\kern-0.25ex \vert}: = \sup\limits_{0 \leq t \leq T} \|F(t) \|_{{\bf{X}}}.

    Now, we are concerned with the global solvability of (39). Let T>0 (to be determined later) and consider a map \mathcal T:{\bf{X}} \to {\bf{X}} defined by the following prescription: for each G\in {\bf{X}} , the function W = \mathcal TG is a solution to the Cauchy problem:

    \begin{equation} \begin{cases} \partial_t W + p\cdot \nabla_x W + \Theta[V](W) \\ \quad = \frac{ \kappa}{2N} \left( E_{ij} W C_j + R_i W E_{ij} - W \int_{ \mathbb R^{2d}} ( E_{ij} G C_j + R_i G E_{ij}) \mathrm{d} x \mathrm{d} p \right), \\ W(0) = W^0. \end{cases} \end{equation} (40)

    We need to check well-definedness and strict contraction of \mathcal T .

    ● (Well-definedness of \mathcal T ): It suffices to show that for G \in {\bf{X}} , its image W = \mathcal TG also belongs to {\bf{X}} . As done in Corollary 1, we multiply \overline W with (40), take real parts and integrate the resulting relation with respect to (x, p)\in \mathbb R^{2d} to verify that W\in {\bf{X}} .

    ● (Strict contraction): for \overline G \in \mathcal X with \overline W = \mathcal T \overline G , our goal is to find a constant C \in (0, 1) such that

    { \vert\kern-0.25ex \vert\kern-0.25ex \vert {W- \overline W } \vert\kern-0.25ex \vert\kern-0.25ex \vert} \leq C { \vert\kern-0.25ex \vert\kern-0.25ex \vert {G -\overline G} \vert\kern-0.25ex \vert\kern-0.25ex \vert} .

    If we set \overline W = (\overline w_{ij}) and \overline G = (\overline g_{ij}) , then

    \begin{align*} &\partial_t w_{ij} + p \cdot \nabla_x w_{ij} + \Theta[V](\omega_{ij})\\& = \frac{ \kappa}{2N} \sum\limits_{k = 1}^N \left[ w_{ik} + w_{kj} - w_{ij} \left( \int_{ \mathbb R^{2d}} (g_{ik} + g_{kj}) \mathrm{d} x \mathrm{d} p \right)\right], \\ &\partial_t\overline w_{ij} + p \cdot \nabla_x \overline w_{ij} + \Theta[V](\overline \omega_{ij})\\& = \frac{ \kappa}{2N} \sum\limits_{k = 1}^N \left[ \overline w_{ik} + \overline w_{kj} - \overline w_{ij} \left( \int_{ \mathbb R^{2d}} (\overline g_{ik} + \overline g_{kj}) \mathrm{d} x \mathrm{d} p \right)\right]. \end{align*}

    For simplicity, we set

    q_{ij}(t) : = \int_{ \mathbb R^{2d}} g_{ij} \mathrm{d} x \mathrm{d} p, \quad \overline q_{ij} (t) : = \int_{ \mathbb R^{2d}} \overline g_{ij} \mathrm{d} x \mathrm{d} p.

    By straightforward calculation,

    \begin{equation} \frac12\frac {\mathrm{d}} {\mathrm{d}t} \max\limits_{1\leq i, j\leq N} \|w_{ij} - \overline w_{ij}\| \leq C \max\limits_{1\leq i, j\leq N} \|w_{ij} - \overline w_{ij}\| + \max\limits_{1\leq i, j\leq N} \|\omega_{ij}\| \max\limits_{1\leq i, j \leq N} \left| q_{ij} - \overline q_{ij} \right| . \end{equation} (41)

    In addition, we observe

    \begin{equation} \frac {\mathrm{d}} {\mathrm{d}t} \max\limits_{1\leq i, j\leq N} |z_{ij} - \overline z_{ij}| \leq C \max\limits_{1\leq i, j\leq N} |z_{ij} - \overline z_{ij}| + \tilde C \max\limits_{1\leq i, j\leq N} |q_{ij} - \overline q_{ij}|. \end{equation} (42)

    It follows from Corollary 1 that

    \max\limits_{1\leq i, j\leq N } \|w_{ij}(t) \| \leq \mathcal R^\infty, \quad t > 0.

    Then, (41) and (42) yield

    \begin{equation} \frac {\mathrm{d}} {\mathrm{d}t} \|W- \overline W\|_{{\bf{X}}} \leq C_1 \|W- \overline W\|_{{\bf{X}}} + e^{C_2t} \|G- \overline G\|_{{\bf{X}}}, \end{equation} (43)

    and integrate the relation (43) to find

    \begin{align*} \|W- \overline W\|_{\bf{X}} \leq \|W^0- \overline W^0\|_{\bf{X}} + C_1 \int_0^t \|W- \overline W\|_{\bf{X}} \mathrm{d} s + e^{C_2T} \int_0^t \|G- \overline G \|_{\bf{X}} \mathrm{d} s. \end{align*}

    Since W^0 - \overline W^0 = 0 , we obtain

    \begin{align*} { \vert\kern-0.25ex \vert\kern-0.25ex \vert {W- \overline W} \vert\kern-0.25ex \vert\kern-0.25ex \vert} & = \sup\limits_{0\leq t \leq T} \|W-\overline W\|_{\bf{X}} \leq Te^{(C_1+C_2)T} \sup\limits_{0\leq t \leq T} \|G- \overline G \|_{\bf{X}}\\ & = Te^{(C_1+C_2)T} { \vert\kern-0.25ex \vert\kern-0.25ex \vert {G- \overline G} \vert\kern-0.25ex \vert\kern-0.25ex \vert}. \end{align*}

    If Te^{(C_1+C_2)T} <1 , the map \mathcal T becomes a strict contraction on the closed subset of the (complete) metric space \mathcal X . Hence, \mathcal T has a unique fixed point in {\bf{X}} for each W^0 \in {\bf{X}} which gives a unique local solution. Then, it can be globally extended due to uniform L^2 estimate or classical way by induction. Precisely, we define W_n by the unique solution to the main equation on [0, T] with the initial data W_{n+1}(0) = W_n(T) . Then, we denote

    W(t) = W_n(t-nT), \quad t \in [nT, (n+1)T], \quad n\geq0.

