Anthrax is an acute infectious zonootic disease caused by Bacillus anthracis, a gram-positive, rod-shaped non-motile bacterium. It is a disease that mainly affects herbivorous animals of both domestic and wildlife, and causes devastating spillover infections into the human population. Anthrax epidemic results in serious and fatal infections in both animals and humans globally. In this paper, a non-linear differential equation model is proposed to study the transmission dynamics of anthrax in both animal and human populations taking into accounts saturation effect within the animal population and behavioural change of the general public towards the outbreak of the disease. The model is shown to have two unique equilibrium points, namely; the anthrax-free and endemic equilibrium points. The anthrax-free equilibrium point is globally asymptotically stable whenever the reproduction number is less than unity (R0<1) and the endemic equilibrium point is locally asymptotically stable whenever R0>1. Sensitivity analysis suggests that the most influential factors on the spread of anthrax are the infection force βa, pathogen shedding rate ξa, recruitment rate Λa, natural death rate in animals μa and recovery rate in animals ϕa. Numerical simulations demonstrate that the saturation effect and behavioural change of the general public towards the outbreak of the disease increase the size of the susceptible population, reduce the size of the infective population and the pathogen levels in the environment. Findings of this research show that anthrax epidemic can be controlled by reducing the rate of anthrax infection and pathogen shedding rate, while increasing the rate of pathogen decay through proper environmental hygiene as well as increasing treatment to ensure higher recovery rate in infected animals. The results also show that positive behavioural change of the general public through mass awareness interventions can help control the spread of the disease.
Citation: Elijah B. Baloba, Baba Seidu. A mathematical model of anthrax epidemic with behavioural change[J]. Mathematical Modelling and Control, 2022, 2(4): 243-256. doi: 10.3934/mmc.2022023
[1] | He Yuan, Zhuo Liu . Lie n-centralizers of generalized matrix algebras. AIMS Mathematics, 2023, 8(6): 14609-14622. doi: 10.3934/math.2023747 |
[2] | Xinfeng Liang, Mengya Zhang . Triangular algebras with nonlinear higher Lie n-derivation by local actions. AIMS Mathematics, 2024, 9(2): 2549-2583. doi: 10.3934/math.2024126 |
[3] | Anas Al-Masarwah, Nadeen Kdaisat, Majdoleen Abuqamar, Kholood Alsager . Crossing cubic Lie algebras. AIMS Mathematics, 2024, 9(8): 22112-22129. doi: 10.3934/math.20241075 |
[4] | Shan Li, Kaijia Luo, Jiankui Li . Generalized Lie n-derivations on generalized matrix algebras. AIMS Mathematics, 2024, 9(10): 29386-29403. doi: 10.3934/math.20241424 |
[5] | He Yuan, Qian Zhang, Zhendi Gu . Characterizations of generalized Lie n-higher derivations on certain triangular algebras. AIMS Mathematics, 2024, 9(11): 29916-29941. doi: 10.3934/math.20241446 |
[6] | Nouf Almutiben, Ryad Ghanam, G. Thompson, Edward L. Boone . Symmetry analysis of the canonical connection on Lie groups: six-dimensional case with abelian nilradical and one-dimensional center. AIMS Mathematics, 2024, 9(6): 14504-14524. doi: 10.3934/math.2024705 |
[7] | Xianguo Hu . Universal enveloping Hom-algebras of regular Hom-Poisson algebras. AIMS Mathematics, 2022, 7(4): 5712-5727. doi: 10.3934/math.2022316 |
[8] | Nouf Almutiben, Edward L. Boone, Ryad Ghanam, G. Thompson . Classification of the symmetry Lie algebras for six-dimensional co-dimension two Abelian nilradical Lie algebras. AIMS Mathematics, 2024, 9(1): 1969-1996. doi: 10.3934/math.2024098 |
[9] | Baiying He, Siyu Gao . The nonisospectral integrable hierarchies of three generalized Lie algebras. AIMS Mathematics, 2024, 9(10): 27361-27387. doi: 10.3934/math.20241329 |
[10] | Mohd Arif Raza, Huda Eid Almehmadi . Lie (Jordan) σ−centralizer at the zero products on generalized matrix algebra. AIMS Mathematics, 2024, 9(10): 26631-26648. doi: 10.3934/math.20241295 |
Anthrax is an acute infectious zonootic disease caused by Bacillus anthracis, a gram-positive, rod-shaped non-motile bacterium. It is a disease that mainly affects herbivorous animals of both domestic and wildlife, and causes devastating spillover infections into the human population. Anthrax epidemic results in serious and fatal infections in both animals and humans globally. In this paper, a non-linear differential equation model is proposed to study the transmission dynamics of anthrax in both animal and human populations taking into accounts saturation effect within the animal population and behavioural change of the general public towards the outbreak of the disease. The model is shown to have two unique equilibrium points, namely; the anthrax-free and endemic equilibrium points. The anthrax-free equilibrium point is globally asymptotically stable whenever the reproduction number is less than unity (R0<1) and the endemic equilibrium point is locally asymptotically stable whenever R0>1. Sensitivity analysis suggests that the most influential factors on the spread of anthrax are the infection force βa, pathogen shedding rate ξa, recruitment rate Λa, natural death rate in animals μa and recovery rate in animals ϕa. Numerical simulations demonstrate that the saturation effect and behavioural change of the general public towards the outbreak of the disease increase the size of the susceptible population, reduce the size of the infective population and the pathogen levels in the environment. Findings of this research show that anthrax epidemic can be controlled by reducing the rate of anthrax infection and pathogen shedding rate, while increasing the rate of pathogen decay through proper environmental hygiene as well as increasing treatment to ensure higher recovery rate in infected animals. The results also show that positive behavioural change of the general public through mass awareness interventions can help control the spread of the disease.
A Poisson algebra is a triple, (L,⋅,[−,−]), where (L,⋅) is a commutative associative algebra and (L,[−,−]) is a Lie algebra that satisfies the following Leibniz rule:
[x,y⋅z]=[x,y]⋅z+y⋅[x,z],∀x,y,z∈L. |
Poisson algebras appear naturally in the study of Hamiltonian mechanics and play a significant role in mathematics and physics, such as in applications of Poisson manifolds, integral systems, algebraic geometry, quantum groups, and quantum field theory (see [7,11,24,25]). Poisson algebras can be viewed as the algebraic counterpart of Poisson manifolds. With the development of Poisson algebras, many other algebraic structures have been found, such as Jacobi algebras [1,9], Poisson bialgebras [20,23], Gerstenhaber algebras, Lie-Rinehart algebras [16,17,26], F-manifold algebras [12], Novikov-Poisson algebras [28], quasi-Poisson algebras [8] and Poisson n-Lie algebras [10].
As a dual notion of a Poisson algebra, the concept of a transposed Poisson algebra was recently introduced by Bai et al. [2]. A transposed Poisson algebra (L,⋅,[−,−]) is defined by exchanging the roles of the two binary operations in the Leibniz rule defining the Poisson algebra:
2z⋅[x,y]=[z⋅x,y]+[x,z⋅y],∀x,y,z∈L, |
where (L,⋅) is a commutative associative algebra and (L,[−,−]) is a Lie algebra.
It is shown that a transposed Poisson algebra possesses many important identities and properties and can be naturally obtained by taking the commutator in the Novikov-Poisson algebra [2]. There are many results on transposed Poisson algebras, such as those on transposed Hom-Poisson algebras [18], transposed BiHom-Poisson algebras [21], a bialgebra theory for transposed Poisson algebras [19], the relation between 12-derivations of Lie algebras and transposed Poisson algebras [14], the relation between 12-biderivations and transposed Poisson algebras [29], and the transposed Poisson structures with fixed Lie algebras (see [6] for more details).
The notion of an n-Lie algebra (see Definition 2.1), as introduced by Filippov [15], has found use in many fields in mathematics and physics [4,5,22,27]. The explicit construction of n-Lie algebras has become one of the important problems in this theory. In [3], Bai et al. gave a construction of (n+1)-Lie algebras through the use of n-Lie algebras and some linear functions. In [13], Dzhumadil′daev introduced the notion of a Poisson n-Lie algebra which can be used to construct an (n+1)-Lie algebra under an additional strong condition. In [2], Bai et al. showed that this strong condition for n=2 holds automatically for a transposed Poisson algebra, and they gave a construction of 3-Lie algebras from transposed Poisson algebras with derivations. They also found that this constructed 3-Lie algebra and the commutative associative algebra satisfy the analog of the compatibility condition for transposed Poisson algebras, which is called a transposed Poisson 3-Lie algebra. This motivated them to introduce the concept of a transposed Poisson n-Lie algebra (see Definition 2.2) and propose the following conjecture:
Conjecture 1.1. [2] Let n≥2 be an integer and (L,⋅,μn) a transposed Poisson n-Lie algebra. Let D be a derivation of (L,⋅) and (L,μn). Define an (n+1)-ary operation:
μn+1(x1,⋯,xn+1):=n+1∑i=1(−1)i−1D(xi)μn(x1,⋯,ˆxi,⋯,xn+1),∀x1,⋯,xn+1∈L, |
where ˆxi means that the i-th entry is omitted. Then, (L,⋅,μn+1) is a transposed Poisson (n+1)-Lie algebra.
In this paper, based on the identities for transposed Poisson n-Lie algebras given in Section 2, we prove that Conjecture 1.1 holds under a certain strong condition described in Section 3 (see Definition 2.3 and Theorem 3.2).