    Hence, W becomes the unique global solution to the main equation with the initial data W^0 . This completes the proof.

    Next, we are concerned with a global classical solution. In order to apply Theorem A.2(2) in Appendix A for a classical solution to the Cauchy problem (2)–(3), we have to show the continuously differentiability of the coupling term containing \kappa .

    For W = (w_{ij})_{(i, j)} , we introduce an N\times N matrix F(W) whose (i, j) -th component is given as

    \begin{equation*} \label{E-12} (F(W))_{(i, j)}: = \frac{\kappa}{2N}\sum\limits_{k = 1}^N(z_{ik} + z_{kj})w_{ij} = \frac{ \kappa}{2N} \sum\limits_{k = 1}^N \left( \int_{ \mathbb R^{2d}} (w_{ik} + w_{kj}) \mathrm{d} x \mathrm{d} p \right)w_{ij}, \end{equation*}

    which is nonlinear with respect to the argument W . Since W \in {\bf{X}} , one can easily verify that F maps from [0, T] \times {\bf{X}} to {\bf{X}} for any T>0 . Below, we show that F is indeed Lipschitz.

    Lemma 4.3. For U, V \in{\bf{X}} , there exists a positive constant C>0 that may depend on time T such that

    \begin{align*} \|F(U) - F(V)\|_{\bf{X}} \leq C\|U -V \|_{{\bf{X}}}. \end{align*}

    Then, the functional derivative, denoted by \mathrm{D}F , is continuous. Consequently, F is Lipschitz from a bounded subset of {\bf{X}} to {\bf{X}} .

    Proof. For U, V \in {\bf{X}} , we define the Gâteaux derivative (or it is sometimes simply referred as the functional derivative) of F at U in the direction of V that is denoted by \mathrm{D}F(U)(V) :

    \mathrm{D}F(U)(V) : = \lim\limits_{\tau \to 0} \frac{ F(U + \tau V) - F(U) }{\tau} = \frac{ \mathrm{d}}{ \mathrm{d} \tau} F(U+ \tau V) \biggl|_{\tau = 0}.

    At each point U\in {\bf{X}} , the Gâteaux derivative maps from {\bf{X}} to {\bf{X}} . Then by the definition of the Gâteaux derivative, we calculate for U = (u_{ij}) and V = (v_{ij}) ,

    \begin{align*} (\mathrm{D}F(U)(V))_{(i, j)} = \frac{\kappa}{2N}\sum\limits_{k = 1}^N \left(u_{ij} \int_{ \mathbb R^{2d}}(v_{ik} + v_{kj}) \mathrm{d} x \mathrm{d} p + v_{ij}\int_{ \mathbb R^{2d}}(u_{ik} + u_{kj}) \mathrm{d} x \mathrm{d} p\right). \end{align*}

    Since U, V \in {\bf{X}} , one finds

    \|\mathrm{D}F(U)(V) \|_{\bf{X}}\leq 2 \kappa \|U\|_{{\bf{X}}} \cdot \|V\|_{{\bf{X}}}.

    Therefore, we verified that \mathrm{D}F(U) is a bounded linear operator on {\bf{X}} . Hence, \mathrm{D}F is continuous on {\bf{X}} . Finally, we recall the Gâteaux mean value theorem in Lemma A.3:

    \|F(U) - F(V)\|_{\bf{X}} \leq \|U- V \|_{\bf{X}} \cdot \sup\limits_{t \in [0, 1]}\|\mathrm{D}F(tU + (1-t)V)\|_{ \text{op}}.

    Here, \|\cdot\|_ \text{op} denotes the operator norm when we regard \mathrm{D}F(\cdot) as a linear operator which maps from {\bf{X}} to {\bf{X}} . Since we know that \mathrm{D}F is a bounded linear operator, we find the desired constant:

    \|F(U) - F(V)\|_{\bf{X}} \leq 2\kappa \sup\limits_{t \in [0, 1]}\|tU + (1-t)V\|_{\bf{X}} \cdot \|U - V \|_{\bf{X}}.

    This shows that F is Lipschitz since U and V belong to a bounded subset of {\bf{X}} .

    Now, we are ready to provide the second assertion of Theorem 4.1 by applying semigroup theory.

    Step A (the linear Wigner equation on \mathcal X ): As a first step, we begin with the linear equation in the space \mathcal X instead of L^2( \mathbb R^{2d}) :

    \begin{equation} \partial_t w_{ij} + p \cdot \nabla_x w_{ij} + \Theta[V](w_{ij}) = 0. \end{equation} (44)

    Since (44) on L^2( \mathbb R^{2d}) has been studied in [23], we slightly modify the proof of [23] to show the existence in \mathcal{X} . In order to use Theorem A.1, we show the term \Theta[V] is a a bounded perturbation of the transport operator A = -p \cdot \nabla_x in \mathcal{X} . However, when the \mathcal{X} -norm is considered, Lemma 2.2 gives

    \|\Theta[V]w\|_{\mathcal{X}} = \|\Theta[V]w\|.

    Since \Theta[V] is a bounded perturbation of A in L^2( \mathbb R^{2d}) (see [23,Lemma 1]), we then conclude that \Theta[V] is a linear bounded operator defined on \mathcal X . Hence, (44) admits a unique classical solution

    w_{ij} \in C([0, T];\mathcal{X}) \cap C^1([0, T];D(A)).

    For details, we refer the reader to [23,Theorem 1].

    Step B (the WL model on D(A) ): Next, we recall from Lemma 4.2 that F is continuously differentiable and then apply Theorem A.2(2) to guarantee that a mild solution obtained from the first assertion of Theorem 4.1 indeed becomes a classical solution to (2)–(3):

    w_{ij}\in C([0, T];\mathcal{X}) \cap C^1([0, T];D(A)), \quad i, j \in [N].

    This completes the proof.