Throughout the paper, all vector spaces are taken over a field of characteristic zero. To simplify notations, the commutative associative multiplication (⋅) will be omitted unless the emphasis is needed.
In this section, we first recall some definitions, and then we exhibit a class of identities for transposed Poisson n-Lie algebras.
Definition 2.1. [15] Let n≥2 be an integer. An n-Lie algebra is a vector space L, together with a skew-symmetric linear map [−,⋯,−]:⊗nL→L, such that, for any xi,yj∈L,1≤i≤n−1,1≤j≤n, the following identity holds:
[[y1,⋯,yn],x1,⋯,xn−1]=n∑i=1(−1)i−1[[yi,x1,⋯,xn−1],y1,⋯,ˆyi,⋯,yn]. | (2.1) |
Definition 2.2. [2] Let n≥2 be an integer and L a vector space. The triple (L,⋅,[−,⋯,−]) is called a transposed Poisson n-Lie algebra if (L,⋅) is a commutative associative algebra and (L,[−,⋯,−]) is an n-Lie algebra such that, for any h,xi∈L,1≤i≤n, the following identity holds:
nh[x1,⋯,xn]=n∑i=1[x1,⋯,hxi,⋯,xn]. | (2.2) |
Some identities for transposed Poisson algebras in [2] can be extended to the following theorem for transposed Poisson n-Lie algebras.
Theorem 2.1. Let (L,⋅,[−,⋯,−]) be a transposed Poisson n-Lie algebra. Then, the following identities hold:
(1) For any xi∈L,1≤i≤n+1, we have
n+1∑i=1(−1)i−1xi[x1,⋯,ˆxi,⋯,xn+1]=0; | (2.3) |
(2) For any h,xi,yj∈L,1≤i≤n−1,1≤j≤n, we have
n∑i=1(−1)i−1[h[yi,x1,⋯,xn−1],y1,⋯,ˆyi,⋯,yn]=[h[y1,⋯,yn],x1,⋯,xn−1]; | (2.4) |
(3) For any xi,yj∈L,1≤i≤n−1,1≤j≤n+1, we have
n+1∑i=1(−1)i−1[yi,x1,⋯,xn−1][y1,⋯,ˆyi,⋯,yn+1]=0; | (2.5) |
(4) For any x1,x2,yi∈L,1≤i≤n, we have
n∑i=1n∑j=1,j≠i[y1,⋯,yix1,⋯,yjx2,⋯,yn]=n(n−1)x1x2[y1,y2,⋯,yn]. | (2.6) |
Proof. (1) By Eq (2.2), for any 1≤i≤n+1, we have
nxi[x1,⋯,xi−1,xi+1,⋯,xn+1]=∑j≠i[x1,⋯,xi−1,xi+1,⋯,xixj,⋯,xn+1]. |
Thus, we obtain
n+1∑i=1(−1)i−1nxi[x1,⋯,ˆxi,⋯,xn+1]=n+1∑i=1n+1∑j=1,j≠i(−1)i−1[x1,⋯,ˆxi,⋯,xixj,⋯,xn+1]. |
Note that, for any i>j, we have
(−1)i−1[x1,⋯,xj−1,xixj,xj+1,⋯,ˆxi,⋯,xn]+(−1)j−1[x1,⋯,ˆxj,⋯,xi−1,xjxi,xi+1,⋯,xn]=(−1)i−1+(i−j−1)[x1,⋯,xj−1,xj+1,⋯,xi−1,xixj,xi+1,⋯,xn]+(−1)j−1[x1,⋯,ˆxj,⋯,xi−1,xjxi,xi+1,⋯,xn]=((−1)−j−2+(−1)j−1)[x1,⋯,xj−1,xj+1,⋯,xi−1,xixj,xi+1,⋯,xn]=0, |
which gives n+1∑i=1n+1∑j=1,j≠i(−1)i−1[x1,⋯,ˆxi,⋯,xixj,⋯,xn+1]=0.
Hence, we get
n+1∑i=1(−1)i−1nxi[x1,⋯,ˆxi,⋯,xn+1]=0. |
(2) By Eq (2.2), we have
−[h[y1,⋯,yn],x1,⋯,xn−1]−n−1∑i=1[[y1,⋯,yn],x1,⋯,hxi,⋯,xn−1]=−nh[[y1,⋯,yn],x1,⋯,xn−1], |
and, for any 1≤j≤n,
(−1)j−1([h[yj,x1,⋯,xn−1],y1,⋯,ˆyj,⋯,yn−1]+n∑i=1,i≠j[[yj,x1,⋯,xn−1],y1,⋯,hyi,⋯,ˆyj,⋯,yn−1])=(−1)j−1nh[[yj,x1,⋯,xn−1],y1,⋯,ˆyj,⋯,yn−1]. |
By taking the sum of the above n+1 identities and applying Eq (2.1), we get
−[h[y1,⋯,yn],x1,⋯,xn−1]−n−1∑i=1[[y1,⋯,yn],x1,⋯,hxi,⋯,xn−1]+n∑j=1(−1)j−1([h[yj,x1,⋯,xn−1],y1,⋯,ˆyj,⋯,yn−1]+n∑i=1,i≠j[[yj,x1,⋯,xn−1],y1,⋯,hyi,⋯,ˆyj,⋯,yn−1])=−nh[[y1,⋯,yn],x1,⋯,xn−1]+nhn∑j=1(−1)j−1[[yj,x1,⋯,xn−1],y1,⋯,ˆyj,⋯,yn−1]=0. |
We denote
Aj:=n∑i=1,i≠j(−1)i−1[[yi,x1,⋯,xn−1],y1,⋯,hyj,⋯,ˆyi,⋯,yn],1≤j≤n,Bi:=[[y1,⋯,yn],x1,⋯,hxi,⋯,xn−1],1≤i≤n−1. |
Then, the above equation can be rewritten as
n∑i=1(−1)i−1[h[yi,x1,⋯,xn−1],y1,⋯,ˆyi,⋯,yn]−[h[y1,⋯,yn],x1,⋯,xn−1]+n∑j=1Aj−n−1∑i=1Bi=0. | (2.7) |
By applying Eq (2.1) to Aj,1≤j≤n, we have
Aj=n∑i=1,i≠j(−1)i−1[[yi,x1,⋯,xn−1],y1,⋯,hyj,⋯,ˆyi,⋯,yn]=[[y1,⋯,hyj,⋯,yn],x1,⋯,xn−1]+(−1)j[[hyj,x1,⋯,xn−1],y1,⋯,ˆyj,⋯,yn]. |
Thus, we get
n∑j=1Aj=n∑j=1[[y1,⋯,hyj,⋯,yn],x1,⋯,xn−1]+n∑j=1(−1)j[[hyj,x1,⋯,xn−1],y1,⋯,ˆyj,⋯,yn]=n[h[y1,⋯,yn],x1,⋯,xn−1]+n∑j=1(−1)j[[hyj,x1,⋯,xn−1],y1,⋯,ˆyj,⋯,yn]. |
By applying Eq (2.1) to Bi,1≤i≤n−1, we have
Bi=[[y1,⋯,yn],x1,⋯,hxi,⋯,xn−1]=n∑j=1(−1)j−1[[yj,x1,⋯,hxi,⋯,xn−1],y1,⋯ˆyj,⋯,yn]. |
Thus, we get
n−1∑i=1Bi=n−1∑i=1n∑j=1(−1)j−1[[yj,x1,⋯,hxi,⋯,xn−1],y1,⋯ˆyj,⋯,yn]=n∑j=1n−1∑i=1(−1)j−1[[yj,x1,⋯,hxi,⋯,xn−1],y1,⋯ˆyj,⋯,yn]. |
Note that, by Eq (2.2), we have
n−1∑i=1(−1)j−1[[yj,x1,⋯,hxi,⋯,xn−1],y1,⋯ˆyj,⋯,yn]=(−1)j−1n[h[yj,x1,⋯,xi,⋯,xn−1],y1,⋯ˆyj,⋯,yn]+(−1)j[[hyj,x1,⋯,xi,⋯,xn−1],y1,⋯ˆyj,⋯,yn]. |
Thus, we obtain
n−1∑i=1Bi=n∑j=1(−1)j−1n[h[yj,x1,⋯,xi,⋯,xn−1],y1,⋯ˆyj,⋯,yn]+n∑j=1(−1)j[[hyj,x1,⋯,xi,⋯,xn−1],y1,⋯ˆyj,⋯,yn]. |
By substituting these equations into Eq (2.7), we have
n∑i=1(−1)i−1[h[yi,x1,⋯,xn−1],y1,⋯,ˆyi,⋯,yn]−[h[y1,⋯,yn],x1,⋯,xn−1]+n[h[y1,⋯,yn],x1,⋯,xn−1]+n∑j=1(−1)j[[hyj,x1,⋯,xn−1],y1,⋯,ˆyj,⋯,yn]−n∑j=1(−1)j−1n[h[yj,x1,⋯,xi,⋯,xn−1],y1,⋯ˆyj,⋯,yn]−n∑j=1(−1)j[[hyj,x1,⋯,xi,⋯,xn−1],y1,⋯ˆyj,⋯,yn]=0, |
which implies that
(n−1)(n∑i=1(−1)i[h[yi,x1,⋯,xn−1],y1,⋯,ˆyi,⋯,yn]+[h[y1,⋯,yn],x1,⋯,xn−1])=0. |
Therefore, the proof of Eq (2.4) is completed.
(3) By Eq (2.2), for any 1≤j≤n+1, we have
(−1)j−1n[yj,x1,⋯,xn−1][y1,⋯,ˆyj,⋯,yn+1]=n+1∑i=1,i≠j(−1)j−1[y1,⋯,yi[yj,x1,⋯,xn−1],⋯,ˆyj,⋯,yn+1]. |
By taking the sum of the above n+1 identities, we obtain
n+1∑j=1(−1)j−1n[yj,x1,⋯,xn−1][y1,⋯,ˆyj,⋯,yn+1]=n+1∑j=1n+1∑i=1,i≠j(−1)j−1[y1,⋯,yi[yj,x1,⋯,xn−1],⋯,ˆyj,⋯,yn+1]. |
Thus, we only need to prove the following equation:
n+1∑j=1n+1∑i=1,i≠j(−1)j−1[y1,⋯,yi[yj,x1,⋯,xn−1],⋯,ˆyj,⋯,yn+1]=0. |
Note that
n+1∑j=1n+1∑i=1,i≠j(−1)j−1[y1,⋯,yi[yj,x1,⋯,xn−1],⋯,ˆyj,⋯,yn+1]=n+1∑i=1n+1∑j=1,j≠i(−1)j−1[y1,⋯,yi[yj,x1,⋯,xn−1],⋯,ˆyj,⋯,yn+1]=n+1∑i=1i−1∑j=1(−1)i+j−1[yi[yj,x1,⋯,xn−1],y1,⋯,ˆyj,⋯,ˆyi,⋯,yn+1]+n+1∑i=1n+1∑j=i+1(−1)i+j[yi[yj,x1,⋯,xn−1],y1,⋯,ˆyi,⋯,ˆyj,⋯,yn+1](2.4)=n+1∑i=1(−1)i[yi[y1,⋯,ˆyi,⋯,yn+1],x1,⋯,xn−1](2.3)=0. |
Hence, the conclusion holds.
(4) By applying Eq (2.2), we have
n2x1x2[y1,y2,⋯,yn]=nx1n∑j=1[y1,⋯,yjx2,⋯,yn]=n∑i=1n∑j=1,j≠i[y1,⋯,yix1,⋯,yjx2,⋯,yn]+n∑j=1[y1,⋯,yjx1x2,⋯,yn]=n∑i=1n∑j=1,j≠i[y1,⋯,yix1,⋯,yjx2,⋯,yn]+nx1x2[y1,⋯,yn], |
which gives
n(n−1)x1x2[y1,y2,⋯,yn]=n∑i=1n∑j=1,j≠i[y1,⋯,yix1,⋯,yjx2,⋯,yn]. |
Hence, the proof is completed.
To prove Conjecture 1.1, we need the following extra condition.
Definition 2.3. A transposed Poisson n-Lie algebra (L,⋅,[−,⋯,−]) is called strong if the following identity holds:
y1[hy2,x1,⋯,xn−1]−y2[hy1,x1,⋯,xn−1]+n−1∑i=1(−1)i−1hxi[y1,y2,x1,⋯,ˆxi,⋯,xn−1]=0 | (2.8) |
for any y1,y2,xi∈L,1≤i≤n−1.
Remark 2.1. When n=2, the identity is
y1[hy2,x1]+y2[x1,hy1]+hx1[y1,y2]=0, |
which is exactly Theorem 2.5 (11) in [2]. Thus, in the case of a transposed Poisson algebra, the strong condition always holds. So far, we cannot prove that the strong condition fails to hold for n≥3.
Proposition 2.1. Let (L,⋅,[−,⋯,−]) be a strong transposed Poisson n-Lie algebra. Then,
y1[hy2,x1,⋯,xn−1]−hy1[y2,x1,⋯,xn−1]=y2[hy1,x1,⋯,xn−1]−hy2[y1,x1,⋯,xn−1] | (2.9) |
for any y1,y2,xi∈L,1≤i≤n−1.
Proof. By Eq (2.3), we have
−hy1[y2,x1,⋯,xn−1]+hy2[y1,x1,⋯,xn−1]=n−1∑i=1(−1)i−1hxi[y1,y2,x1,⋯,ˆxi,⋯,xn−1]. |
Then, the statement follows from Eq (2.8).
In this section, we will prove Conjecture 1.1 for strong transposed Poisson n-Lie algebras. First, we recall the notion of derivations of transposed Poisson n-Lie algebras.
Definition 3.1. Let (L,⋅,[−,⋯,−]) be a transposed Poisson n-Lie algebra. The linear operation D:L→L is called a derivation of (L,⋅,[−,⋯,−]) if the following holds for any u,v,xi∈L,1≤i≤n:
(1) D is a derivation of (L,⋅), i.e., D(uv)=D(u)v+uD(v);
(2) D is a derivation of (L,[−,⋯,−]), i.e.,
D([x1,⋯,xn])=n∑i=1[x1,⋯,xi−1,D(xi),xi+1,⋯,xn]. |
Lemma 3.1. Let (L,⋅,[−,⋯,−]) be a transposed Poisson n-Lie algebra and D a derivation of (L,⋅,[−,⋯,−]). For any yi∈L,1≤i≤n+1, we have the following:
(1)
n+1∑i=1(−1)i−1D(yi)D([y1,⋯,ˆyi,⋯,yn+1])=n+1∑i=1n+1∑j=1,j≠i(−1)i−1D(yi)[y1,⋯,D(yj),⋯,ˆyi,⋯,yn+1]; | (3.1) |
(2)
n+1∑i=1(−1)i−1D(yi)D([y1,⋯,ˆyi,⋯,yn+1])=n+1∑i=1n+1∑j=1,j≠in+1∑k=j+1,k≠i(−1)iyi[y1,⋯,D(yj),⋯,D(yk),⋯,ˆyi,⋯,yn+1], | (3.2) |
where, for any i>j, j∑i denotes the empty sum, which is equal to zero.
Proof. (1) The statement follows immediately from Definition 3.1.
(2) By applying Eq (3.1), we need to prove the following equation:
n+1∑i=1n+1∑j=1,j≠i(−1)i−1nD(yi)[y1,⋯,D(yj),⋯,ˆyi,⋯,yn+1]=n+1∑i=1n+1∑j=1,j≠in+1∑k=j+1,k≠i(−1)inyi[y1,⋯,D(yj),⋯,D(yk),⋯,ˆyi,⋯,yn+1]. |
For any 1≤i≤n+1, denote Ai:=nn+1∑j=1,j≠i(−1)i−1D(yi)[y1,⋯,D(yj),⋯,ˆyi,⋯,yn+1]. Then, we have
n+1∑i=1n+1∑j=1,j≠i(−1)i−1nD(yi)[y1,⋯,D(yj),⋯,ˆyi,⋯,yn+1]=n+1∑i=1Ai. |
Note that
Ai=(−1)i−1(nD(yi)[D(y1),y2,⋯,ˆyi,⋯,yn+1]+nD(yi)[y1,D(y2),y3,⋯,ˆyi,⋯,yn+1]+⋯+nD(yi)[y1,⋯,ˆyi,⋯,yn,D(yn+1)])=(−1)i−1([D(yi)D(y1),y2,⋯,ˆyi,⋯,yn+1]+n+1∑k=2,k≠i[D(y1),y2,⋯,ykD(yi),⋯,ˆyi,⋯,yn+1]+[y1,D(yi)D(y2),y3,⋯,ˆyi,⋯,yn+1]+n+1∑k=1,k≠2,i[y1,D(y2),y3,⋯,ykD(yi),⋯,ˆyi,⋯,yn+1]+⋯+[y1,⋯,ˆyi,⋯,yn,D(yi)D(yn+1)]+n∑k=1,k≠i[y1,⋯,ykD(yi),⋯,ˆyi,⋯,yn,D(yn+1)])=(−1)i−1n+1∑j=1,j≠i[y1,⋯,D(yi)D(yj),⋯,ˆyi,⋯,yn+1]+(−1)i−1n+1∑j=1,j≠in+1∑k=1,k≠j,i[y1,⋯,D(yj),⋯,ykD(yi),⋯,ˆyi,⋯,yn+1]. |
Thus, we have
n+1∑i=1Ai=n+1∑j=1n+1∑i=1,i≠j(−1)j−1[y1,⋯,D(yj)D(yi),⋯,ˆyj,⋯,yn+1]+n+1∑i=1n+1∑j=1,j≠in+1∑k=1,k≠i,j(−1)i−1[y1,⋯,D(yj),⋯,ykD(yi),⋯,ˆyi,⋯,yn+1]=T1+T2, |
where
T1:=n+1∑j=1n+1∑i=1,i≠j(−1)j−1[y1,⋯,D(yj)D(yi),⋯,ˆyj,⋯,yn+1],T2:=n+1∑i=1n+1∑j=1,j≠in+1∑k=1,k≠i,j(−1)i−1[y1,⋯,D(yj),⋯,ykD(yi),⋯,ˆyi,⋯,yn+1]. |
Note that
T1=n+1∑j,i=1Bji, |
where Bji=(−1)j−1[y1,⋯,D(yj)D(yi),⋯,ˆyj,⋯,yn+1] for any 1≤j≠i≤n+1, and Bii=0 for any 1≤i≤n+1.