    In this paper, we have studied the complete aggregation estimate and the global existence of the Wigner-Lohe(WL) model which describes quantum synchronization in the Wigner picture. By taking the Wigner transform on the Schrödinger-Lohe model with identical potentials, we formally derived the WL model which is an integro-differential equation. Compared to the linear Wigner equation, one of the main difficulty to deal with the WL model lies in the lack of conservation laws. However, fortunately, we can overcome the loss of several conserved quantities via collective dynamics. For the WL model, we first establish complete aggregation estimates that can be achieved with an exponential convergence rate in a priori setting. Next, we show that the WL model admits a unique global mild solution by the standard fixed point theorem and if we impose further regularity on initial data, a unique global classical solution can be obtained by using the semigroup theory. Of course, there are still lots of untouched issues. For instance, we focused on the identical WL model where external one-body potentials are assumed to be the same. Thus, the extension of collective dynamics and global solvability of the WL model with non-identical potentials are left for a future work.

    In this appendix, we briefly summarize several results in [24] on the semigroup theory to show the existence of evolution equations. The first theorem deals with the bounded perturbation of a linear equation.

    Theorem A.1. [24] Let X be a Banach space, and let A and B be operators on X such that

    (i) A is the infinitestimal generator of a C_0-semigroup T(t) on X satisfying

    \|T(t)\| \leq Me^{\omega t}.

    (ii) B is a bounded linear operator on X.

    Then, A + B is the infinitestimal generator of a C_0 -semigroup S(t) on X satisfying

    \|S(t)\| \leq Me^{(\omega + M\|B\|)t}.

    Consider the following abstract Cauchy problem:

    \begin{equation} \begin{cases} \frac{ \mathrm{d} u(t)}{ \mathrm{d}t} + Au(t) = f(t, u(t)), \quad t > t_0, \\ u(t_0) = u_0. \end{cases} \end{equation} (45)

    In next theorem, we recall the result on the mild and classical solutions of (45).

    Theorem A.2. [24] The following assertions hold.

    1. Let f:[t_0, T] \times X \rightarrow X be continuous in t on [t_0, T] and uniformly Lipschitz continuous (with a Lipschitz constant L ) on X . If -A is the infinitestimal generator of a C_0 semigroup T(t) for t \geq 0 on X , then for every u_0 \in X , the initial value problem (45) has a unique mild solution u \in C([t_0, T]; X) . Moreover, the mapping u_0 \mapsto u is Lipschitz continuous from X into C([t_0, T]; X) .

    2. Let -A be the infinitestimal generator of a C_0 semigroup T(t) for t\geq0 on X . If f:[t_0, T] \times X \rightarrow X is continuously differentiable from [t_0, T] \times X into X , then the mild solution of (45) with u_0 \in D(A) is a classical solution of the initial value problem.

    Finally, we recall Gâteaux's mean value theorem. We denote the directional derivative of f at x in direction v by \delta_v f(x) :

    Lemma A.3. [2,Proposition A.2] Let f:X \rightarrow Y be a function between Banach spaces X and Y . If f is Gâteaux differentiable, then for x, y \in X ,

    \|f(y) - f(x) \|_Y \leq \|x-y\|_X \sup\limits_{0 \leq \theta \leq 1} \|Df(\theta x + (1-\theta)y\|_{\mathcal{L}(X, Y)},

    where Df(x) is a bounded linear operator Df(x) : v \mapsto \delta_v f(x) . Here, \delta_vf(x) is the directional derivative of f at x in direction v :

    \delta_v f(x) : = \lim\limits_{t \rightarrow \infty} \frac{f(x+tv) - f(x)}{t}.


    [1] S. Andrilli, D. Hecker, Elementary Linear Algebra, Sixth edition, Academic Press, Cambridge, Massachusetts, US, 2022. https://doi.org/10.1016/C2019-0-03227-X
    [2] H. Anton, C. Rorres, Elementary Linear Algebra: Applications Version, 12th edition, John Wiley & Sons, New York, US, 2013.
    [3] S. Axler, Linear Algebra Done Right, Third edition, Springer, Berlin Heidelberg, Germany, 2015. https://doi.org/10.1007/978-3-319-11080-6
    [4] R. Baker, K. L. Kuttler, Linear Algebra with Applications, World Scientific, Singapore, 2021. https://doi.org/10.1142/9111
    [5] T. S. Blyth, E. F. Robertson, Basic Linear Algebra, Springer Science & Business Media, Berlin, Germany, 2002. https://doi.org/10.1007/978-1-4471-0681-4
    [6] O. Bretscher, Elementary Linear Algebra with Applications, Fifth edition, Pearson Education, London, England, UK, 2018.
    [7] S. Boyd, L. Vandenberghe, Introduction to Applied Linear Algebra: Vectors, Matrices, and Least Squares, Cambridge University Press, Cambridge, England, UK, 2018. https://doi.org/10.1017/9781108583664
    [8] S. H. Friedberg, A. J. Insel, L. E. Spence, Linear Algebra, Fifth edition, Pearson Education, London, England, UK, 2013.
    [9] R. O. Hill, Elementary Linear Algebra, Academic Press, Cambridge, Massachusetts, US, 2014.
    [10] K. Hoffman, R. Kunze, Linear Algebra, Second edition, Pearson Education, India, 2015.
    [11] L. Johnson, D. Riess, J. Arnold, Introduction to Linear Algebra, Fifth edition, Pearson Education, London, England, UK, 2017.
    [12] B. Kolman, D. Hill, Elementary Linear Algebra with Applications, Ninth edition, Pearson Education, London, England, UK, 2017.
    [13] K. L. Kuttler, Elementary Linear Algebra, Independently published, 2021.
    [14] S. Lang, Introduction to Linear Algebra, Second edition, Springer Science & Business Media, Berlin Heidelberg, Germany, 1997. https://doi.org/10.1007/978-1-4612-1070-2
    [15] R. Larson, Elementary Linear Algebra, Eight edition, Cengage Learning, Boston, Massachusetts, US, 2016.
    [16] P. D. Lax, Linear Algebra and Its Applications, Second edition, John Wiley & Sons, New York, US, 2007.
    [17] D. C. Lay, S. R. Lay, J. McDonald, Linear Algebra and its Applications, Sixth edition, Pearson Education, London, England, UK, 2021.
    [18] L. Mirsky, An Introduction to Linear Algebra, Dover Publications, Mineola, New York, US, 2013.
    [19] L. Spence, A. Insel, S. Friedberg, Elementary Linear Algebra, Second edition, Pearson Education, London, England, UK, 2017.
    [20] G. Strang, Linear Algebra and Its Applications, Fourth edition, Thomson, Brooks/Cole, Belmont, California, US, Cengage Learning, Boston, Massachusetts, US, 2006.
    [21] T. S. Barcelos, R. Muñoz-Soto, R. Villarroel, E. Merino, I. F. Silveira, Mathematics learning through computational thinking activities: A systematic literature review, J. Universal Comput. Sci., 24 (2018), 815–845.
    [22] M. Stephens, D. M. Kadijevich, Computational/algorithmic thinking, in Encyclopedia of Mathematics Education (Ed., S. Lerman), Springer, Cham, Switzerland, (2020), 117–123. https://doi.org/10.1007/978-3-030-15789-0_100044
    [23] W. Sung, J. Ahn, J. B. Black, Introducing computational thinking to young learners: Practicing computational perspectives through embodiment in mathematics education, Technol. Knowled. Learn., 22 (2017), 443–463. https://doi.org/10.1007/s10758-017-9328-x doi: 10.1007/s10758-017-9328-x
    [24] D. Weintrop, E. Beheshti, M. Horn, K. Orton, K. Jona, L. Trouille, U. Wilensky, Defining computational thinking for mathematics and science classrooms, J. Sci. Educ. Technol., 25 (2016), 127–147. https://doi.org/10.1007/s10956-015-9581-5 doi: 10.1007/s10956-015-9581-5
    [25] S. Boyd, L. Vandenberghe, Convex Optimization, Cambridge University Press, Cambridge, England, UK, 2004. https://doi.org/10.1017/CBO9780511804441
    [26] L. N. Trefethen, D. Bau, Numerical Linear Algebra, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, Pennsylvania, US, 1997. https://doi.org/10.1137/1.9780898719574
    [27] S. R. Bennett, Linear Algebra for Data Science with Examples in R, Github, San Francisco, California, US, 2021. Available from https://shainarace.github.io/LinearAlgebra/. Retrieved August 17, 2023.
    [28] M. Cohen, Practical Linear Algebra for Data Science: From Core Concepts to Applications Using Python, O'Reilly Media, Sebastopol, California, US, 2022.
    [29] G. H. Golub, C. F. Van Loan, Matrix Computations, John Hopkins University Press, Charles Village, Baltimore, Maryland, US, 2013. https://doi.org/10.56021/9781421407944
    [30] P. N. Klein, Coding the Matrix: Linear Algebra through Applications to Computer Science, Newtonian Press, Newton, Massachusetts, US, 2013.
    [31] G. Strang, Linear Algebra and Learning from Data, Wellesley-Cambridge Press, Wellesley, Massachusetts, US, 2019.
    [32] C. C. Aggarwal, Linear Algebra and Optimization for Machine Learning: A Textbook, Springer, Cham, Switzerland, 2020. https://doi.org/10.1007/978-3-030-40344-7
    [33] R. Yoshida, Linear Algebra and Its Applications with R, CRC Press, Boca Raton, Florida, US, 2021. https://doi.org/10.1201/9781003042259
    [34] G. Gadanidis, R. Cendros, L. Floyd, I, Namukasa, Computational thinking in mathematics teacher education, Contempor. Issues Technol. Teacher Educ., 17 (2017), 458–477. https://doi.org/10.1163/9789004418967_008 doi: 10.1163/9789004418967_008
    [35] A. Yadav, C. Stephenson, H. Hong, Computational thinking for teacher education, Commun. ACM, 60 (2017), 55–62. https://doi.org/10.1145/2994591 doi: 10.1145/2994591