For any 1≤i,j≤n+1, without loss of generality, assume that i<j; then, we have
Bji+Bij=(−1)j−1[y1,⋯,D(yj)D(yi),⋯,ˆyj,⋯,yn+1]+(−1)i−1[y1,⋯,ˆyi,⋯,D(yi)D(yj),⋯,yn+1]=(−1)j−1[y1,⋯,D(yj)D(yi),⋯,ˆyj,⋯,yn+1]+(−1)i−1+j−i+1[y1,⋯,D(yj)D(yi),⋯,ˆyj,⋯,yn+1]=0, |
which implies that T1=n+1∑j,i=1Bji=0.
Thus, we get that n+1∑i=1Ai=T2.
We rewrite
n+1∑i=1n+1∑j=1,j≠in+1∑k=j+1,k≠i(−1)inyi[y1,⋯,D(yj),⋯,D(yk),⋯,ˆyi,⋯,yn+1]=n+1∑i=1n+1∑j=1,j≠in+1∑k=j+1,k≠in+1∑t=1,t≠j,k,i(−1)i⋅[y1,⋯,D(yj),⋯,D(yk),⋯,ytyi,⋯,ˆyi,⋯,yn+1]+n+1∑i=1n+1∑j=1,j≠in+1∑k=j+1,k≠i(−1)i[y1,⋯,yiD(yj),⋯,D(yk),⋯,ˆyi,⋯,yn+1]+n+1∑i=1n+1∑j=1,j≠in+1∑k=j+1,k≠i(−1)i[y1,⋯,D(yj),⋯,yiD(yk),⋯,ˆyi,⋯,yn+1]=M1+M2+M3, |
where
M1:=n+1∑i=1n+1∑j=1,j≠in+1∑k=j+1,k≠in+1∑t=1,t≠j,k,i(−1)i⋅[y1,⋯,D(yj),⋯,D(yk),⋯,ytyi,⋯,ˆyi,⋯,yn+1],M2:=n+1∑i=1n+1∑j=1,j≠in+1∑k=j+1,k≠i(−1)i[y1,⋯,yiD(yj),⋯,D(yk),⋯,ˆyi,⋯,yn+1],M3:=n+1∑i=1n+1∑j=1,j≠in+1∑k=j+1,k≠i(−1)i[y1,⋯,D(yj),⋯,yiD(yk),⋯,ˆyi,⋯,yn+1]. |
Note that
M1=n+1∑i=1n+1∑j=1,j≠in+1∑k=j+1,k≠in+1∑t=1,t≠j,k,i(−1)i⋅[y1,⋯,D(yj),⋯,D(yk),⋯,ytyi,⋯,ˆyi,⋯,yn+1]=n+1∑i,j,k,t=1Bijkt, |
where
Bijkt={0,if any two indices are equal or k<j;(−1)i[y1,⋯,D(yj),⋯,D(yk),⋯,ytyi,⋯,ˆyi,⋯,yn+1],otherwise. |
For any 1≤j,k≤n+1, without loss of generality, assume that t<i; then, we have
Bijkt+Btjki=(−1)i[y1,⋯,D(yj),⋯,D(yk),⋯,ytyi,⋯,ˆyi,⋯,yn+1]+(−1)t[y1,⋯,D(yj),⋯,D(yk),⋯,ˆyt,⋯,ytyi,⋯,yn+1]=(−1)i[y1,⋯,D(yj),⋯,D(yk),⋯,ytyi,⋯,ˆyi,⋯,yn+1]+(−1)t+i−t−1[y1,⋯,D(yj),⋯,D(yk),⋯,ytyi,⋯,ˆyi,⋯,yn+1]=0, |
which implies that M1=0.
Therefore, we only need to prove the following equation:
M2+M3=n+1∑i=1n+1∑j=1,j≠in+1∑k=1,k≠i,j(−1)i−1[y1,⋯,D(yj),⋯,ykD(yi),⋯,ˆyi,⋯,yn+1]. |
First, we have
n+1∑j=1,j≠in+1∑k=j+1,k≠i(−1)i[y1,⋯,yiD(yj),⋯,D(yk),⋯,ˆyi,⋯,yn+1]+n+1∑j=1,j≠in+1∑k=j+1,k≠i(−1)i[y1,⋯,D(yj),⋯,yiD(yk),⋯,ˆyi,⋯,yn+1]=n+1∑k=1,k≠ik−1∑j=1,j≠i(−1)i[y1,⋯,yiD(yj),⋯,D(yk),⋯,ˆyi,⋯,yn+1]+n+1∑j=1,j≠in+1∑k=j+1,k≠i(−1)i[y1,⋯,D(yj),⋯,yiD(yk),⋯,ˆyi,⋯,yn+1]=n+1∑j=1,j≠ij−1∑k=1,k≠i(−1)i[y1,⋯,yiD(yk),⋯,D(yj),⋯,ˆyi,⋯,yn+1]+n+1∑j=1,j≠in+1∑k=j+1,k≠i(−1)i[y1,⋯,D(yj),⋯,yiD(yk),⋯,ˆyi,⋯,yn+1]=n+1∑j=1,j≠in+1∑k=1,k≠i,j(−1)i[y1,⋯,D(yj),⋯,yiD(yk),⋯,ˆyi,⋯,yn+1]. |
Thus,
M2+M3=n+1∑i=1n+1∑j=1,j≠in+1∑k=1,k≠i,j(−1)i[y1,⋯,D(yj),⋯,yiD(yk),⋯,ˆyi,⋯,yn+1]=n+1∑j=1n+1∑i=1,i≠jn+1∑k=1,k≠i,j(−1)i[y1,⋯,D(yj),⋯,yiD(yk),⋯,ˆyi,⋯,yn+1]=n+1∑j=1n+1∑i=1,i≠ji−1∑k=1,k≠j(−1)i[y1,⋯,D(yj),⋯,yiD(yk),⋯,ˆyi,⋯,yn+1]+n+1∑j=1n+1∑i=1,i≠jn+1∑k=i+1,k≠j(−1)i[y1,⋯,D(yj),⋯,ˆyi,⋯,yiD(yk),⋯,yn+1]. |
Note that, for any 1≤j≤n+1, we have
n+1∑i=1,i≠ji−1∑k=1,k≠j(−1)i[y1,⋯,D(yj),⋯,yiD(yk),⋯,ˆyi,⋯,yn+1]=n+1∑i=1,i≠ji−1∑k=1,k≠j(−1)i[y1,⋯,D(yj),⋯,yk−1,yiD(yk),yk+1,⋯,ˆyi⋯,yn+1]=n+1∑i=1,i≠ji−1∑k=1,k≠j(−1)k−1[y1,⋯,D(yj),⋯,ˆyk,⋯,yi−1,yiD(yk),yi+1,⋯,yn+1]=n+1∑i=1,i≠ji−1∑k=1,k≠j(−1)k−1[y1,⋯,D(yj),⋯,ˆyk,⋯,yiD(yk),⋯,yn+1]. |
Similarly, we have
n+1∑i=1,i≠jn+1∑k=i+1,k≠j(−1)i[y1,⋯,D(yj),⋯,ˆyi,⋯,yiD(yk),⋯,yn+1]=n+1∑i=1,i≠jn+1∑k=i+1,k≠j(−1)k−1[y1,⋯,D(yj),⋯,yiD(yk),⋯,ˆyk,⋯,yn+1]. |
Thus,
M2+M3=n+1∑j=1n+1∑i=1,i≠ji−1∑k=1,k≠j(−1)k−1[y1,⋯,D(yj),⋯,ˆyk,⋯,yiD(yk),⋯,yn+1]+n+1∑j=1n+1∑i=1,i≠jn+1∑k=i+1,k≠j(−1)k−1[y1,⋯,D(yj),⋯,yiD(yk),⋯,ˆyk,⋯,yn+1]=n+1∑j=1n+1∑i=1,i≠jn+1∑k=1,k≠i,j(−1)k−1[y1,⋯,D(yj),⋯,yiD(yk),⋯,ˆyk,⋯,yn+1]=n+1∑k=1n+1∑j=1,j≠kn+1∑i=1,i≠j,k(−1)k−1[y1,⋯,D(yj),⋯,yiD(yk),⋯,ˆyk,⋯,yn+1]=n+1∑i=1n+1∑j=1,j≠in+1∑k=1,k≠j,i(−1)i−1[y1,⋯,D(yj),⋯,ykD(yi),⋯,ˆyi,⋯,yn+1]. |
The proof is completed.
Theorem 3.1. Let (L,⋅,[−,⋯,−]) be a strong transposed Poisson n-Lie algebra and D a derivation of (L,⋅,[−,⋯,−]). Define an (n+1)-ary operation:
μn+1(x1,⋯,xn+1):=n+1∑i=1(−1)i−1D(xi)[x1,⋯,ˆxi,⋯,xn+1] | (3.3) |
for any xi∈L,1≤i≤n+1. Then, (L,μn+1) is an (n+1)-Lie algebra.