    [36] H. Abdi, Singular value decomposition (SVD) and generalized singular value decomposition (GSVD), in Encyclopedia of Measurement and Statistics (Ed., N. J. Salkind), Sage Publications, Thousand Oaks, California, US, (2007), 907–912.
    [37] A. G. Akritas, G. I. Malaschonok, Applications of singular-value decomposition (SVD), Math. Comput. Simul., 67 (2004), 15–31. https://doi.org/10.1016/j.matcom.2004.05.005 doi: 10.1016/j.matcom.2004.05.005
    [38] H. Andrews, C. Patterson, Singular value decompositions and digital image processing, IEEE Transact. Acoust. Speech Signal Process., 24 (1976), 26–53. https://doi.org/10.1109/TASSP.1976.1162766 doi: 10.1109/TASSP.1976.1162766
    [39] E. Biglieri, K. Yao, K. Some properties of singular value decomposition and their applications to digital signal processing, Signal Process., 18 (1989), 277–289. https://doi.org/10.1016/0165-1684(89)90039-X doi: 10.1016/0165-1684(89)90039-X
    [40] J. Bisgard, Analysis and Linear Algebra: The Singular Value Decomposition and Applications, American Mathematical Society, Providence, Rhode Island, US, 2021. https://doi.org/10.1090/stml/094
    [41] S. L. Freire, T. J. Ulrych, Application of singular value decomposition to vertical seismic profiling, Geophysics, 53 (1988), 778–785. https://doi.org/10.1190/1.1442513 doi: 10.1190/1.1442513
    [42] E. R. Henry, J. Hofrichter, Singular value decomposition: Application to analysis of experimental data, in Essential Numerical Computer Methods (Eds., L. Brand, M. L. Johnson), volume 210 of Methods in Enzymology, Academic Press, Burlington, Massachusetts, US, (1992), 129–192. https://doi.org/10.1016/0076-6879(92)10010-B
    [43] V. Klema, A. Laub, A. The singular value decomposition: Its computation and some applications, IEEE Transact. Autom. Control, 25(1980), 164–176. https://doi.org/10.1109/TAC.1980.1102314 doi: 10.1109/TAC.1980.1102314
    [44] K. Lange, Singular value decomposition, in Numerical Analysis for Statisticians (Ed., K. Lange), Statistics and Computing, Springer, New York, US, (2010), 129–142. https://doi.org/10.1007/978-1-4419-5945-4_9
    [45] A. A. Maciejewski, C. A. Klein, The singular value decomposition: Computation and applications to robotics, Int. J. Robot. Res., 8 (1989), 63–79. https://doi.org/10.1177/027836498900800605 doi: 10.1177/027836498900800605
    [46] J. Mandel, Use of the singular value decomposition in regression analysis, Am. Statist., 36 (1982), 15–24. https://doi.org/10.1080/00031305.1982.10482771 doi: 10.1080/00031305.1982.10482771
    [47] A. Yildiz Ulus, Teaching the "diagonalization concept" in linear algebra with technology: A case study at Galatasaray University, Turkish Online J. Educ. Technology-TOJET, 12 (2013), 119–130.
    [48] Z. Lazar, Teaching the Singular Value Decomposition of Matrices: A Computational Approach, Masters' thesis, Concordia University, Montreal, Quebec, Canada, 2012.
    [49] M. Zandieh, M. Wawro, C. Rasmussen, An example of inquiry in linear algebra: The roles of symbolizing and brokering, PRIMUS, 27(2017), 96–124. https://doi.org/10.1080/10511970.2016.1199618 doi: 10.1080/10511970.2016.1199618
    [50] B. Buchberger, G. E. Collins, R. Loos, R. Albrecht, (Eds.), Computer Algebra: Symbolic and Algebraic Computation, Second edition, Springer Science & Business Media, Berlin Heidelberg, Germany, 1983.
    [51] V. Chudnovsky, R. D. Jenks, (Eds.), Computers in Mathematics, CRC Press, Boca Raton, Florida, US, 1990.
    [52] J. S. Cohen, Computer Algebra and Symbolic Computation: Elementary Algorithms, CRC Press, Boca Raton, Florida, US, 2002. https://doi.org/10.1201/9781439863695
    [53] J. S. Cohen, Computer Algebra and Symbolic Computation: Mathematical Methods, CRC Press, Boca Raton, Florida, US, 2003. https://doi.org/10.1201/9781439863701
    [54] J. H. Davenport, Y. Siret, É. Tournier, Computer Algebra: Systems and Algorithms for Algebraic Computation, Second edition, Academic Press, Cambridge, Massachusetts, US, 1993.
    [55] J. T. Fey, (Ed.), Computer Algebra Systems in Secondary School Mathematics Education, National Council of Teachers of Mathematics (NCTM), Reston, Virginia, US, 2003.
    [56] K. J. Fuchs, Computer algebra systems in mathematics education: Teacher training programs, challenges and new aims, Zentralblatt für Didaktik der Mathematik, 35 (2003), 20–23. https://doi.org/10.1007/BF02652762 doi: 10.1007/BF02652762
    [57] K. O. Geddes, S. R. Czapor, G. Labahn, Algorithms for Computer Algebra, Springer Science & Business Media, Berlin Heidelberg, Germany, 1992. https://doi.org/10.1007/b102438
    [58] J. Grabmeier, E. Kaltofen, V. Weispfenning, (Eds.), Computer Algebra Handbook: Foundations, Applications, Systems, Springer, Berlin Heidelberg, Germany, 2003. https://doi.org/10.1007/978-3-642-55826-9
    [59] D. Harper, C. Wooff, D. Hodgkinson, A Guide to Computer Algebra Systems, John Wiley & Sons, New York, US, 1991.
    [60] W. Koepf, Computer Algebra: An Algorithm-Oriented Introduction, Springer Nature, Berlin Heidelberg, Germany, 2021. https://doi.org/10.1007/978-3-030-78017-3
    [61] E. A. Lamagna, Computer Algebra: Concepts and Techniques, CRC Press, Boca Raton, Florida, US, 2019. https://doi.org/10.1201/9781315107011
    [62] G. Simon, Interoperability Between Computer Algebra Systems, Wilhelm-Schickard-Institut für Informatik (WSI), Tübingen, Germany, 1996.
    [63] N. M. Soiffer, The Design of A User Interface for Computer Algebra Systems, PhD thesis, University of California, Berkeley, California, US, 1992.
    [64] J. von zur Gathen, J. Gerhard, Modern Computer Algebra, Third edition, Cambridge University Press, Cambridge, England, UK, 2013. https://doi.org/10.1017/CBO9781139856065
    [65] M. J. Wester, Computer Algebra Systems: A Practical Guide, John Wiley & Sons, New York, US, 1999.
    [66] Z. Hannan, wxMaxima for Calculus I, wxMaxima for Calculus II, Solano Community College, Fairfield, California, US, 2015. Available from https://wxmaximafor.wordpress.com/. Last accessed August 17, 2023.
    [67] M. Kanagasabapathy, Introduction to wxMaxima for Scientific Computations, BPB Publications, New Delhi, India, 2018.
    [68] S. Kadry, P. Awad, Mathematics for Engineers and Science Labs Using Maxima, CRC Press, Boca Raton, Florida, US, 2019. https://doi.org/10.1201/9780429469718
    [69] F. Senese, Symbolic Mathematics for Chemists: A Guide for Maxima Users, John Wiley & Sons, Hoboken, New Jersey, US, 2019.
    [70] T. K. Timberlake, J. W. Mixon, Classical Mechanics with Maxima, Springer, New York, US, 2016. https://doi.org/10.1007/978-1-4939-3207-8
    [71] M. L. Abell, J. P. Braselton, Mathematica by Example, Sixth edition, Academic Press, London, England, UK and Cambridge, Massachusetts, US, 2022. https://doi.org/10.1016/C2013-0-10266-8
    [72] A. Grozin, Introduction to Mathematica® for Physicists, Springer, Cham, Switzerland, 2014. https://doi.org/10.1007/978-3-319-00894-3
    [73] R. Maeder, Programming in Mathematica, Second edition, Addison-Wesley Longman Publishing, Boston, Massachusetts, US, 1991.
    [74] M. Trott, The Mathematica Guidebook for Symbolics, Springer Science & Business Media New York, US, 2007. https://doi.org/10.1007/0-387-28815-5
    [75] S. Wagon, Mathematica in Action, Second edition, Springer-Verlag, New York, US, 1999. https://doi.org/10.1007/978-0-387-75477-2
    [76] S. Wolfram, The MATHEMATICA® Book, Fifth edition, Wolfram Media, Champaign, Illinois, US, 2003.
    [77] M. L. Abell, J. P. Braselton, Maple by Example, Third edition, Elsevier, Burlington, Massachusetts, US, 2005.
    [78] W. P. Fox, W. Bauldry, Advanced Problem Solving Using Maple: A First Course, Chapman and Hall/CRC Press, Boca Raton, Florida, US, 2019. https://doi.org/10.1201/9780429469633
    [79] W. P. Fox, W. Bauldry, Advanced Problem Solving Using Maple: Applied Mathematics, Operations Research, Business Analytics, and Decision Analysis, Chapman and Hall/CRC Press, Boca Raton, Florida, US, 2020. https://doi.org/10.1201/9780429469626
    [80] F. Garvan, The Maple Book, Chapman and Hall/CRC Press, Boca Raton, Florida, US, 2001. https://doi.org/10.1201/9781420035605
    [81] J. Carette, Understanding expression simplification, in Proceedings of the 2004 International Symposium on Symbolic and Algebraic Computation, ISSAC'04, July 4–7, 2004, Santander, Spain, (2004), 72–79. https://doi.org/10.1145/1005285.1005298
    [82] A. Heck, Introduction to Maple, Third edition, Springer, New York, US, 2003. https://doi.org/10.1007/978-1-4613-0023-6
    [83] S. Attaway, MATLAB: A Practical Introduction to Programming and Problem Solving, Sixth edition, Butterworth-Heinemann, Oxford, England, UK, 2013. https://doi.org/10.1016/C2011-0-07060-6
    [84] T. A. Davis, MATLAB Primer, Eight edition, CRC Press, Boca Raton, Florida, US, 2010. https://doi.org/10.1201/9781439828632
    [85] D. M. Etter, Introduction to MATLAB, Fourth edition, Pearson, New York, US, 2017.
    [86] D. J. Higham, N. J. Higham, MATLAB Guide, Third edition, SIAM, Philadelphia, Pennsylvania, US, 2017. https://doi.org/10.1137/1.9781611974669
    [87] D. T. Valentine, B. Hahn, Essential MATLAB for Engineers and Scientists, Eight edition, Academic Press, Cambridge, Massachusetts, US, 2022.
    [88] G. V. Bard, Sage for Undergraduates, American Mathematical Society, Providence, Rhode Island, US, 2015. https://doi.org/10.1090/mbk/143
    [89] C. Finch, Sage Beginner's Guide, Packt Publishing, Birmingham, England, UK, 2011.
    [90] D. Joyner, W. Stein, Sage Tutorial, CreateSpace Independent Publishing Platform, Scotts Valley, California, US, 2008.
    [91] V. Kumar, Basic of SageMath: Mathematics (Practical), Amazon Kindle Direct Publishing, Seattle, Washington, US, 2022.
    [92] P. Szabó, J. Galanda, Sage math for education and research, in 2017 15th International Conference on Emerging eLearning Technologies and Applications (ICETA), Institute of Electrical and Electronics Engineers (IEEE), Manhattan, New York, US, (2017), 1–4. https://doi.org/10.1109/ICETA.2017.8102535
    [93] P. Zimmermann, A. Casamayou, N. Cohen, G. Connan, T. Dumont, L. Fousse, et al., in Computational Mathematics with SageMath, SIAM, Philadelphia, Pennsylvania, US, 2018. https://doi.org/10.1137/1.9781611975468
    [94] S. Frieder, L. Pinchetti, R. R. Griffiths, T. Salvatori, T. Lukasiewicz, P. C. Petersen, et al., Mathematical capabilities of ChatGPT, arXiv preprint, (2023). arXiv: 2301.13867.
    [95] P. Shakarian, A. Koyyalamudi, N. Ngu, L. Mareedu, An independent evaluation of ChatGPT on mathematical word problems (MWP), arXiv preprint, arXiv: 2302.13814.
    [96] A. Azaria, ChatGPT usage and limitations, HAL preprint, hal-03913837, 2022. https://doi.org/10.31219/osf.io/5ue7n
    [97] A. Borji, A categorical archive of ChatGPT failures, arXiv preprint, arXiv: 2302.03494.
    [98] X. Q. Dao, N. B. Le, ChatGPT is good but Bing Chat is better for Vietnamese students, arXiv preprint, arXiv: 2307.08272.
    [99] P. Nguyen, P. Nguyen, P. Bruneau, L. Cao, J. Wang, H. Truong, H. Evaluation of mathematics performance of Google Bard on the mathematics test of the Vietnamese national high school graduation examination, preprint, 2023. https://doi.org/10.36227/techrxiv.23691876
    [100] M. M. Meerschaert, Mathematical Modeling, Fourth edition, Academic Press, Waltham, Massachusetts, US, 2013. https://doi.org/10.1016/C2010-0-66940-9