Proof. For convenience, we denote
μn+1(x1,⋯,xn+1):=[x1,⋯,xn+1]. |
On one hand, we have
[[y1,⋯,yn+1],x1,⋯,xn](3.3)=n+1∑i=1(−1)i−1[D(yi)[y1,⋯,ˆyi,⋯,yn+1],x1,⋯,xn](3.3)=n+1∑i=1(−1)i−1D(D(yi)[y1,⋯,ˆyi,⋯,yn+1])[x1,⋯,xn]+n+1∑i=1n∑j=1(−1)i+j−1D(xj)[D(yi)[y1,⋯,ˆyi,⋯,yn+1],x1,⋯,ˆxj,⋯,xn]=n+1∑i=1(−1)i−1D2(yi)[y1,⋯,ˆyi,⋯,yn+1][x1,⋯,xn]+n+1∑i=1(−1)i−1D(yi)D([y1,⋯,ˆyi,⋯,yn+1])[x1,⋯,xn]+n+1∑i=1n∑j=1(−1)i+j−1D(xj)[D(yi)[y1,⋯,ˆyi,⋯,yn+1],x1,⋯,ˆxj,⋯,xn](3.1)=n+1∑i=1(−1)i−1D2(yi)[y1,⋯,ˆyi,⋯,yn+1][x1,⋯,xn]+n+1∑i=1n+1∑k=1,k≠i(−1)i−1D(yi)[y1,⋯,D(yk),⋯,ˆyi,⋯,yn+1][x1,⋯,xn]+n+1∑i=1n∑j=1(−1)i+j−1D(xj)[D(yi)[y1,⋯,ˆyi,⋯,yn+1],x1,⋯,ˆxj,⋯,xn]=n+1∑i=1(−1)i−1D2(yi)[y1,⋯,ˆyi,⋯,yn+1][x1,⋯,xn]+n+1∑k=1k−1∑i=1(−1)k+i−1D(yi)[D(yk),y1,⋯,ˆyi,⋯,ˆyk,⋯,yn+1][x1,⋯,xn]+n+1∑k=1n+1∑i=k+1(−1)i+kD(yi)[D(yk),y1,⋯,ˆyk,⋯,ˆyi,⋯,yn+1][x1,⋯,xn]+n+1∑i=1n∑j=1(−1)i+j−1D(xj)[D(yi)[y1,⋯,ˆyi,⋯,yn+1],x1,⋯,ˆxj,⋯,xn]. |
On the other hand, for any 1≤k≤n, we have
(−1)k−1[[yk,x1,⋯,xn],y1,⋯,ˆyk,⋯,yn+1](3.3)=(−1)k−1[D(yk)[x1,⋯,xn],y1,⋯,ˆyk,⋯,yn+1]+n∑j=1(−1)j+k−1[D(xj)[yk,x1,⋯,ˆxj,⋯,xn],y1,⋯,ˆyk,⋯,yn+1](3.3)=(−1)k−1D(D(yk)[x1,⋯,xn])[y1,⋯,ˆyk,⋯,yn+1]+k−1∑i=1(−1)i+k−1D(yi)[D(yk)[x1,⋯,xn],y1,⋯,ˆyi,⋯,ˆyk,⋯,yn+1]+n+1∑i=k+1(−1)i+kD(yi)[D(yk)[x1,⋯,xn],y1,⋯,ˆyk,⋯,ˆyi,⋯,yn+1]+n∑j=1(−1)j+k−1D(D(xj)[yk,x1,⋯,ˆxj,⋯,xn])[y1,⋯,ˆyk,⋯,yn+1]+n∑j=1n+1∑i=k+1((−1)i+jD(yi)⋅[D(xj)[yk,x1,⋯,ˆxj,⋯,xn],y1,⋯,ˆyk,⋯,ˆyi,⋯,yn+1])+n∑j=1k−1∑i=1((−1)i+j−1D(yi)⋅[D(xj)[yk,x1,⋯,ˆxj,⋯,xn],y1,⋯,ˆyi,⋯,ˆyk,⋯,yn+1])=(−1)k−1D2(yk)[x1,⋯,xn][y1,⋯,ˆyk,⋯,yn+1]+k−1∑i=1(−1)i+k−1D(yi)[D(yk)[x1,⋯,xn],y1,⋯,ˆyi,⋯,ˆyk,⋯,yn+1]+n+1∑i=k+1(−1)i+kD(yi)[D(yk)[x1,⋯,xn],y1,⋯,ˆyk,⋯,ˆyi,⋯,yn+1]+n∑j=1(−1)j+k−1D2(xj)[yk,x1,⋯,ˆxj,⋯,xn][y1,⋯,ˆyk,⋯,yn+1]+n∑j=1n+1∑i=k+1((−1)i+jD(yi)⋅[D(xj)[yk,x1,⋯,ˆxj,⋯,xn],y1,⋯,ˆyk,⋯,ˆyi,⋯,yn+1])+n∑j=1k−1∑i=1((−1)i+j−1D(yi)⋅[D(xj)[yk,x1,⋯,ˆxj,⋯,xn],y1,⋯,ˆyi,⋯,ˆyk,⋯,yn+1])+(−1)k−1D(yk)D([x1,⋯,xn])[y1,⋯,ˆyk,⋯,yn+1]+n∑j=1(−1)j+k−1D(xj)D([yk,x1,⋯,ˆxj,⋯,xn])[y1,⋯,ˆyk,⋯,yn+1](3.2)=(−1)k−1D2(yk)[x1,⋯,xn][y1,⋯,ˆyk,⋯,yn+1]+k−1∑i=1(−1)i+k−1D(yi)[D(yk)[x1,⋯,xn],y1,⋯,ˆyi,⋯,ˆyk,⋯,yn+1]+n+1∑i=k+1(−1)i+kD(yi)[D(yk)[x1,⋯,xn],y1,⋯,ˆyk,⋯,ˆyi,⋯,yn+1]+n∑j=1(−1)j+k−1D2(xj)[yk,x1,⋯,ˆxj,⋯,xn][y1,⋯,ˆyk,⋯,yn+1]+n∑j=1n+1∑i=k+1((−1)i+jD(yi)⋅[D(xj)[yk,x1,⋯,ˆxj,⋯,xn],y1,⋯,ˆyk,⋯,ˆyi,⋯,yn+1])+n∑j=1k−1∑i=1((−1)i+j−1D(yi)⋅[D(xj)[yk,x1,⋯,ˆxj,⋯,xn],y1,⋯,ˆyi,⋯,ˆyk,⋯,yn+1])+n∑j=1n∑t=j+1(−1)kyk[x1,⋯,D(xj),⋯,D(xt),⋯,xn][y1,⋯,ˆyk,⋯,yn+1]+n∑i=1n∑j=1,j≠i(−1)k+ixi[D(yk),x1,⋯,D(xj),⋯,ˆxi,⋯,xn][y1,⋯,ˆyk,⋯,yn+1]+n∑i=1n∑j=1,j≠in∑t=j+1,t≠i(−1)k+ixi[yk,x1,⋯,D(xj),D(xt),⋯,ˆxi,⋯,xn]⋅[y1,⋯,ˆyk,⋯,yn+1]. |
We denote
n+1∑i=1(−1)i−1[[yi,x1,⋯,xn],y1,⋯,ˆyi,⋯,yn+1]=7∑i=1Ai, |
where
A1:=n+1∑i=1(−1)i−1D2(yi)[x1,⋯,xn][y1,⋯,ˆyi,⋯,yn+1],A2:=n+1∑k=1n∑j=1(−1)k+j−1D2(xj)[yk,x1,⋯,ˆxj,⋯,xn][y1,⋯,ˆyk,⋯,yn+1],A3:=n+1∑i=1n∑j=1n∑k=j+1(−1)iyi[x1,⋯,D(xj),⋯,D(xk),⋯,xn][y1,⋯,ˆyi,⋯,yn+1],A4:=n+1∑k=1n∑i=1n∑j=1,j≠in∑t=j+1,t≠i((−1)k+ixi[yk,x1,⋯,D(xj),D(xt),⋯,ˆxi,⋯,xn]⋅[y1,⋯,ˆyk,⋯,yn+1]),A5:=n+1∑k=1k−1∑i=1(−1)k+i−1D(yi)[D(yk)[x1,⋯,xn],y1,⋯,ˆyi,⋯,ˆyk,⋯,yn+1]+n+1∑k=1n+1∑i=k+1(−1)i+kD(yi)[D(yk)[x1,⋯,xn],y1,⋯,ˆyk,⋯,ˆyi,⋯,yn+1],A6:=n+1∑k=1n∑i=1n∑j=1,j≠i((−1)k+ixi[D(yk),x1,⋯,D(xj),⋯,ˆxi,⋯,xn]⋅[y1,⋯,ˆyk,⋯,yn+1]),A7:=n+1∑k=1n∑j=1n+1∑i=k+1((−1)k+i+jD(yi)⋅[D(xj)[yk,x1,⋯,ˆxj,⋯,xn],y1,⋯,ˆyk,⋯,ˆyi,⋯,yn+1])+n+1∑k=1n∑j=1k−1∑i=1((−1)k+i+j−1D(yi)⋅[D(xj)[yk,x1,⋯,ˆxj,⋯,xn],y1,⋯,ˆyi,⋯,ˆyk,⋯,yn+1]). |
By Eq (2.5), for fixed j, we have
n+1∑k=1(−1)k+j−1D2(xj)[yk,x1,⋯,ˆxj,⋯,xn][y1,⋯,ˆyk,⋯,yn+1]=0. |
So, we obtain that A2=0.
By Eq (2.3), for fixed j and k, we have
n+1∑i=1(−1)iyi[x1,⋯,D(xj),⋯,D(xk),⋯,xn][y1,⋯,ˆyi,⋯,yn+1]=0. |
So, we obtain that A3=0.