    [101] J. M. Cushing, Matrix models and population dynamics, Math. Biol., 14 (2009), 47–150. https://doi.org/10.1090/pcms/014/04 doi: 10.1090/pcms/014/04
    [102] W. E. Boyce, R. C. DiPrima, D. B. Meade, Elementary Differential Equations and Boundary Value Problems, 12th edition, John Wiley & Sons, New York, US, 2022.
    [103] S. J. Leon, L. de Pillis, Linear Algebra with Applications, 10th edition, Pearson Education, Upper Saddle River, New Jersey, US, 2020.
    [104] M. P. S. Chawla, PCA and ICA processing methods for removal of artifacts and noise in electrocardiograms: A survey and comparison, Appl. Soft Comput., 11 (2011), 2216–2226. https://doi.org/10.1016/j.asoc.2010.08.001 doi: 10.1016/j.asoc.2010.08.001
    [105] A. Cichocki, S. I. Amari, Adaptive Blind Signal and Image Processing: Learning Algorithms and Applications, John Wiley & Sons, Hoboken, New Jersey, US, 2002. https://doi.org/10.1002/0470845899
    [106] M. Ringnér, What is principal component analysis?, Nat. Biotechnol., 26 (2008), 303–304. https://doi.org/10.1038/nbt0308-303 doi: 10.1038/nbt0308-303
    [107] S. Sanei, J. A. Chambers, EEG Signal Processing and Machine Learning, John Wiley & Sons, Hoboken, New Jersey, US, 2021. https://doi.org/10.1002/9781119386957
    [108] M. W. Blows, A tale of two matrices: multivariate approaches in evolutionary biology, J. Evolut. Biol., 20 (2007), 1–8. https://doi.org/10.1111/j.1420-9101.2006.01164.x doi: 10.1111/j.1420-9101.2006.01164.x
    [109] G. Abraham, M. Inouye, Fast principal component analysis of large-scale genome-wide data, PloS One, 9 (2014), e93766. https://doi.org/10.1371/journal.pone.0093766 doi: 10.1371/journal.pone.0093766
    [110] N. Duforet-Frebourg, K. Luu, G. Laval, E. Bazin, M. G. Blum, Detecting genomic signatures of natural selection with principal component analysis: Application to the 1000 genomes data, Molecular Biol. Evolut., 33 (2016), 1082–1093. https://doi.org/10.1093/molbev/msv334 doi: 10.1093/molbev/msv334
    [111] X. Zheng, B. S. Weir, Eigenanalysis of SNP data with an identity by descent interpretation, Theor. Population Biol., 107 (2016), 65–76. https://doi.org/10.1016/j.tpb.2015.09.004 doi: 10.1016/j.tpb.2015.09.004
    [112] N. Abu-Shikhah, F. Elkarmi, Medium-term electric load forecasting using singular value decomposition, Energy, 36 (2011), 4259–4271. https://doi.org/10.1016/j.energy.2011.04.017 doi: 10.1016/j.energy.2011.04.017
    [113] L. Cai, N. F. Thornhill, B. C. Pal, Multivariate detection of power system disturbances based on fourth order moment and singular value decomposition, IEEE Transactions on Power Systems, 32 (2017), 4289–4297. https://doi.org/10.1109/TPWRS.2016.2633321 doi: 10.1109/TPWRS.2016.2633321
    [114] K. Ellithy, M. Shaheen, M. Al-Athba, A. Al-Subaie, S. Al-Mohannadi, S. Al-Okkah, S. Abu-Eidah, Voltage stability evaluation of real power transmission system using singular value decomposition technique, in 2008 IEEE Second International Power and Energy Conference, IEEE, Manhattan, New York, US, (2008), 1691–1695. https://doi.org/10.1109/PECON.2008.4762751
    [115] A. M. A. Hamdan, An investigation of the significance of singular value decomposition in power system dynamics, Int. J. Electr. Power Energy Syst., 21 (1999), 417–424. https://doi.org/10.1016/S0142-0615(99)00011-3 doi: 10.1016/S0142-0615(99)00011-3
    [116] C. Madtharad, S. Premrudeepreechacharn, N. R. Watson, Power system state estimation using singular value decomposition, Electr. Power Syst. Res., 67 (2003), 99–107. https://doi.org/10.1016/S0378-7796(03)00080-4 doi: 10.1016/S0378-7796(03)00080-4
    [117] G. Kerschen, J. C. Golinval, Physical interpretation of the proper orthogonal modes using the singular value decomposition, J. Sound Vibr., 249 (2002), 849–865. https://doi.org/10.1006/jsvi.2001.3930 doi: 10.1006/jsvi.2001.3930
    [118] N. K. Mani, E. J. Haug, K. E. Atkinson, Application of singular value decomposition for analysis of mechanical system dynamics, J. Mechan. Design, 107 (1985), 82–87. https://doi.org/10.1115/1.3258699 doi: 10.1115/1.3258699
    [119] G. Sun, W. Li, Q. Luo, Q. Li, Modal identification of vibrating structures using singular value decomposition and nonlinear iteration based on high-speed digital image correlation, Thin-Walled Structures, 163 (2021), 107377. https://doi.org/10.1016/j.tws.2020.107377 doi: 10.1016/j.tws.2020.107377
    [120] C. Cloud, G. Li, E. H. Maslen, L. E. Barrett, W. C. Foiles, Practical applications of singular value decomposition in rotordynamics, Australian J. Mechan. Eng., 2 (2005), 21–32. https://doi.org/10.1080/14484846.2005.11464477 doi: 10.1080/14484846.2005.11464477
    [121] D. W. Gu, P. Petkov, M. M. Konstantinov, Robust Control Design with MATLAB®, Springer Science & Business Media, London, England, UK, 2005. https://doi.org/10.1007/978-1-4471-4682-7
    [122] F. Lin, Robust Control Design: An Optimal Control Approach, John Wiley & Sons, Hoboken, New Jersey, US, 2007. https://doi.org/10.1002/9780470059579
    [123] J. Ringwood, Multivariable control using the singular value decomposition in steel rolling with quantitative robustness assessment, Control Eng. Pract., 3 (1995), 495–503. https://doi.org/10.1016/0967-0661(95)00021-L doi: 10.1016/0967-0661(95)00021-L
    [124] C. R. Smith III, Multivariable Process Control using Singular Value Decomposition, PhD dissertation, The University of Tennessee, Knoxville, Tennessee, US, 1981.
    [125] G. Tao, Adaptive Control Design and Analysis, John Wiley & Sons, Hoboken, New Jersey, US, 2003. https://doi.org/10.1002/0471459100