By Eq (2.5), for fixed j and t, we have
n+1∑k=1(−1)k+ixi[yk,x1,⋯,D(xj),D(xt),⋯,ˆxi,⋯,xn][y1,⋯,ˆyk,⋯,yn+1]=0. |
So, we obtain that A4=0.
By Eq (2.9), for fixed i and k, we have
(−1)k+i−1D(yi)[D(yk)[x1,⋯,xn],y1,⋯,ˆyi,⋯,ˆyk,⋯,yn+1]+(−1)i+kD(yk)[D(yi)[x1,⋯,xn],y1,⋯,ˆyi,⋯,ˆyk,⋯,yn+1]=(−1)k+i−1D(yi)[D(yk),y1,⋯,ˆyi,⋯,ˆyk,⋯,yn+1][x1,⋯,xn]+(−1)i+kD(yk)[D(yi),y1,⋯,ˆyi,⋯,ˆyk,⋯,yn+1][x1,⋯,xn]. |
Thus, we obtain
A5=n+1∑k=1k−1∑i=1(−1)k+i−1D(yi)[D(yk),y1,⋯,ˆyi,⋯,ˆyk,⋯,yn+1][x1,⋯,xn]+n+1∑k=1n+1∑i=k+1(−1)i+kD(yi)[D(yk),y1,⋯,ˆyk,⋯,ˆyi,⋯,yn+1][x1,⋯,xn]. |
By Eq (2.3), for fixed j and k, we have
n∑i=1(−1)k+ixi[D(yk),x1,⋯,D(xj),⋯,ˆxi,⋯,xn]=(−1)k−1D(yk)[x1,⋯,D(xj),⋯,xn]+(−1)k+j−1D(xj)[D(yk),x1,⋯,xn]=(−1)k+jD(yk)[D(xj),x1,⋯,ˆxj,⋯,xn]+(−1)k+j−1D(xj)[D(yk),x1,⋯,xn]. |
Thus, we get
A6=n+1∑k=1n∑j=1(−1)k+jD(yk)[D(xj),x1,⋯,ˆxj,⋯,xn][y1,⋯,ˆyk,⋯,yn+1]+n+1∑k=1n∑j=1(−1)k+j−1D(xj)[D(yk),x1,⋯,xn][y1,⋯,ˆyk,⋯,yn+1]. |
By Eq (2.4), for fixed j and i, we have
n+1∑k=i+1(−1)k+i+j−1D(yi)[D(xj)[yk,x1,⋯,ˆxj,⋯,xn],y1,⋯,ˆyi,⋯,ˆyk,⋯,yn+1]+i−1∑k=1(−1)k+i+jD(yi)[D(xj)[yk,x1,⋯,ˆxj,⋯,xn],y1,⋯,ˆyk,⋯,ˆyi,⋯,yn+1]=(−1)j+i−1D(yi)[D(xj)[y1,⋯,ˆyi,⋯,yn+1],x1,⋯,ˆxj,⋯,xn]. |
So, we obtain
A7=n∑j=1n+1∑i=1(−1)j+i−1D(yi)[D(xj)[y1,⋯,ˆyi,⋯,yn+1],x1,⋯,ˆxj,⋯,xn]. |
By Eq (2.9), we have
(−1)i+jD(yi)[D(xj),x1,⋯,ˆxj,⋯,xn][y1,⋯,ˆyi,⋯,yn+1]+(−1)i+j−1D(xj)[D(yi),x1,⋯,xn][y1,⋯,ˆyi,⋯,yn+1]+(−1)j+i−1D(yi)[D(xj)[y1,⋯,ˆyi,⋯,yn+1],x1,⋯,ˆxj,⋯,xn]=(−1)j+i−1D(xj)[D(yi)[y1,⋯,ˆyi,⋯,yn+1],x1,⋯,ˆxj,⋯,xn]. |
So, we get
A6+A7=n+1∑i=1n∑j=1(−1)j+i−1D(xj)[D(yi)[y1,⋯,ˆyi,⋯,yn+1],x1,⋯,ˆxj,⋯,xn]. |
Thus, we have
7∑i=1Ai=A1+A5+A6+A7=[[y1,⋯,yn+1],x1,⋯,xn]. |
Therefore, (L,μn+1) is an (n+1)-Lie algebra.
Now, we can prove Conjecture 1.1 for strong transposed Poisson n-Lie algebras.
Theorem 3.2. With the notations in Theorem 3.1, (L,⋅,μn+1) is a strong transposed Poisson (n+1)-Lie algebra.
Proof. For convenience, we denote μn+1(x1,⋯,xn+1):=[x1,⋯,xn+1]. According to Theorem 3.1, we only need to prove Eqs (2.2) and (2.8).
Proof of Eq (2.2). By Eq (3.3), we have
n+1∑i=1[x1,⋯,hxi,⋯,xn+1]=D(hx1)[x2,⋯,xn+1]+n+1∑j=2(−1)j−1D(xj)[hx1,x2,⋯,ˆxj,⋯,xn+1]−D(hx2)[x1,x3,⋯,xn+1]+n+1∑j=1,j≠2(−1)j−1D(xj)[x1,hx2,x3,⋯,ˆxj,⋯,xn+1]+⋯+(−1)nD(hxn)[x1,⋯,xn]+n∑j=1(−1)j−1D(xj)[x1,⋯,ˆxj,⋯,xn,hxn+1]=n+1∑i=1(−1)i−1D(hxi)[x1,⋯,ˆxi,⋯,xn]+n+1∑i=1n+1∑j=1,j≠i(−1)j−1D(xj)[x1,,⋯,hxi,⋯,ˆxj,⋯,xn+1]=n+1∑i=1(−1)i−1D(hxi)[x1,⋯,ˆxi,⋯,xn+1]+n+1∑j=1n+1∑i=1,i≠j(−1)j−1D(xj)[x1,⋯,hxi,⋯,ˆxj,⋯,xn+1]=n+1∑i=1(−1)i−1hD(xi)[x1,⋯,ˆxi,⋯,xn+1]+n+1∑i=1(−1)i−1xiD(h)[x1,⋯,ˆxi,⋯,xn+1]+n+1∑j=1n+1∑i=1,i≠j(−1)j−1D(xj)[x1,⋯,hxi,⋯,ˆxj,⋯,xn+1](2.3)=n+1∑i=1(−1)i−1hD(xi)[x1,⋯,ˆxi,⋯,xn+1]+n+1∑j=1n+1∑i=1,i≠j(−1)j−1D(xj)[x1,⋯,hxi,⋯,ˆxj,⋯,xn+1](3.3)=h[x1,⋯,xn+1]+n+1∑j=1n+1∑i=1,i≠j(−1)j−1D(xj)[x1,⋯,hxi,⋯,ˆxj,⋯,xn+1](2.2)=h[x1,⋯,xn+1]+nhn+1∑j=1(−1)j−1D(xj)[x1,⋯,ˆxj,⋯,xn+1](3.3)=h[x1,⋯,xn+1]+nh[x1,⋯,xn+1]=(n+1)h[x1,⋯,xn+1]. |
Proof of Eq (2.8). By Eq (3.3), we have
y1[hy2,x1,⋯,xn]−y2[hy1,x1,⋯,xn]+n∑i=1(−1)i−1hxi[y1,y2,x1,⋯,ˆxi,⋯,xn]=y1y2D(h)[x1,⋯,xn]+y1hD(y2)[x1,⋯,xn]−y1D(x1)[hy2,x2,⋯,xn]+y1D(x2)[hy2,x1,x3,⋯,xn]+⋯+(−1)ny1D(xn)[hy2,x1,⋯,xn−1]−y2y1D(h)[x1,⋯,xn]−y2hD(y1)[x1,⋯,xn]+y2D(x1)[hy1,x2,⋯,xn]−y2D(x2)[hy1,x1,x3,⋯,xn]+⋯+(−1)n−1y2D(xn)[hy1,x1,⋯,xn−1]+hx1D(y1)[y2,x2,⋯,xn]−hx1D(y2)[y1,x2,⋯,xn]+hx1D(x2)[y1,y2,x3,⋯,xn]+⋯+(−1)n+1hx1D(xn)[y1,y2,x2,⋯,xn−1]−hx2D(y1)[y2,x1,x3,⋯,xn]+hx2D(y2)[y1,x1,x3,⋯,xn]−hx2D(x1)[y1,y2,x3,⋯,xn]+⋯+(−1)n+2hx2D(xn)[y1,y2,x1,x3,⋯,xn−1]+⋯+(−1)n−1hxnD(y1)[y2,x1,⋯,xn−1]+(−1)nhxnD(y2)[y1,x1,⋯,xn−1]+(−1)n+1hxnD(x1)[y1,y2,x2,⋯,xn−1]+⋯+(−1)2n−1hxnD(xn−1)[y1,y2,x1,⋯,xn−2]=−y2hD(y1)[x1,⋯,xn]+hx1D(y1)[y2,x2,⋯,xn]+n∑i=2(−1)i−1hxiD(y1)[y2,x1,⋯,ˆxi,⋯,xn]+y1hD(y2)[x1,⋯,xn]−hx1D(y2)[y1,x2,⋯,xn]+n∑i=2(−1)ihxiD(y2)[y1,x1,⋯,ˆxi,⋯,xn]−y1D(x1)[hy2,x2,⋯,xn]+y2D(x1)[hy1,x2,⋯,xn]+n∑i=2(−1)i−1hxiD(x1)[y1,y2,x2,⋯,ˆxi,⋯,xn]+y1D(x2)[hy2,x1,x3,⋯,xn]−y2D(x2)[hy1,x1,x3,⋯,xn]+hx1D(x2)[y1,y2,x3,⋯,xn]+n∑i=3(−1)ihxiD(x2)[y1,y2,x1,x3,⋯,ˆxi,⋯,xn]⋯+(−1)ny1D(xn)[hy2,x1,⋯,xn−1]+(−1)n−1y2D(xn)[hy1,x1,⋯,xn−1]+n−1∑j=1(−1)n+j−1hxjD(xn)[y1,y2,x1,⋯,ˆxj,⋯,xn−1]=A1+A2+n∑i=1Bi, |
where
A1:=−y2hD(y1)[x1,⋯,xn]+n∑i=1(−1)i−1hxiD(y1)[y2,x1,⋯,ˆxi,⋯,xn],A2:=y1hD(y2)[x1,⋯,xn]+n∑i=1(−1)ihxiD(y2)[y1,x1,⋯,ˆxi,⋯,xn], |
and, for any 1≤i≤n,
Bi:=(−1)iy1D(xi)[hy2,x1,⋯,ˆxi,⋯,xn]+(−1)i−1y2D(xi)[hy1,x1,⋯,ˆxi,⋯,xn]+i−1∑j=1(−1)i+j−1hxjD(xi)[y1,y2,x1,⋯,ˆxj,⋯,ˆxi,⋯,xn]+n∑j=i+1(−1)i+jhxjD(xi)[y1,y2,x1,⋯,ˆxi,⋯,ˆxj,⋯,xn]. |
By Eq (2.3), we have
A1=hD(y1)(−y2[x1,⋯,xn]+n∑i=1(−1)i−1xi[y2,x1,⋯,ˆxi,⋯,xn])=0. |
Similarly, we have that A2=0.
By Eq (2.8), for any 1≤i≤n, we have
Bi=(−1)iD(xi)(y1[hy2,x1,⋯,ˆxi,⋯,xn]−y2[hy1,x1,⋯,ˆxi,⋯,xn]+i−1∑j=1(−1)j−1hxj[y1,y2,x1,⋯,ˆxj,⋯,ˆxi,⋯,xn]+n∑j=i+1(−1)jhxj[y1,y2,x1,⋯,ˆxi,⋯,ˆxj,⋯,xn])=0. |
Thus, we get
y1[hy2,x1,⋯,xn]−y2[hy1,x1,⋯,xn]+n∑i=1(−1)i−1hxi[y1,y2,x1,⋯,ˆxi,⋯,xn]=0. |
The proof is completed.
Example 3.1. The commutative associative algebra L=k[x1,x2,x3], together with the bracket
[x,y]:=x⋅D1(y)−y⋅D1(x),∀x,y∈L. |
gives a transposed Poisson algebra (L,⋅,[−,−]), where D1=∂x1 ([2, Proposition 2.2]). Note that the transposed Poisson algebra (L,⋅,[−,−]) is strong according to Remark 2.5. Now, let D2=∂x2; one can check that D2 is a derivation of (L,⋅,[−,−]). Then, there exists a strong transposed Poisson 3-Lie algebra defined by
[x,y,z]:=D2(x)(yD1(z)−zD1(y))+D2(y)(zD1(x)−xD1(z))+D2(z)(xD1(y)−yD1(x)), ∀x,y,z∈L. |
We note that [x1,x2,x3]=x3, which is non-zero. The strong condition can be checked as follows:
For any h,y1,y2,z1,z2∈L, by a direct calculation, we have
y1[hy2,z1,z2]=y1z1hD1(z2)D2(y2)−y1z2hD1(z1)D2(y2)+y1y2z1D1(z2)D2(h)−y1y2z2D1(z1)D2(h)−y1y2hD1(z2)D2(z1)+y1z2hD1(y2)D2(z1)+y1y2z2D1(h)D2(z1)+y1y2hD1(z1)D2(z2)−y1z1hD1(y2)D2(z2)−y1y2z1D1(h)D2(z2), |
−y2[hy1,z1,z2]=−y2z1hD1(z2)D2(y1)+y2z2hD1(z1)D2(y1)−y1y2z1D1(z2)D2(h)+y1y2z2D1(z1)D2(h)+y1y2hD1(z2)D2(z1)−y2z2hD1(y1)D2(z1)−y1y2z2D1(h)D2(z1)−y1y2hD1(z1)D2(z2)+y2z1hD1(y1)D2(z2)+y1y2z1D1(h)D2(z2), |
hz1[y1,y2,z2]=hy2z1D1(z2)D2(y1)−hz1z2D1(y2)D2(y1)−hy1z1D1(z2)D2(y2)+hz1z2D1(y1)D2(y2)+hy1z1D1(y2)D2(z2)−hy2z1D1(y1)D2(z2), |
−hz2[y1,y2,z1]=−hy2z2D1(z1)D2(y1)+hz1z2D1(y2)D2(y1)+hy1z2D1(z1)D2(y2)−hz1z2D1(y1)D2(y2)−hy1z2D1(y2)D2(z1)+hy2z2D1(y1)D2(z1). |
Thus, we get
y1[hy2,z1,z2]−y2[hy1,z1,z2]+hz1[y1,y2,z2]−hz2[y1,y2,z1]=0. |
We have studied transposed Poisson n-Lie algebras. We first established an important class of identities for transposed Poisson n-Lie algebras, which were subsequently used throughout the paper. We believe that the identities developed here will be useful in investigations of the structure of transposed Poisson n-Lie algebras in the future. Then, we introduced the notion of a strong transposed Poisson n-Lie algebra and derived an (n+1)-Lie algebra from a strong transposed Poisson n-Lie algebra with a derivation. Finally, we proved the conjecture of Bai et al. [2] for strong transposed Poisson n-Lie algebras.
The authors declare that they have not used artificial intelligence tools in the creation of this article.
Ming Ding was supported by the Guangdong Basic and Applied Basic Research Foundation (2023A1515011739) and the Basic Research Joint Funding Project of University and Guangzhou City under grant number 202201020103.
The authors declare that there is no conflict of interest.
[1] |
J. K. Blackburn, K. M. Mcnyset, A. Curtis, M. E. Hugh-Jones, Modeling the geographic distribution of Bacillus anthracis, the causative agent of anthrax disease, for the contiguous United States using Predictive Ecologic Niche Modeling, The American Journal of Tropical Medicine and Hygiene, 77 (2007), 1103–1110. https://doi.org/10.4269/ajtmh.2007.77.1103 doi: 10.4269/ajtmh.2007.77.1103
![]() |
[2] | World Health Organisation, Emerging infectious diseases and zoonoses, WHO, India, 2014. |
[3] | B. Ahmed, Y. Sultana, D. S. M. Fatema, K. Ara, N. Begum, S. M. Mostanzid, et al., Anthrax : An emerging zoonotic disease in Bangladesh, Bangladesh Journal of Medical Microbiology, 4 (2010), 46–50. |
[4] | D. C. Dragon, R. P. Rennie, The ecology of anthrax spores: Tough but not invincible, The Canadian Veterinary Journal, 36 (1995), 295–301. |
[5] | J. Decker, Deadly diseases and epidemics - Anthrax. (E. I. Alcamo, Ed.). USA : Chelsea House Publishers, 2003. |
[6] | C. L. Stoltenow, Anthrax, NDSU Extension, USA, 2021. |
[7] | J. K. Awoonor-Williams, P. A. Apanga, M. Anyawie, T. Abachie, S. Boidoitsiah, J. L. Opare, et al., Anthrax outbreak investigation among humans and animals in Northern Ghana: Case Report, (2016). |
[8] | National Center for Emerging and Zoontic Infectious Diseases, Guide to understanding anthrax, Center for Disease Control and Prevention, USA, 2016. |
[9] |
S. V. Shadomy, T. L. Smith, Zoonosis update, anthrax, Journal of the American Veterinary Medical Association, 233 (2008), 63–72. https://doi.org/10.2460/javma.233.1.63 doi: 10.2460/javma.233.1.63
![]() |
[10] | A. P. Suma, K. P. Suresh, M. R. Gajendragad, B. A. Kavya, Forecasting anthrax in livestock in Karnataka State using remote sensing and climatic variables, International Journal of Science and Research, 6 (2017), 1891–1897. |
[11] | Food and Agriculture Organisation of the United Nations, Anthrax outbreaks: A warning for improved prevention, control and heightened awareness, Empres Watch, 2016. |
[12] |
R. Makurumidze, N. T. Gombe, T. Magure, M. Tshimanga, Investigation of an anthrax outbreak in Makoni District, Zimbabwe, BMC Public Health, 298 (2021), 1–10. https://doi.org/10.1186/s12889-021-10275-0 doi: 10.1186/s12889-021-10275-0
![]() |
[13] |
A. E. Frankel, S. R. Kuo, D. Dostal, L. Watson, N. S. Duesbery, C. P. Cheng, et al., Pathophysiology of anthrax, Frontiers in Bioscience-Landmark, 14 (2009), 4516–4524. https://doi.org/10.2741/3544 doi: 10.2741/3544
![]() |
[14] |
I. Kracalik, L. Malania, P. Imnadze, J. K. Blackburn, Human anthrax transmission at the urban rural interface, Georgia, The American Journal of Tropical Medicine and Hygiene, 93 (2015), 1156–1159. https://doi.org/10.4269/ajtmh.15-0242 doi: 10.4269/ajtmh.15-0242
![]() |
[15] |
A. Fasanella, R. Adone, M. Hugh-Jones, Classification and management of animal anthrax outbreaks based on the source of infection, Ann 1st Super Sanita, 50 (2014), 192–195. https://doi.org/10.4415/ANN_14_02_14 doi: 10.4415/ANN_14_02_14
![]() |
[16] | J. G. Wright, P. C. Quinn, S. Shadomy, N. Messonnier, Use of anthrax vaccine in the United States recommendations of the Advisory Committee on Immunization Practices(ACIP), MMWR Recomm Rep, 59 (2009). |
[17] | A. D. Sweeney, W. C. Hicks, X. Cui, Y. Li, Q. P. Eichacker, Anthrax infection, concise clinical review, American Journal of Respiratory and Critical Care Medicine, 184 (2011), 1333–1341. |
[18] | World Health Organisation, Anthrax in humans and animals (4th ed.). (P. Turnbull, Ed.). WHO Press, 2008. |
[19] | Fact Sheet, Bacillus anthracis (Anthrax), UPMC Center for Health Security, (2014), 1–4. Available from: www.UPMCHealth Security.org |
[20] |
H. W. Hethcote, The Mathematics of infectious diseases, SIAM Rev., 42 (2000), 599–653. https://doi.org/10.1137/S0036144500371907 doi: 10.1137/S0036144500371907
![]() |
[21] |
B. D. Hahn, P. R. Furniss, A deterministic model of an anthrax epizootic: Threshold Results, Ecol. Model., 20 (1983), 233–241. https://doi.org/10.1016/0304-3800(83)90009-1 doi: 10.1016/0304-3800(83)90009-1
![]() |
[22] |
S. Mushayabasa, Global stability of an anthrax model with environmental decontamination and time delay, Discrete Dynamics in Nature and Society, 2015 (2015). https://doi.org/10.1155/2015/573146 doi: 10.1155/2015/573146
![]() |
[23] |
A. Friedman, A. Yakubu, Anthrax epizootic and migration: Persistence or extinction, Math. Biosci, 241 (2012), 137–144. https://doi.org/10.1016/j.mbs.2012.10.004 doi: 10.1016/j.mbs.2012.10.004
![]() |
[24] | Z. M. Sinkie, N. S. Murthy, Modeling and simulation study of anthrax attack on environment, Journal of Multidisciplinary Engineering Science and Technology, 3 (2016), 4574–4578. |
[25] | S. Osman, O. D. Makinde, M. D. Theuri, Mathematical modelling of the transmission dynamics of anthrax in human and animal population, Mathematical Theory and Modeling, 8 (2018), 47–67. |
[26] | R. Kumar, C. C. Chow, J. D. Bartels, G. Clermont, A mathematical simulation of the inflammatory response to anthrax infection, Shock Society, 29 (2008), 104–111. |
[27] |
A. Kashkynbayev, F. A. Rihan, Dynamics of fractional-order epidemic models with general nonlinear incidence rate and time-delay, Mathematics, 9 (2021), 1–17. https://doi.org/10.3390/math9151829 doi: 10.3390/math9151829
![]() |
[28] | Y. Du, R. Xu, A delayed SIR epidemic model with nonlinear incidence rate and pulse vaccination, J. Appl. Math. Inform., 28 (2010), 1089–1099. |
[29] |
S. N. Chong, J. M. Tchuenche, R. J. Smith, A mathematical model of avian in uenza with half-saturated incidence, Theory in Biosciences, 133 (2014), 23–38. https://doi.org/10.1007/s12064-013-0183-6 doi: 10.1007/s12064-013-0183-6
![]() |
[30] |
M. Chinyoka, T. B. Gashirai, S. Mushayabasa, On the dynamics of a fractional-order ebola epidemic model with nonlinear incidence rates, Discrete Dynamics in Nature and Society, 2021 (2021). https://doi.org/10.1155/2021/2125061 doi: 10.1155/2021/2125061
![]() |
[31] |
L. Han, Z. Ma, H. W. Hethcote, Four predator prey models with infectious diseases, Math. Comput. Model., 34 (2001), 849–858. https://doi.org/10.1016/S0895-7177(01)00104-2 doi: 10.1016/S0895-7177(01)00104-2
![]() |
[32] | Z. Ma, J. Li, Dynamical modeling and analysis of epidemics, Singapore: World Scientic Publishing Co. Pte. Ltd., 2009. |
[33] |
V. Capasso, G. Serio, A generalization of the Kermack-Mackendrick deterministic epidemic models, Math. Biosci., 42 (1978), 43–61. https://doi.org/10.1016/0025-5564(78)90006-8 doi: 10.1016/0025-5564(78)90006-8
![]() |
[34] |
S. Liu, L. Pang, S. Ruan, X. Zhang, Global dynamics of avian influenza epidemic models with psychological effect, Computational and Mathematical Methods in Medicine, 2015 (2015), 913726. https://doi.org/10.1155/2015/913726 doi: 10.1155/2015/913726
![]() |
[35] |
E. B. Baloba, B. Seidu, C. S. Bornaa, Mathematical analysis of the effects of controls on the transmission dynamics of anthrax in both animal and human populations, Computational and Mathematical Methods in Medicine, 2020 (2020), 1581358. https://doi.org/10.1155/2020/1581358 doi: 10.1155/2020/1581358
![]() |
[36] | G. Birkhoff, G. Rota, Ordinary differential equations, John Wiley and Sons Inc., New York, 1989. |
[37] |
P. Van den Driessche, J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29–48. https://doi.org/10.1016/S0025-5564(02)00108-6 doi: 10.1016/S0025-5564(02)00108-6
![]() |
[38] |
C. Castillo-Chavez, B. Song, Dynamical models of tuberculosis and their applications, Math. Biosci. Eng., 1 (2004), 361–404. https://doi.org/10.3934/mbe.2004.1.361 doi: 10.3934/mbe.2004.1.361
![]() |
[39] | H. R. Thieme, Mathematics in Population Biology, Princeton University Press, 2003. |
[40] |
C. S. Bornaa, Y. I. Seini, B. Seidu, Modeling zoonotic diseases with treatment in both human and animal populations, Commun. Math. Biol. Neurosci., 2017 (2017). https://doi.org/10.28919/cmbn/3236 doi: 10.28919/cmbn/3236
![]() |
[41] |
J. K. K. Asamoah, Z. Jin, G. Sun, M. Y. Li, A Deterministic model for Q fever transmission dynamics within dairy cattle herds : Using Sensitivity Analysis and Optimal Controls, Computational and Mathematical Methods in Medicine, 2020 (2020), 6820608. https://doi.org/10.1155/2020/6820608 doi: 10.1155/2020/6820608
![]() |
[42] |
J. K. K. Asamoah, C. S. Bornaa, B. Seidu, Z. Jin, Mathematical analysis of the effects of controls on transmission dynamics of SARS-CoV-2, Alex. Eng. J., 59 (2020), 5069–5078. https://doi.org/10.1016/j.aej.2020.09.033 doi: 10.1016/j.aej.2020.09.033
![]() |
[43] |
C. S. Bornaa, B. Seidu, M. I. Daabo, Mathematical analysis of rabies infection, J. Appl. Math., 2020 (2020), 1804270. https://doi.org/10.1155/2020/1804270 doi: 10.1155/2020/1804270
![]() |
[44] |
B. Seidu, O. D. Makinde, I. Y. Seini, Mathematical analysis of the effects of HIV-Malaria co-infection on workplace productivity, Acta Biotheor., 63 (2015), 151–182. https://doi.org/10.1007/s10441-015-9255-y doi: 10.1007/s10441-015-9255-y
![]() |
[45] |
B. Seidu, . D. Makinde, I. Y. Seini, Mathematical analysis of an industrial HIV/AID model that incorporates carefree attitude towards sex, Acta Biother., 69 (2021), 257–276. https://doi.org/10.1007/s10441-020-09407-7 doi: 10.1007/s10441-020-09407-7
![]() |
[46] |
B. Seidu, C. S. Bornaa, O. D. Makinde, An ebola model with hyper-susceptibility, Chaos, Solitons & Fractals, 138 (2020), 109938. https://doi.org/10.1016/j.chaos.2020.109938 doi: 10.1016/j.chaos.2020.109938
![]() |
[47] |
S. Abagna, B. Seidu, C. S. Bornaa, A mathematical model of the transmission dynamics and control of bovine brucellosis in cattle, Abstr. Appl. Anal., 2022 (2022), 9658567. https://doi.org/10.1155/2022/9658567 doi: 10.1155/2022/9658567
![]() |
[48] | C. Castillo-Chavez, H. Wenzhang, On the computation R0 and its role on global stability, IMA J. Appl. Math., 125 (1992), 229–250. |
1. | K. Abdurasulov, F. Deraman, A. Saydaliyev, S. H. Sapar, Transposed Poisson Structures on Low Dimensional Quasi-Filiform Lie Algebras of Maximum Length, 2024, 45, 1995-0802, 5735, 10.1134/S1995080224606866 |