    [126] S. Gai, G. Yang, M. Wan, L. Wang, Denoising color images by reduced quaternion matrix singular value decomposition, Multidimen. Syst. Signal Process., 26 (2015), 307–320. https://doi.org/10.1007/s11045-013-0268-x doi: 10.1007/s11045-013-0268-x
    [127] E. Ganic, A. M. Eskicioglu, Robust embedding of visual watermarks using discrete wavelet transform and singular value decomposition, J. Electron. Imag., 14 (2005), 043004. https://doi.org/10.1117/1.2137650 doi: 10.1117/1.2137650
    [128] R. C. Gonzalez, R. E. Woods, Digital Image Processing, Fourth edition, Pearson Education, New York, US, and Harlow, Essex, UK, 2018.
    [129] C. C. Lai, C. C. Tsai, Digital image watermarking using discrete wavelet transform and singular value decomposition, IEEE Transact. Instrument. Measur., 59 (2010), 3060–3063. https://doi.org/10.1109/TIM.2010.2066770 doi: 10.1109/TIM.2010.2066770
    [130] S. Malini, R. S. Moni, Image denoising using multiresolution singular value decomposition transform, Proced. Computer Sci., 46 (2015), 1708–1715. https://doi.org/10.1016/j.procs.2015.02.114 doi: 10.1016/j.procs.2015.02.114
    [131] J. P. Pandey, S. L. Umrao, Digital image processing using singular value decomposition, in Proceedings of Second International Conference on Advanced Computing and Software Engineering (ICACSE), February 8–9, 2019, Kamla Nehru Institute of Technology, Sultanpur, India, (2019), 3. https://doi.org/10.2139/ssrn.3350278
    [132] A. Rajwade, A. Rangarajan, A. Banerjee, Image denoising using the higher order singular value decomposition, IEEE Transact. Pattern Anal. Machine Intell., 35 (2012), 849–862. https://doi.org/10.1109/TPAMI.2012.140 doi: 10.1109/TPAMI.2012.140
    [133] F. Renault, D. Nagamalai, M. Dhanuskodi, Advances in digital image processing and information technology, in Proceedings of the First International Conference in Digital Image Processing and Pattern Recognition, September 23–25, 2011, Tirunelveli, Tamil Nadu, India, (2011), 23–25. https://doi.org/10.1007/978-3-642-24055-3
    [134] J. Bisgard, Analysis and Linear Algebra: The Singular Value Decomposition and Applications, American Mathematical Society, Providence, Rhode Island, US, 2020. https://doi.org/10.1090/stml/094
    [135] A. Blum, J. Hopcroft, R. Kannan, Foundations of Data Science, Cambridge University Press, Cambridge, England, UK, 2020. https://doi.org/10.1017/9781108755528
    [136] S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, R. Harshman, Indexing by latent semantic analysis, Journal of the American society for Information Science, 41 (1990), 391–407. https://doi.org/10.1002/(SICI)1097-4571(199009)41:6<391::AID-ASI1>3.0.CO;2-9 doi: 10.1002/(SICI)1097-4571(199009)41:6<391::AID-ASI1>3.0.CO;2-9
    [137] T. Hastie, R. Tibshirani, J. H. Friedman, The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Springer, New York, US, 2009. https://doi.org/10.1007/978-0-387-84858-7
    [138] Y. Koren, R. Bell, C. Volinsky, Matrix factorization techniques for recommender systems, Computer, 42 (2009), 30–37. https://doi.org/10.1109/MC.2009.263 doi: 10.1109/MC.2009.263
    [139] X. Li, S. Wang, Y. Cai, Tutorial: Complexity analysis of singular value decomposition and its variants, arXiv preprint, arXiv: 1906.12085.
    [140] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, et al., Scikit-learn: Machine learning in Python, J. Machine Learn. Res., 12 (2011), 2825–2830.
    [141] J. B. Tenenbaum, V. D. Silva, J. C. Langford, A global geometric framework for nonlinear dimensionality reduction, Science, 290 (2000), 2319–2323. https://doi.org/10.1126/science.290.5500.2319 doi: 10.1126/science.290.5500.2319
    [142] Z. Zhang, The singular value decomposition, applications and beyond, arXiv preprint, arXiv: 1510.08532.
    [143] https://www.sagemath.org/
    [144] S. M. D'Souza, L. N. Wood, Secondary students' resistance toward incorporating computer technology into mathematics learning, Math. Comput. Educ., 37 (2003), 284–295. https://doi.org/10.1007/978-94-6300-761-0_8 doi: 10.1007/978-94-6300-761-0_8
    [145] M. L. Niess, Guest Editorial: Preparing teachers to teach mathematics with technology, Contempor. Issues Technol. Teacher Educ., 6 (2006), 195–203. https://doi.org/10.1007/978-0-387-35596-2_69 doi: 10.1007/978-0-387-35596-2_69
    [146] Q. Li, Student and teacher views about technology: A tale of two cities?, J. Res. Center Educ. Technol., 39 (2007), 377–397. https://doi.org/10.1080/15391523.2007.10782488 doi: 10.1080/15391523.2007.10782488
    [147] H. Crompton, Mathematics in the age of technology: There is a place for technology in the mathematics classroom, J. Res. Center Educ. Technol., 7 (2011), 54–66.
    [148] M. Prensky, Digital natives, digital immigrants Part 1, On the Horizon, 9 (2001), 1–6. https://doi.org/10.1108/10748120110424816 doi: 10.1108/10748120110424816
    [149] M. Prensky, Digital natives, digital immigrants Part 2: Do they really think differently?, On the Horizon, 9 (2001), 2–6. https://doi.org/10.1108/10748120110424843 doi: 10.1108/10748120110424843
    [150] M. Prensky, H. sapiens digital: From digital immigrants and digital natives to digital wisdom, Innovate J. Online Educ., 5 (2009), 1–9.
    [151] M. Prensky, Teaching Digital Natives: Partnering for Real Learning, Corwin Press, Thousand Oaks, California, US, 2010.
  • This article has been cited by:

    1. Muhammad Imran, Brett Allen McKinney, Azhar Iqbal Kashif Butt, Pasquale Palumbo, Saira Batool, Hassan Aftab, Optimal Control Strategies for Dengue and Malaria Co-Infection Disease Model, 2024, 13, 2227-7390, 43, 10.3390/math13010043
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3529) PDF downloads(257) Cited by(3)

Figures and Tables

Figures(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog