
http://www.aimspress.com/journal/mbe

MBE, 20(9): 16551–16595.
DOI: 10.3934/mbe.2023738
Received: 16 May 2023
Revised: 03 August 2023
Accepted: 09 August 2023
Published: 17 August 2023

Review

Investigating difficulties and enhancing understanding in linear algebra:
Leveraging SageMath and ChatGPT for (orthogonal) diagonalization and
singular value decomposition

Natanael Karjanto∗

Department of Mathematics, University College, Natural Science Campus, Sungkyunkwan
University, Suwon 16419, Republic of Korea

* Correspondence: Email: natanael@skku.edu.

Abstract: We explored some common challenges faced by undergraduate students when studying lin-
ear algebra, particularly when dealing with algorithmic thinking skills required for topics such as ma-
trix factorization, focusing on (orthogonal) diagonalization and singular value decomposition (SVD).
To address these challenges, we introduced SageMath, a Python-based open-source computer algebra
system, as a supportive tool for students performing computational tasks despite its static output nature.
We further examined the potential of dynamic ChatGPT, an AI-based chatbot, by requesting examples
or problem-solving assistance related to (orthogonal) diagonalization or the SVD of a specific matrix.
By reinforcing essential concepts in linear algebra and enhancing computational skills through effec-
tive practice, mastering these topics can become more accessible while minimizing mistakes. Although
static in nature, SageMath proved valuable for confirming calculations and handling tedious compu-
tations because of its easy-to-understand syntax and accurate solutions. However, although dynamic
ChatGPT may not be fully reliable for solving linear algebra problems, the errors it produces can serve
as a valuable resource for improving critical thinking skills.

Keywords: linear algebra; (orthogonal) diagonalization; singular value decomposition; computer
algebra system; AI-based chatbot; SageMath; ChatGPT; algorithmic thinking skills

1. Introduction

Linear algebra is a branch of mathematics that deals with linear equations, linear functions, and
their representations in vectors and matrices. This involves the study of vector spaces, linear transfor-
mations, matrices, determinants, eigenvalues, and eigenvectors. Linear algebra is a fundamental tool
in many areas of mathematics, including geometry, calculus, optimization, and numerical analysis. It

http://http://www.aimspress.com/journal/mbe
http://dx.doi.org/10.3934/mbe.2023738

16552

also has practical applications in various fields such as physics, engineering, computer science, and
economics [1–20].

Similar to other fields of mathematics, algorithmic thinking in linear algebra is a crucial skill for un-
derstanding and mastering the topics. Often also called computational thinking, algorithmic thinking
is the process of breaking down complex mathematical problems into smaller, more manageable parts,
and then solving them systematically using a sequence of steps or algorithms. This process involves
identifying patterns, constructing algorithms, and developing logical and analytical skills to solve prob-
lems [21–24]. Teaching and learning linear algebra for both mathematics and non-mathematics majors
provides an opportunity for cultivating and embracing problem-solving, logical reasoning, and com-
putational thinking skills, which are essential in various areas of science and engineering requiring
solid knowledge of linear algebra, such as operational research, computer science, data science, and
machine learning, among others [3, 20, 25–33]. Strengthening computational thinking among future
teachers will also be useful when they eventually train future student generations [34, 35].

In addition to being able to manipulate a matrix algebraically and perform matrix operations, some
essential concepts in linear algebra include but are not limited to understanding vector spaces and sub-
spaces, applying linear transformation, working with norms and inner products, finding least-squares
solutions, and the ability to perform matrix factorization. In this study, we focused on the latter. Occa-
sionally also called decomposition, factorization in linear algebra refers to the process of decomposing
a matrix into several, often simpler, matrices that can be analyzed and manipulated more easily. These
simpler matrices may have special properties or structures that make them easier to analyze or imple-
ment in computations. Mastering algorithmic thinking in performing matrix factorization is essential
for every linear algebra learner because this topic not only requires other basic concepts in linear alge-
bra, but it is also an essential building block for understanding other more complicated topics in linear
algebra.

There are various types of matrix decompositions, such as LU decomposition, QR decomposition,
diagonalization, orthogonal diagonalization, singular value decomposition (SVD), and eigendecom-
position. The latter refers to the factorization of a matrix into its canonical form, where the matrix
is represented by its eigenvalues and eigenvectors. Each type of decomposition has its own specific
properties and applications. For example, LU decomposition is useful for solving systems of linear
equations, QR decomposition is used for least-squares problems, SVD is used for data compression
and feature extraction, and eigendecomposition is used for analyzing the behavior of linear operators.
Although matrix diagonalization only applies to square matrices and orthogonal diagonalization only
applies to a special class of symmetric square matrices, SVD can be implemented for any size of the
rectangular matrix, which does not necessarily have to be square.

In short, SVD is a factorization method in linear algebra that decomposes a real- or complex-valued
matrix into three components: a diagonal matrix of singular values and two unitary (orthogonal) matri-
ces. Mathematical applications of SVD encompass the calculation of the (Moore-Penrose) pseudoin-
verse, approximating a matrix, and determining the rank, range, and null space of a matrix. SVD is
a widely utilized technique in data analysis and machine learning for reducing the dimensionality of
data and extracting important features. SVD is also used in various applications in science and engi-
neering, including signal and image processing, text mining, data least-squares fitting, process control,
and recommendation systems [36–46]. The singular values obtained from SVD represent the impor-

Mathematical Biosciences and Engineering Volume 20, Issue 9, 16551–16595.

16553

tance of each feature in the original data and can be used to reconstruct the data with different levels of
accuracy.

A common curriculum in linear algebra outlines that students ought to know how to calculate both
matrix diagonalization and orthogonal diagonalization before being introduced to SVD. However, we
observed that students often encountered some difficulties with these decompositions. For orthogo-
nal diagonalization, several students often forget to normalize the associated eigenvectors to become
unit vectors. In other cases, when one eigenvalue yields two associated eigenvectors, some students
also forget to transform the set of eigenvectors into an orthonormal set, which can be easily done by
orthogonal projection via the Gram-Schmidt process, keeping one of them while projecting the other.

For SVD, a common mistake is in finding the singular values of a matrix. Let A be a matrix. Instead
of finding the eigenvalues of AT A, some students calculated the eigenvalues of A, took their square
root, and designated them as singular values. Another difficulty occurs when the matrix does not have
a full rank, for which the students need to find the missing one or more orthonormal eigenvectors in
one of the matrices by implementing the orthogonal property or cross product vector operation. In
the absence of these eigenvectors, the resulting factorization is called “reduced SVD” instead of (full)
SVD.

To the best of our knowledge, this issue of common mistakes and learners’ struggles in under-
standing (orthogonal) diagonalization and SVD has not been fully addressed in the body of published
literature. The closest article that is tangentially related to our study is Yildiz Ulus’ (2013) study, in
which the author investigated teaching diagonalization using advanced calculators and observed that
such technological tools are beneficial for learners’ acquisition of algorithmic mathematical knowledge
for this particular topic of linear algebra [47].

Although Lazar (2012) argued in his master’s thesis that a solid understanding of fundamental
concepts in linear algebra is essential for mastering SVD, the author did not inquire the participants in
his study regarding the difficulty or common mistakes they encountered when studying the topic [48].
Finally, Zandieh et al. (2017) explored student learning in linear algebra, where they touched briefly
on symbolizing the diagonalization equation A = PDP−1 but did not discuss students’ difficulty in
acquiring algorithmic thinking skills [49].

This study attempts to fill this gap by investigating common mistakes and challenges when students
learn linear algebra, particularly (orthogonal) diagonalization and SVD. Furthermore, because teaching
and learning in contemporary mathematics cannot be dismantled by utilizing technological tools, we
are also interested in investigating whether computer software or another newly arrived technology can
assist and enhance students’ learning, instead of disrupting and marring it. The scope of our computer
algebra system (CAS) is SageMath, which has a static nature, and we will consider ChatGPT as an
artificial intelligence (AI)-assisted tool, which features dynamic interaction output. In the following
paragraphs, we provide a brief overview of the static CAS SageMath and dynamic ChatGPT.

What is a CAS? A CAS is a software program that allows the manipulation and computation of
mathematical expressions and symbols, including algebraic equations, calculus, and other mathemati-
cal functions. It is designed to perform symbolic manipulation, numerical computations, and graphics,
as well as to provide tools for solving equations, manipulating matrices and vectors, and performing
other mathematical operations. CASs are commonly used in scientific research, engineering, and ed-
ucation, and they can be used to solve complex mathematical problems that may be too difficult or

Mathematical Biosciences and Engineering Volume 20, Issue 9, 16551–16595.

16554

time-consuming to solve by hand [50–65]. Examples of popular CASs include (wx)Maxima [66–70],
Wolfram Mathematica [71–76], Maplesoft Maple [77–82], and MathWorks MATLAB [83–87].

What is SageMath? SageMath (also known as Sage) is a free open-source mathematical software
system that uses Python as its primary programming language. It aims to provide an alternative to com-
mercial mathematical software systems, such as Wolfram Mathematica and Maplesoft Maple, while
also providing an interface to other popular mathematics software systems, such as MathWorks MAT-
LAB and GAP, the latter being a system for computational discrete algebra. SageMath has a wide
range of capabilities, including algebraic and numerical computations, graphics, symbolic manipula-
tion, and combinatorics. Its development is community-driven and it has been released under the GNU
General Public License [?, 89–93].

Remarkably, SageMath offers robust support not only for linear algebra but also for a wide range of
related subjects, boasting numerous built-in functions and capabilities dedicated to matrix operations,
vector manipulations, and linear transformations. SageMath provides a variety of algorithms and meth-
ods for solving linear algebra problems, such as performing matrix operations, solving linear systems
of equations, finding eigenvalues and eigenvectors, and computing matrix decompositions (e.g., LU,
QR, SVD). SageMath is a powerful tool for symbolic linear algebra, which allows exact computations
with variables and expressions. Despite being static in nature, we are convinced that SageMath can
be useful for teaching and learning linear algebra, not only in terms of assisting computational tasks
but also with regard to check whether our hand calculations were correct. In addition, the time saved
on computations can be channeled toward other purposes, such as understanding deeper mathematical
concepts in linear algebra or exploring various problems within the subject matter.

What is ChatGPT? The Chat Generative Pre-trained Transformer, that is, ChatGPT, is a language
model developed by OpenAI, a USA-based AI research laboratory consisting of a team of researchers
and engineers dedicated to creating safe and beneficial AI. Although OpenAI was founded in 2015,
ChatGPT, as one of its products, was launched as a prototype in November 2022. Amazingly, it
reached one million users within five days after its launch. An AI tool built on top of the unsupervised
transformer language model GPT-3, ChatGPT was trained on a large dataset of text and could generate
responses to questions, write coherent paragraphs, and even conduct a conversation with users. Its pur-
pose is to assist with various tasks, such as answering questions, providing information, and generating
text in a conversational manner.

Interestingly, as an AI language model, ChatGPT has been trained on a large corpus of texts, includ-
ing mathematical concepts and problems. Thus, it is capable of solving mathematics problems, at least
that is what it claims. ChatGPT admits that its ability to solve mathematical problems may be limited
by its training data, although it can certainly provide assistance and guidance on various mathematical
topics. Specifically, when asked whether it can solve problems in linear algebra, ChatGPT claimed
that it “possesses knowledge and understanding of linear algebra concepts and can provide solutions to
problems in this field.” During the past few months, the number of published articles related to Chat-
GPT and its capabilities has increased steadily, including many that appear in various preprint servers.
The following examples cover only a few articles on ChatGPT related to mathematics.

Recently, Frieder et al. (2023) investigated the mathematical capabilities of ChatGPT by asking
a wide range of questions, and although it understood the question, it often failed to provide correct
solutions. They concluded that the mathematical abilities of ChatGPT were significantly lower than
those of average mathematics graduate students [94]. Shakarian et al. (2023) also evaluated ChatGPT

Mathematical Biosciences and Engineering Volume 20, Issue 9, 16551–16595.

16555

for mathematical word problems and discovered that its performance was dramatically altered based on
the requirement to show its work. When the chatbot was not required to reveal the complete solution,
it failed 84% of the time, whereas it failed by only 20% when revealing the detailed solution was
requested [95]. Azaria (2022) tested the numerical literacy of ChatGPT and noticed that when it comes
to using number digits, ChatGPT is rather biased, with 7 being the most frequent digit generated by
the machine, which also turns out to be many people’s favorite number [96]. Borji (2023) focused on
ChatGPT’s failures in mathematics, including in areas of arithmetic, logic, and reasoning [97].

Certainly, ChatGPT is not the only chatbot available on the market. There are numerous alternatives
to ChatGPT and the AI race among different companies is becoming fierce. Some examples include
but are not limited to Google Bard AI, Microsoft Bing Chat, Amazon Codewhisperer, Github Copilot,
Chatsonic, Character AI, Quora Poe, etc. Some early findings suggest that when it comes to solving
mathematics problems at the high school level, the Vietnamese students still performed better than both
ChatGPT and Bing Chat [98]. Another study from Vietnam on the mathematics test for its national
high school graduation examination indicated that Google Bard’s performance was lagging behind its
competitors, that is, ChatGPT and Bing Chat [99].

In terms of output production, SageMath and other CASs tend to be static, whereas ChatGPT and its
competitors are dynamic. The latter can provide a step-by-step explanation of a solution to a particular
problem. For matrix factorization in linear algebra, it is essential for learners to understand not only
the technical details of a calculation but also to grasp the algorithm behind any particular problem
task. Certainly, matrix factorization is a broad topic in itself, and any attempt to discuss other types of
matrix factorization should be addressed separately elsewhere. Presently, our focal point for the topic
of “matrix factorization” covers only diagonalization, orthogonal diagonalization, and SVD. Based on
the literature mentioned earlier in this introduction, we consider the following research questions:

• What are some common mistakes and difficulties that students encounter when learning matrix fac-
torization in linear algebra?

• How can a static CAS such as SageMath assist students in learning linear algebra, particularly in
(orthogonal) diagonalization and SVD?

• Can we rely on the dynamic ChatGPT to better understand (orthogonal) diagonalization and SVD?

The remainder of this article is organized as follows. After this introduction, Section 2 features
some common mistakes that students often make when learning (orthogonal) diagonalization and SVD.
Section 3 continues with SageMath and its ability to assist students in learning (orthogonal) diagonal-
ization and SVD. Section 4 features some examples in which we asked the chatbot to solve problems
related to (orthogonal) diagonalization and SVD. We also discuss where ChatGPT makes mistakes and
encounters troubles in completing assigned tasks. Section 5 provides some applications of (orthogo-
nal) diagonalization and SVD in life sciences and engineering. Finally, Section 6 discusses the results
and concludes the study.

Mathematical Biosciences and Engineering Volume 20, Issue 9, 16551–16595.

16556

2. Common mistakes in matrix factorization

2.1. Matrix diagonalization

In this section, we consider some common mistakes that students encounter when learning to diag-
onalize both non-symmetric and symmetric matrices. We also consider similar aspects of SVD. For the
former, if A is an n×n square matrix, then A is diagonalizable whenever it possesses n linearly indepen-
dent eigenvectors. Usually, the students did not encounter difficulties in diagonalizing a non-symmetric
diagonalizable matrix provided they understood the procedure for finding it. A typical algorithm starts
with finding the eigenvalues and their associated eigenvectors, constructing a diagonal matrix D, con-
structing an invertible matrix P, finding its inverse P−1, and expressing its diagonalization, that is,
A = PDP−1. The following example illustrates this algorithm.

Suppose that there exists a 3 × 3 matrix A with integer entries, given as follows:

A =

1 2 2
0 2 1
0 1 2

 .
To diagonalize a matrix, we must determine its eigenvalues and their corresponding eigenvec-
tors. The former can be obtained by solving the characteristic equation det (A − λI) = 0 or
(λ − 1) (λ − 3) (λ − 1) = 0, which gives λ1 = 1, λ2 = 3, and λ3 = 1. Note that some students might
attempt to express the characteristic equation in cubic form, that is, λ3 − 5λ2 + 7λ − 3 = 0, and solve
this for λ. Although in other cases, this might be a necessary step and even inevitable, we do not have
to do this particular step in this specific example. Up to this point, we can form a diagonal matrix D
by placing the eigenvalues along the diagonal:

D =

1 0 0
0 3 0
0 0 1

 .
However, this was not the only option. Depending on the choice of eigenvalues designated as the
first, second, third, and so on, we might obtain a different expression for D. Coincidentally, both
the algebraic multiplicity and geometric multiplicity for the eigenvalue λ = 1 from the matrix in this
example are equal, that is, two. In this case, we are guaranteed to obtain three linearly independent
eigenvectors and thus, the matrix is diagonalizable.

Let p1, p2, and p3 be the corresponding eigenvectors, we found that

p1 =

0
1
−1

 , p2 =

2
1
1

 , p3 =

1
0
0

 .
An invertible matrix P can then be formed by stacking these eigenvectors as its columns:

P =

0 2 1
1 1 0
−1 1 0

 .
Mathematical Biosciences and Engineering Volume 20, Issue 9, 16551–16595.

16557

Its inverse P−1 is given by

P−1 =

0 1

2 −1
2

0 1
2

1
2

1 −1 −1

 .
Finally, we can write a diagonalization of A by expressing it as PDP−1 and verify that the products are
reduced to the original matrix A:

1 2 2
0 2 1
0 1 2

︸ ︷︷ ︸
A

=

0 2 1
1 1 0
−1 1 0

︸ ︷︷ ︸
P

1 0 0
0 3 0
0 0 1

︸ ︷︷ ︸
D

0 1

2 −1
2

0 1
2

1
2

1 −1 −1

︸ ︷︷ ︸
P−1

.

2.2. Orthogonal diagonalization

The following example illustrates an orthogonal diagonalization for a symmetric matrix, whereby
one of the eigenvalues has both algebraic and geometric multiplicities of two; thus, the resulting eigen-
vectors are not orthogonal. Consider the following 3 × 3 matrix B:

B =

3 −4 −4
−4 3 −4
−4 −4 3

 .
This matrix has a characteristic polynomial of λ3 − 9λ2 − 21λ + 245, which yields three real-valued
eigenvalues λ1 = −5 and λ2 = 7 = λ3 upon solving the characteristic equation. A diagonal matrix D is
given by

D =

−5 0 0

0 7 0
0 0 7

 .
Let q1, q2, and q3 be the eigenvectors corresponding to these eigenvalues, we have

q1 =

1
1
1

 , q2 =

1
0
−1

 , q3 =

0
1
−1

 .
A common mistake we often encounter is that some students construct an invertible matrix P di-

rectly from these eigenvectors without normalizing them, and then they find its inverse by simply
transposing it, that is, PT = P−1. However, the correct step would be to construct an orthonormal set of
eigenvectors that form the column of P. We observe that q1 is orthogonal to both q2 and q3. However,
q2 and q3 are not orthogonal because they originate from the same eigenspace. Only the eigenvectors
associated with the distinct eigenvalues are orthogonal. Applying the Gram-Schmidt process to the set
{q2,q3}, we can obtain a new set of orthogonal eigenvectors

{
q2,q′3

}
, where

q′3 = q3 −
〈q2,q3〉

〈q2,q2〉
q2 =

1
2

−1

2
−1

 .
Mathematical Biosciences and Engineering Volume 20, Issue 9, 16551–16595.

16558

Angle brackets denote the usual inner (dot) product. By normalizing these vectors, we obtain an
orthonormal set of eigenvectors and construct matrix P accordingly. Because P is now an orthogonal
matrix, its inverse is simply its transpose, given as follows:

P =

1
√

3
1
√

2
1
√

6
1
√

3
0 − 2

√
6

1
√

3
− 1
√

2
1
√

6

 , P−1 = PT =

1
√

3
1
√

3
1
√

3
1
√

2
0 − 1

√
2

1
√

6
− 2
√

6
1
√

6

 .
We can now express an orthogonal diagonalization of B and again confirm that the right-hand side will
be reduced to the original matrix upon multiplication and simplification, as shown by the following
computaton:

3 −4 −4
−4 3 −4
−4 −4 3

︸ ︷︷ ︸
B

=

1
√

3
1
√

2
1
√

6
1
√

3
0 − 2

√
6

1
√

3
− 1
√

2
1
√

6

︸ ︷︷ ︸
P

−5 0 0

0 7 0
0 0 7

︸ ︷︷ ︸
D

1
√

3
1
√

3
1
√

3
1
√

2
0 − 1

√
2

1
√

6
− 2
√

6
1
√

6

︸ ︷︷ ︸
P−T

.

2.3. SVD

Although matrix diagonalization and orthogonal diagonalization can be implemented in a square
matrix, SVD encompasses both the square and rectangular matrices. Let M be an m × n real-valued
matrix with rank r; then, an SVD of M is given by M = UΣVT , where U is an m × m orthogonal
matrix, Σ is an m × n rectangular “diagonal” matrix with non-negative real numbers on the diagonal,
and V is an n × n orthogonal matrix. The columns of U and V in such a decomposition are called the
left- and right-singular vectors of M, respectively. Regarding complex-valued matrices, U and V are
complex unitary matrices, and instead of VT , we would have the conjugate transpose of V , that is, V∗.
In general, Σ is composed of matrix blocks and admits the following form:

Σ =

[
D 0
0 0

]
,

where D is an r × r diagonal matrix for r ≤ min{m, n}. The numbers of (zero) rows and columns in
the second row and column of the block are (m − r) and (n − r), respectively. For r = m, r = n, or
r = m = n, some or all of the zero blocks would disappear. Furthermore, the diagonal entries of D are
the first r singular values of M, that is, σ1 ≥ σ2 ≥ · · · ≥ σr > 0.

Similar to obtaining matrix diagonalization and orthogonal diagonalization, constructing an SVD
of a matrix requires a step-by-step algorithm and an understanding of (orthogonal) diagonalization.
For square matrices with full rank, many learners usually encounter no difficulty when constructing an
SVD of a matrix, although one must be careful when calculating eigenvalues and the corresponding
eigenvectors of a symmetric matrix MT M instead of the original matrix M. However, for rectangular
matrices or those with rank deficiencies, many students often could not complete the construction of
an SVD, partly because one or more singular values can be zero. The following example illustrates the
construction of an SVD of a square matrix with rank deficiency. Let

M =

[
3 −1
−6 2

]
Mathematical Biosciences and Engineering Volume 20, Issue 9, 16551–16595.

16559

be a matrix with rank r = 1; the eigenvalues of A = MT M are given by λ1 = 50 and λ2 = 0, which
gives only one singular value σ1 = 5

√
2 because the second eigenvalue is zero. Thus, D = σ1 and

matrix Σ contain one block of zeros in each row and column below and to the right of D, respectively,
given as follows:

Σ =

[
5
√

2 0
0 0

]
.

By finding the corresponding eigenvectors of λ1 and λ2, we obtain v1 and v2 and set up an orthogonal
matrix V:

V =

[
3/
√

10 1/
√

10
−1/
√

10 3/
√

10

]
.

The first column of matrix U, that is, u1, can be calculated using the following formula:

u1 =
1
σ1

Mv1 =
1

5
√

2

[
3 −1
−6 2

]
1
√

10

[
3
−1

]
=

1
√

5

[
1
−2

]
.

The second column of matrix U, that is, u2, must be orthonormal to u1:

u2 =
1
√

5

[
2
1

]
.

An SVD of M can be expressed as follows:[
3 −1
−6 2

]
︸ ︷︷ ︸

M

=

[
2/
√

5 1/
√

5
1/
√

5 −2/
√

5

]
︸ ︷︷ ︸

U

[
5
√

2 0
0 0

]
︸ ︷︷ ︸

Σ

[
3/
√

10 −1/
√

10
1/
√

10 3/
√

10

]
︸ ︷︷ ︸

VT

.

3. (Orthogonal) diagonalization and SVD using SageMath

To use SageMath online, we can utilize Sage Cell Server or SageMathCell, accessible online at the
URL https://sagecell.sagemath.org/. In addition to an open-source, scalable, and easy-to-use
web interface for SageMath, this cell server also allows the embedding of SageMath computations into
any webpage. Without loading up any program, this is one way to conduct one-off computations using
SageMath, with the idea of accessing the computation in the cloud as simply as possible, as long as
one has an internet connection.

3.1. Matrix diagonalization using SageMath

The SageMath commands for a matrix diagonalization discussed in Subsection 2.1 is presented in
Appendix A.1. Observe that the presence of the “print” command might be excessive for first-time
readers who are new to SageMath. However, the expressions inside the double quotation marks, as
well as an empty vertical spacing, might be omitted if one wishes.

After constructing matrix A, we asked SageMath to display it, finding an expression for its char-
acteristic polynomial using “A.charpoly()”, calculating its eigenvalues using “A.eigenalues()”,
and acquiring the corresponding eigenvectors using “A.eigenvectors_right()”. The outputs for
the first four essential commands are given as follows:

Mathematical Biosciences and Engineering Volume 20, Issue 9, 16551–16595.

https://sagecell.sagemath.org/

16560

Matrix A =
[1 2 2]
[0 2 1]
[0 1 2]

Characteristic polynomial of A: p(x) = x^3 - 5*x^2 + 7*x - 3

Eigenvalues of A = [3, 1, 1]

Eigenvalue, eigenvector, and geometric multiplicity:
[(3, [(1, 1/2, 1/2)], 1), (1, [(1, 0, 0),(0, 1, -1)], 2)]

Observe that the command “A.eigenvectors_right()” provides information not only about eigen-
vectors but also on the associated eigenvalue and their geometric multiplicity.

The next step is extracting the eigenvalues of A using the command “A.eivenvalues()[n]”,
which correspond to λn+1, where n = 0, 1, 2. Once we have obtained the eigenvalues, we can construct
a diagonal matrix D manually by inserting each value of λn. Alternatively, we can also construct D
directly using the command “diagonal_matrix(A.eigenvalues())”, as shown in our code. The
outputs of these two essential commands are given as follows:

Extracting eigenvalues:
lambda1 = 3
lambda2 = 1
lambda3 = 1

Diagonal matrix D =
[3 0 0]
[0 1 0]
[0 0 1]

To construct an invertible matrix P, we also need to extract the associated eigenvectors, that is,
using the command “A.eigenvectors_right()[m][1]”, where m = 0, 1, which corresponds to the
first and second sets of the outputs in the same command in the absence of both square brackets. The
second square bracket [1] indicates the second entry of each output, that is, the eigenvector(s). We can
multiply by 2 to obtain the eigenvector corresponding to λ1 = 3 with integer entries, which is given by
p1 = (2, 1, 1). Because the eigenvalues λ2 = 1 = λ3 have geometric multiplicities of 2, we again need
to extract by adding the brackets [0] and [1], which correspond to p2 and p3, respectively. Furthermore,
because these vectors appear as row columns, we need to apply a transpose command to construct P,
that is, “P=matrix([p1,p2,p3]).tranpose()”. The outputs for eigenvector extraction and P are
given as follows:

Extracting eigenvectors:
p1 = (2, 1, 1)
p2 = (1, 0, 0)
p3 = (0, 1, -1)

Mathematical Biosciences and Engineering Volume 20, Issue 9, 16551–16595.

16561

Invertible matrix P =
[2 1 0]
[1 0 1]
[1 0 -1]

The final two steps are to determine the inverse matrix P−1 and confirm that the diagonalization
process is correct. The former can be achieved using the command “P.inverse()”, whereas the latter
is performed by simply taking the product of PDP−1, that is, using the command “P*D*P.inverse()”,
which should result in product simplification and a return to the original matrix A, thus confirming that
the diagonalization is indeed correct. The outputs are given as follows:

Inverse of P, P^(-1) =
[0 1/2 1/2]
[1 -1 -1]
[0 1/2 -1/2]

Calculate PDP^(-1) =
[1 2 2]
[0 2 1]
[0 1 2]
= A

3.2. Orthogonal diagonalization using SageMath

The SageMath commands for an orthogonal diagonalization of the matrix example considered in
Subsection 2.2 are given in Appendix A.2. Similar to the previous example, we use standard Sage-
Math commands to display the matrix, find its characteristic polynomial, compute its eigenvalues, and
construct a diagonal matrix D. We have the following outputs:

Matrix A =
[3 -4 -4]
[-4 3 -4]
[-4 -4 3]

Characteristic polynomial of A: p(x) = x^3 - 9*x^2 - 21*x + 245

Eigenvalues of A = [-5, 7, 7]

Extracting eigenvalues:
lambda1 = -5
lambda2 = 7
lambda3 = 7

Diagonal matrix D =
[-5 0 0]

Mathematical Biosciences and Engineering Volume 20, Issue 9, 16551–16595.

16562

[0 7 0]
[0 0 7]

We also calculated the corresponding eigenvectors q1, q2, and q3, and extracted each of them ac-
cordingly, that is, using the following commands:

q1=A.eigenvectors_right()[0][1][0],
q2=A.eigenvectors_right()[1][1][0],
q3=A.eigenvectors_right()[1][1][1].

The first square bracket indicates the set of solutions containing the eigenvalue, eigenvector(s), and
geometric multiplicity. Because there are two distinct eigenvalues, the entry in the first set of square
brackets only takes a value of either 0 or 1. The entry inside the second set of square brackets is
always 1, because we would like to extract the eigenvector. The entry in the third set of square brackets
indicates which eigenvector to extract. For the first case, there is only one; thus, the value is 0. For the
second case, because there are two eigenvectors, the values 0 and 1 are taken for the second and third
eigenvectors, respectively. We have the following outputs:

Eigenvalue, eigenvector, and geometric multiplicity:
[(-5, [(1, 1, 1)], 1), (7, [(1, 0, -1),(0, 1, -1)], 2)]

Extracting eigenvectors:
q1 = (1, 1, 1)
q2 = (1, 0, -1)
q3 = (0, 1, -1)

However, before constructing an orthogonal matrix P, we must ensure that the set of eigenvectors
is orthonormal. To check the orthogonality between vectors qm and qn, we use the command

qm.inner_product(qn),

where m, n = 1, 2, 3 and m , n. If the result is zero, then both vectors are orthogonal to each other;
otherwise, they are not orthogonal. We observed that q2 and q3 are not orthogonal. To obtain an
orthogonal matrix, we apply the Gram-Schmidt process, using the command

q3-q2.inner_product(q3)/q2.inner_product(q2)*q2.

After obtaining the new eigenvector q′3, we verified that it is now orthogonal to q2. We obtain the
following outputs:

Checking orthogonality:
<q1,q2> = 0
<q1,q3> = 0
<q2,q3> = 1

q2 and q3 are not orthogonal; apply the Gram-Schmidt process:

q3’ = (-1/2, 1, -1/2)

Check that now q2 and q3’ are orthogonal: <q2,q3’> = 0

Mathematical Biosciences and Engineering Volume 20, Issue 9, 16551–16595.

16563

The next step was to obtain an orthonormal set of eigenvectors by normalizing this or-
thogonal set of vectors. The norm of any vector can be calculated using the command
“sqrt(qn.inner_product(qn))”. Thus, the unit eigenvectors pn can be obtained using the com-
mand “qn/sqrt(qn.inner_product(qn))”, where in both instances, n = 1, 2, 3. The outputs are
given as follows:

Normalize all orthogonal eigenvectors:

p1 = (1/3*sqrt(3), 1/3*sqrt(3), 1/3*sqrt(3))

p2 = (1/2*sqrt(2), 0, -1/2*sqrt(2))

p3 = (1/6*sqrt(6), -1/3*sqrt(6), 1/6*sqrt(6))

We can now construct an orthogonal matrix P, which is also invertible. The commands are similar
to those in the previous example. We also further verified that P−1 = PT and the calculations for both
PDP−1 and PDPT reduce to the original matrix A, which confirms that an orthogonal diagonalization
for A is indeed correct. Readers are presented the following outputs:

Construct an invertible and orthogonal matrix P:
P =
[1/3*sqrt(3) 1/2*sqrt(2) 1/6*sqrt(6)]
[1/3*sqrt(3) 0 -1/3*sqrt(6)]
[1/3*sqrt(3) -1/2*sqrt(2) 1/6*sqrt(6)]

Inverse of P, P^(-1) =
[1/3*sqrt(3) 1/3*sqrt(3) 1/3*sqrt(3)]
[1/2*sqrt(2) 0 -1/2*sqrt(2)]
[1/6*sqrt(6) -1/3*sqrt(6) 1/6*sqrt(6)]

Calculate PDP^(-1) =
[3 -4 -4]
[-4 3 -4]
[-4 -4 3]
= A

Transpose of P, P^T =
[1/3*sqrt(3) 1/3*sqrt(3) 1/3*sqrt(3)]
[1/2*sqrt(2) 0 -1/2*sqrt(2)]
[1/6*sqrt(6) -1/3*sqrt(6) 1/6*sqrt(6)]

Calculate PDP^T =
[3 -4 -4]
[-4 3 -4]
[-4 -4 3]

Mathematical Biosciences and Engineering Volume 20, Issue 9, 16551–16595.

16564

= A

3.3. SVD using SageMath

The SageMath commands for constructing an SVD of the matrix discussed in Subsection 2.3 are
displayed in Appendix A.3.

After constructing matrix M, we calculate a symmetric matrix A, compute its eigenvalues, take the
square root, and obtain the singular values of M. This process can be achieved using the following
commands:

sigma1=sqrt(A.eigenvalues()[0]),
sigma2=sqrt(A.eigenvalues()[1]).

Matrix Σ is constructed manually using the command

Sigma=matrix([[sigma1,0],[0,sigma2],[0,0]]).

We have the following ouputs:

Matrix M =
[2 -2]
[-3 -4]
[-4 -3]

Matrix M^T M =
[29 20]
[20 29]

Eigenvalues of M^T M = [49, 9]

Singular value of M:
sigma1 = 7
sigma2 = 3

Matrix Sigma =
[7 0]
[0 3]
[0 0]

We then calculate the eigenvectors of A, normalize them, and construct an orthogonal matrix V ,
which can be achieved using the following commands:

w1=A.eigenvectors_right()[0][1][0],
v1=w1/w1.norm(),
w2=A.eigenvectors_right()[1][1][0],
v2=w2/w2.norm().

We have the following outputs, leading to V:

Mathematical Biosciences and Engineering Volume 20, Issue 9, 16551–16595.

16565

Eigenvalue, eigenvector, and geometric multiplicity:
[(49, [(1, 1)], 1), (9, [(1, -1)], 1)]

Eigenvectors of M^T M:
v1 = (1/2*sqrt(2), 1/2*sqrt(2))
v2 = (1/2*sqrt(2), -1/2*sqrt(2))

Matrix V =
[1/2*sqrt(2) 1/2*sqrt(2)]
[1/2*sqrt(2) -1/2*sqrt(2)]

To construct an orthogonal matrix U, we require three linearly independent orthonormal vectors
u1, u2, and u3. In this example, both vectors u1 and u2 are calculated using a formula that involves a
singular value σi, the original matrix M, and the eigenvectors of A, that is, vi, i = 1, 2, given by

ui =
1
σi

Mvi, for i = 1, 2.

The SageMath commands for this computation are straightforward:

u1=1/sigma1*M*v1,
u2=1/sigma2*M*v2.

However, because the third singular value σ3 does not exist, we must find u3 using other techniques.
To ensure its orthogonality with u1 and u2, u3 can be calculated using either a dot or cross product
operation. In this example, we implemented the latter, that is, “u3=u1.cross_product(u2)”. As
always, we should not forget to verify that these vectors are orthogonal, and we can do this by simply
calculating the dot product between the two vectors “um.dot_product(un)”, where m, n = 1, 2, 3,
but m , n. We present the following outputs:

Left singular vectors of M:
u1 = (0, -1/2*sqrt(2), -1/2*sqrt(2))
u2 = (2/3*sqrt(2), 1/6*sqrt(2), -1/6*sqrt(2))
u3 = (1/3, -2/3, 2/3)

Checking orthogonality
u1.u2 = 0
u1.u3 = 0
u2.u3 = 0

Because vectors ui, i = 1, 2, and 3 appear as row vectors, matrix U is constructed by taking the
transpose of these row vectors. Finally, we confirm that the construction of our SVD is correct because
the product of each matrix returns to the original matrix M, that is, M = UΣVT . The outputs are given
as follows:

Matrix U =
[0 2/3*sqrt(2) 1/3]

Mathematical Biosciences and Engineering Volume 20, Issue 9, 16551–16595.

16566

[-1/2*sqrt(2) 1/6*sqrt(2) -2/3]
[-1/2*sqrt(2) -1/6*sqrt(2) 2/3]

SVD of M = U*Sigma*V^T =
[2 -2]
[-3 -4]
[-4 -3]
= M

We observed that some students did not know how to find the third vector u3. Very often, they
simply ignored and abandoned it entirely, constructing a factorization using the first two vectors in
matrix U instead, that is, u1 and u2. In this situation, they were confused between “reduced SVD”
and “(complete, non-reduced) SVD”. The former depends on the rank of M, that is, r, and instead of
employing Σ, we admit the diagonal matrix D instead. Thus, the reduced SVD for M in the example
considered in this subsection is given by

2 −2
−3 −4
−4 −3

︸ ︷︷ ︸
M

=

0 2

√
2/3

−1/
√

2
√

2/6
−1/
√

2 −
√

2/6

︸ ︷︷ ︸
U2

[
7 0
0 3

]
︸ ︷︷ ︸

D

[
1/
√

2 1/
√

2
1/
√

2 −1/
√

2

]
︸ ︷︷ ︸

VT
2

.

This reduced SVD is beneficial for calculating the pseudoinverse M+ (also called the Moore-Penrose
inverse) of the matrix M. For the particular M considered in this subsection, its pseudoinverse is given
by

1
63

[
14 −1 −8
−14 −8 −1

]
︸ ︷︷ ︸

M+

=

[
1/
√

2 1/
√

2
1/
√

2 −1/
√

2

]
︸ ︷︷ ︸

V2

[
1/7 0
0 1/3

]
︸ ︷︷ ︸

D−1

[
0 −1/

√
2 −1/

√
2

2
√

2/3
√

2/6 −
√

2/6

]
︸ ︷︷ ︸

UT
2

.

SageMath can certainly compute the pseudoinverse of a matrix in a matter of seconds using the com-
mand “print(M.pseudoinverse())”. However, it is important to exercise discretion and only use
this step to check the final calculation, rather than as a substitute for an appropriate algorithm to find it.

4. (Orthogonal) diagonalization and SVD in ChatGPT

We used the version from March 14, 2023, for any responses generated by ChatGPT in this study.

4.1. Matrix diagonalization in ChatGPT

When asking the chatbot to provide an example of matrix diagonalization without specifying any
size of the matrix, ChatGPT provided an answer by selecting a simple 2×2 matrix, as illustrated in the
following example. We input an inquiry “Provide an example of a matrix diagonalization.” ChatGPT
responded as follows:
Sure, here’s an example of matrix diagonalization:
Suppose we have the following matrix A:[

3 1
0 2

]
.

Mathematical Biosciences and Engineering Volume 20, Issue 9, 16551–16595.

16567

We want to diagonalize A, which means finding a diagonal matrix D and an
invertible matrix P such that A = PDP−1, where D has the eigenvalues of A
along the diagonal.
To diagonalize A, we first find the eigenvalues of A. The characteristic
polynomial of A is:

det (A − λI) = det
(
3 − λ 1

0 2 − λ

)
= (3 − λ) (2 − λ) = 6 − 5λ + λ2.

Solving for the roots of the characteristic polynomial, we get λ = 3 and λ = 2.
These are the eigenvalues of A.
Next, we find the eigenvectors corresponding to each eigenvalue. For λ = 3,
we solve the equation (A − 3I) x = 0:[

0 1
0 −1

] [
x1

x2

]
=

[
0
0

]
.

This gives us the equation x2 = 0 and x1 can be any nonzero value. So an
eigenvector corresponding to λ = 3 is [1 0]T.
For λ = 2, we solve the equation (A − 2I) x = 0:[

1 1
0 0

] [
x1

x2

]
=

[
0
0

]
.

This gives us the equation x1 + x2 = 0, or x1 = −x2. So an eigenvector
corresponding to λ = 2 is [−1 1]T.
We can normalize these eigenvectors to get:

v1 =
[1 0]T

√
12 + 02

= [1 0]T ,

v2 =
[−1 1]T

√
12 + 12

=
[
−1/
√

2 1/
√

2
]T
.

We can then form the matrix P by stacking the eigenvectors as columns:

P =

[
1 −1/

√
2

0 1/
√

2

]
.

We can also form the diagonal matrix D by putting the eigenvalues along the
diagonal:

D =

[
3 0
0 2

]
.

Finally, we can verify that A = PDP−1:

PDP−1 =

[
1 −1/

√
2

0 1/
√

2

] [
3 0
0 2

] [
1/
√

2 1/
√

2
−1/
√

2 1/
√

2

]
=

[
3 1
0 2

]
,

Mathematical Biosciences and Engineering Volume 20, Issue 9, 16551–16595.

16568

which is equal to A. So we have successfully diagonalized A.
As we observed in this example, ChatGPT came up with an excellent diagonalization example with

a step-by-step explanation that can help readers better understand the proper algorithm. Although the
calculation for finding p−1 was not shown, the machine assumed that the readers have working knowl-
edge of it, particularly for an easy, simple 2 × 2 matrix where the computation is relatively straight-
forward. As some examples in the following subsection illustrate, ChatGPT encountered difficulty in
(orthogonally) diagonalizing a larger matrix size, such as a 3 × 3 matrix.

4.2. Orthogonal diagonalization in ChatGPT

When we asked ChatGPT to produce an example of a diagonalization of a 3 × 3 symmetric matrix,
it gave the following response:
Sure, let’s consider the symmetric matrix:

A =

1 2 3
2 5 6
3 6 9

 .
To diagonalize this matrix, we need to find a matrix P and a diagonal matrix
D such that:

A = PDPT ,

where PT denotes the transpose of P. First, we need to find the eigenvalues
of A by solving the characteristic equation:

det(A − λI) = 0,

where λ is the eigenvalue and I is the identity matrix. This gives us:

det

1 − λ 2 3

2 5 − λ 6
3 6 9 − λ

 = 0

= (1 − λ) [(5 − λ) (9 − λ) − 6 ∗ 6] − 2 [2 ∗ (9 − λ) − 6 ∗ 3] + 3
[
2 ∗ 6 − 5 ∗ 3

]
= (1 − λ)

(
λ2 − 15λ + 36

)
+ 2(3λ − 12) − 3(6 − 15)

= λ3 − 15λ2 + 54λ − 36

We observed that ChatGPT made calculation mistakes starting with the second expression, where
it wrote 5 instead of 5 − λ. The subsequent terms, including the final expression for the characteristic
equation, are undoubtedly incorrect. These are represented by the underlined boldface terms. The
correct characteristic equation is λ3 − 15λ2 + 10λ = 0. Interestingly, when we asked ChatGPT to
orthogonally diagonalize the given 3 × 3 symmetric matrix A or find its characteristic equation, it
still produced an incorrect answer although it differed from the original version. Both queries yielded
λ3 − 15λ2 + 16λ − 33 = 0. In all three cases, both the cubic and quadratic terms were correct, whereas
both the linear and constant terms were incorrect, as indicated by the underlined boldface terms.

Mathematical Biosciences and Engineering Volume 20, Issue 9, 16551–16595.

16569

We continue with what ChatGPT offered after this computational step.

This polynomial has a repeated root at λ = 0, and distinct roots at λ = 3 and
λ = 12. Therefore, the eigenvalues of A are λ1 = 0, λ2 = 3, and λ3 = 12.
Next, we need to find the eigenvectors of A for each eigenvalue. For λ1 = 0,
we have:

A − λ1I = A =

1 2 3
2 5 6
3 6 9

 .
Reducing this matrix to row echelon form, we get:

1 2 3
0 1 1
0 0 0

 ,
which gives us the eigenvector v1 = [−2, 1, 0]. For λ2 = 3, we have:

A − λ2I =

−2 2 3

2 2 6
3 6 6

 .
Reducing this matrix to row echelon form, we get:

1 0 1
0 1 2
0 0 0

 ,
which gives us the eigenvector v2 = [−1, −2, 1]. For λ3 = 12, we have:

A − λ3I =

−11 2 3

2 −7 6
3 6 −3

 .
Reducing this matrix to row echelon form, we get:

1 0 −1
0 1 −2
0 0 0

 ,
which gives us the eigenvector v3 = [1, 2, 1].

ChatGPT stopped at this stage, even without completing the final component for the third eigen-
vector, as indicated by the red color. In other instances, ChatGPT could continue the process by
constructing a diagonal matrix D, an invertible matrix P, and finalizing the answer with “Finally,
we can check that A = PDP−1.” However, this did not occur in this example.

Interestingly, however, ChatGPT obtained one correct eigenvalue, that is, λ1 = 0, although one
entry in the row echelon form matrix was incorrect, that is, a23 = 0 instead of 1. The correct associated
eigenvector is v1 = (3, 0, −1). Furthermore, contrary to other positive integer eigenvalues obtained

Mathematical Biosciences and Engineering Volume 20, Issue 9, 16551–16595.

16570

by ChatGPT, λ2 and λ3 of matrix A in this example are not integers, but irrational numbers instead,
although both are still positive. Arranged ascendingly, they are

λ2 =
1
2

(
15 −

√
185

)
, and λ3 =

1
2

(
15 +

√
185

)
.

A possible choice for the corresponding eigenvectors would be

v2 =

1
3
,

2
(
−15 +

√
185

)
3
(
−13 +

√
185

) , 1

 , and v3 =

1
3
,

2
(
15 +

√
185

)
3
(
13 +

√
185

) , 1

 .
If we use the eigenvalues and associated eigenvectors delivered by ChatGPT to construct the original
matrix A, the resulting matrix is neither symmetric nor has all integer entries. Instead, we obtain the
following matrix:

PDP−1 =
1

10

15 30 45
30 60 90
9 18 75

 =

3
2 3 9

2
3 6 9
9

10
9
5

15
2

 .
To further test its capability, we investigated ChatGPT to orthogonally diagonalize a particular 3×3

symmetric matrix. This is the same matrix B that we explored in Subsection 2.2:

B =

3 −4 −4
−4 3 −4
−4 −4 3

 .
Unfortunately, ChatGPT provided an incorrect answer for this matrix diagonalization. Its computa-
tion for the characteristic polynomial was erroneous: λ3 − 9λ2 + 24λ, which results in a bogus set of
eigenvalues: λ1 = 0, λ2 = 3, and λ3 = 6. The calculation was continued to seek the corresponding
eigenvectors v1 and v2, but ChatGPT was unable to complete the calculation for v3. The computa-
tion stopped abruptly with some missing entries in the matrix equation. By further analyzing each
step, we discovered that neither the row-reduction process of the augmented matrix for the first and
second eigenvalues nor the obtained eigenvector was correct. Requesting ChatGPT to “regenerate re-
sponse” was also ineffective because it once again produced inaccurate and partial replies. From these
examples, we observe that the current version of ChatGPT does not seem ready for the (orthogonal)
diagonalization of a simple matrix beyond a size of 2 × 2.

4.3. SVD in ChatGPT

We asked ChatGPT to “provide an example of a singular value decomposition.” Interestingly, Chat-
GPT provided a relatively advanced example of a 3 × 3 matrix and utilized the matrix algebra library
numpy in Python, which SageMath also employs for as its primary language solver. The chosen matrix
is given by

A =

4 11 14
−1 1 17

0 12 5

 .
In the previous two cases, ChatGPT explained the algorithm to perform an (orthogonal) diagonalization
of a matrix. In this case, it directly provided a Python code and its corresponding output. Furthermore,

Mathematical Biosciences and Engineering Volume 20, Issue 9, 16551–16595.

16571

although the original matrix contains integer entries, the matrices in its SVD consist of real numbers,
which can be difficult to check manually.

Figure 1. An output of ChatGPT to the inquiry “Provide an example of a singular value
decomposition.”

Unfortunately, ChatGPT got it wrong for its own given example, as shown in Figure 1. It dis-
pensed singular values of σ1 = 24.57, σ2 = 9.49, and σ3 = 3.63, whereas the correct singu-
lar values are σ1 = 25.58, σ2 = 11.36, and σ3 = 3.13. Although the error for the first sin-
gular value was less than 4%, the errors for the second and third singular values were approx-
imately 16%, which is too large to be considered acceptable. Using the SageMath commands
A=matrix(RDF,[[4,11,14],[-1,1,17],[0,12,5]]) and A.SVD(), we obtained the following
output:

(
[-0.7020788202506024 0.21713691817311598 -0.6781864706124737]
[-0.5829773893610252 -0.7221727564849129 0.3722954113130941]
[-0.4089287146304667 0.6567481012970376 0.6336081105805151],

[25.575254913906992 0.0 0.0]
[0.0 11.363233131054077 0.0]
[0.0 0.0 3.1278217497152005],

[-0.08701136700816689 0.13998836518016763 -0.9863226042353253]
[-0.5166317611363659 0.8401931429966347 0.16482446980522636]
[-0.8517749969308255 -0.5239071865088518 0.000783918281394777]
),

Mathematical Biosciences and Engineering Volume 20, Issue 9, 16551–16595.

16572

where the first, second, and third matrices correspond to U, Σ, and VT , respectively. Here, RDF stands
for Real Double Field, which is an approximation to a real number using double-precision floating
point numbers.

Figure 2. An output of ChatGPT to the inquiry “Provide an example of a singular value
decomposition where the matrix has integer singular values.”

We further asked ChatGPT to “provide an example of an SVD where the matrix has integer singular
values.” ChatGPT responded with the same wording but chose a different matrix, and this time it was
a 4 × 2 matrix, given as follows:

A =

2 2
1 3
0 0
0 0

 .
However, the result was still incorrect and the computation stopped nearly at the end of the answer with
the message “Error in body stream” and an offer to “Regenerate response.” See Figure 2. Requesting
another response multiple times did not yield any results. For the given matrix, the correct singular

values are not integers, although they can be expressed analytically, that is, σ1,2 =

√
9 ±
√

65 ≈ 4.13
and 0.97, respectively.

Using a new chatbot and asking for an identical inquiry, we obtained an improved result, even
though there were still some conceptual mistakes in the answer. See Figure 3. Another 3 × 3 matrix

Mathematical Biosciences and Engineering Volume 20, Issue 9, 16551–16595.

16573

was selected, but this time it was symmetric:

A =

3 1 1
1 3 1
1 1 3

 .
Instead of calculating singular values, ChatGPT computed the eigenvalues of matrix A. Coincidentally,
they are identical for this particular example, that is, λ1 = 5 = σ1, λ2 = λ3 = 2 = σ2 = σ3. This is
a rather rare finding, as it occurs only for positive-definite and symmetric (or Hermitian, for complex-
valued) matrices. Even though matrices U and V appeared to be correct, matrix Σ did not because
ChatGPT displayed the square root of the eigenvalues instead of correctly calculating the singular
values.

5. Applications

There are many applications of (orthogonal) diagonalizations and SVD in various scientific, en-
gineering, and computational fields. Their significance provides valuable tools for solving complex
problems and understanding the underlying structures of various systems. In this section, we only
provide brief coverage of applications in life sciences and engineering.

5.1. Applications in life sciences

The study of eigenvalues, eigenvectors, and (orthogonal) diagonalization has useful applications in
the solutions of systems of ordinary differential equations as well as in discrete dynamical systems,
for which such models appear not only in biology but also other branches of science and engineering.
In particular, in the field of population ecology and dynamics, with applications such as the predator-
prey system [17] and competing species model [100], mathematical modeling often involves the use of
matrices [101].

When solving a coupled system of differential equations, diagonalization allows for the transfor-
mation of a system of linear differential equations into a set of decoupled equations, which are easier
to solve. Observe that the system x′ = Ax admits the solution x(t) = x(0) eA t, where eA t is the matrix
exponential. If A is diagonalizable, that is A = PDP−1, then the matrix exponential can be calculated
according to

eA t = P eD t P−1,

where eD t is a diagonal matrix with entries eλit, i = 1, 2, · · · , n, on its diagonal [102].
Matrix diagonalization also finds applications for investigating sex-linked genes, such as recessive

color blindness, for which it would be easier to describe the situation mathematically using a matrix
model. One such model that groups the population based on sex, that is males and females, can be
described by x(n) = An x(0), where x(n) denotes the proportion of color blindness-related genes in the
male and female populations of the (n + 1)st generation, and A denotes a coefficient matrix related to
the model. To find the proportions of genes for color blindness in a particular population for multiple
generations, we need to calculate the limit of x(n), which also requires calculating the limit of the
power matrix on the right-hand side, that is, An, which will be easier if we know an expression for its
diagonalization [103].

Mathematical Biosciences and Engineering Volume 20, Issue 9, 16551–16595.

16574

Figure 3. An output of ChatGPT to the same inquiry as in Figure 2. The reading order starts
from the top left, then moves to the top right, followed by the bottom left, and finally, the
bottom right.

Mathematical Biosciences and Engineering Volume 20, Issue 9, 16551–16595.

16575

Diagonalization and SVD play significant roles in biomedical signal processing by enabling dimen-
sionality reduction, noise reduction, feature extraction, and improvement of the signal analysis and
interpretation. Diagonalization techniques, such as principal component analysis (PCA), are widely
employed to process and analyze biomedical signals, such as EEG (electroencephalogram), ECG (elec-
trocardiogram), and fMRI (functional magnetic resonance imaging) data [104–107]. By extracting
meaningful features and reducing noise, these methods significantly contribute to diagnosis and our
comprehension of brain activity and cardiac patterns. Through these applications, diagonalization
plays a vital part in advancing our understanding of biological processes, disease diagnosis, and the
development of personalized healthcare solutions.

In the field of evolutionary biology, two crucial symmetric matrices underlie the understanding of
microevolutionary change. The first matrix describes the individual fitness surface, referred to as the
matrix of nonlinear selection gradients γ. The second matrix affects a multivariate response to selec-
tion, known as the genetic variance-covariance matrix G. By applying (orthogonal) diagonalization to
both γ and G, biologists not only gain deeper insights into the form and strength of nonlinear selection,
but they also assess the availability of genetic variance for multiple traits. This powerful technique en-
hances our understanding of evolutionary processes, shedding light on the interplay between selection
pressures and genetic variation in shaping the traits of organisms [108].

Eigenanalysis and SVD find valuable applications in population genetics, enabling the study of ge-
netic variation and evolutionary processes within populations. SVD, in particular, plays a prominent
role in analyzing high-dimensional biological data, such as gene expression profiles, protein-protein
interaction networks, and genomic sequencing data. By identifying significant patterns, correlations,
and reducing noise, SVD helps extract biologically relevant information from intricate datasets. Addi-
tionally, SVD aids in identifying population substructure and detecting signatures of natural selection,
further enhancing our understanding of genetic diversity and evolutionary dynamics. Moreover, in
the realm of data visualization, SVD proves particularly advantageous in simplifying data complex-
ity and fostering a clearer visualization of biological datasets. This capability empowers researchers
to gain valuable insights into the intricate relationships and processes underlying complex biological
systems [109–111].

In summary, both (orthogonal) diagonalization and SVD are powerful and versatile tools with di-
verse applications in biology and life sciences. Their capacity to analyze, integrate, and extract crucial
information from complex datasets plays a pivotal role in advancing our understanding of biological
systems, disease mechanisms, and personalized healthcare solutions. These techniques are indispens-
able in the field of biosciences, making significant contributions to our knowledge and applications
across various areas of biology and life sciences. As researchers continue to harness their potential, the
impact of orthogonal diagonalization and SVD is likely to extend even further, driving innovation and
discoveries in the quest to unravel the complexities of life.

5.2. Applications in engineering

Diagonalization and SVD play a pivotal role in electrical engineering, particularly in power system
analysis, load flow calculations, and fault diagnosis. These techniques empower engineers to efficiently
study and optimize the behavior of electrical power systems, allowing them to gain a comprehensive
understanding of power grid dynamics and optimize power distribution. By offering valuable insights
into stability, dynamic responses, and control strategies, diagonalization and SVD serve as versatile

Mathematical Biosciences and Engineering Volume 20, Issue 9, 16551–16595.

16576

tools that significantly enhance power system analysis. Moreover, they contribute to ensuring the
reliable, secure, and efficient operation of electrical power systems, facilitating the seamless integration
of renewable energy sources and driving advancements in smart grid technologies. The integration
of diagonalization and SVD in electrical engineering proves essential for promoting sustainable and
resilient power systems, which will foster a more efficient and eco-friendly energy landscape [112–
116].

In mechanical engineering, (orthogonal) diagonalization and SVD have strong applications, partic-
ularly in mechanical and structural analysis. Diagonalization techniques are employed to analyze the
dynamic behavior of mechanical systems, enabling engineers to analyze the vibration modes, modal
frequencies, and dynamic responses of such systems. It facilitates understanding the system behavior,
structural integrity, structural design optimization, stability, and performance of mechanical compo-
nents and systems. SVD finds application in structural analysis for the dimensionality reduction of
large-scale data, allowing engineers to extract dominant modes and efficiently study complex struc-
tures. Additionally, SVD is used in model reduction to create reduced-order models, facilitating faster
and more accurate simulations of mechanical systems. These techniques contribute significantly to
enhance mechanical engineering design, optimization, and reliability, paving the way for innovative
and efficient mechanical systems [117–119].

(Orthogonal) diagonalization and SVD play a crucial role in control engineering, offering powerful
tools to analyze the dynamic behavior of linear systems and design effective controllers. Specifically,
diagonalization serves as a key technique for stability analysis in linear control systems. By transform-
ing the system’s transfer function into a diagonal form, engineers gain valuable insights into stability
and response characteristics, facilitating the design and optimization of control systems. Through di-
agonalization, engineers can easily determine the system’s stability based on the eigenvalues of the
diagonal matrix. Moreover, both diagonalization and SVD are indispensable in controller design. By
diagonalizing the system’s state-space representation, engineers can thoroughly understand the sys-
tem’s dynamics and efficiently optimize controller parameters. This enables the design of feedback
controllers that stabilize the system and meet stringent performance specifications, leading to robust
and reliable control solutions [120–125].

(Orthogonal) diagonalization and SVD find diverse and valuable applications in image and signal
processing, as we have seen in Subsection 5.1. In image processing, diagonalization techniques are
utilized for dimensionality reduction, denoising, and feature extraction. By transforming image data
into their principal components, diagonalization enables efficient compression and denoising while
preserving essential image features. SVD plays a pivotal role in image compression and data analysis,
allowing for efficient representation of images with reduced storage requirements. Moreover, SVD
is employed in image and signal denoising, where it separates noise from the underlying signal, im-
proving the quality and clarity of images and signals. Additionally, SVD is used in feature extraction,
pattern recognition, and image registration, aiding in tasks such as object detection, face recognition,
and medical image alignment. These techniques have proven indispensable in various image and signal
processing applications, contributing to advancements in computer vision, medical imaging, multime-
dia processing, and many other fields [126–133].

Linear algebra serves as a vital bridge between theoretical mathematical concepts and their practical
applications, particularly in data science and machine learning. A solid understanding of this subject
opens doors to comprehending complex machine learning algorithms more effectively. SVD stands

Mathematical Biosciences and Engineering Volume 20, Issue 9, 16551–16595.

16577

out as a prominent technique commonly used for dimensional reduction in data science. Moreover,
SVD finds extensive use in matrix factorization and data compression. In collaborative filtering and
recommendation systems, SVD uncovers latent features and predicts missing values in sparse datasets,
while also contributing to techniques like latent semantic analysis for natural language processing
tasks. These techniques greatly aid in data preprocessing, enhancing the performance, interpretability,
and scalability of machine learning models, thus making them invaluable tools in diverse applications.
Similarly, diagonalization finds application in various machine learning algorithms, enabling PCA for
dimensionality reduction. By transforming data into principal components, diagonalization enables
efficient data representation and visualization, preserving vital information while reducing computa-
tional complexity. Together, these linear algebra techniques play pivotal roles in the success of data
science and machine learning, empowering researchers and practitioners to tackle complex real-world
problems with greater clarity and efficiency [134–142].

In summary, mastering (orthogonal) diagonalization and SVD provides students with immense ben-
efits, enabling efficient problem-solving in diverse science and engineering domains. These techniques
enhance computational efficiency, reduce data complexity, and provide deeper insights into various
scientific and engineering phenomena. By harnessing their power, innovative solutions are unlocked,
driving advancements and revolutionizing multiple disciplines. Indeed, (orthogonal) diagonalization
and SVD continue to inspire innovation, deepen our understanding of complex phenomena, and pave
the way for future advancements in science and engineering.

6. Discussion and conclusion

This study admits several limitations. First, we only focused on the topics of (orthogonal) diagonal-
ization and SVD, whereas algorithmic thinking in matrix factorization encompasses a broader range of
topics. For example, we did not consider decompositions related to solving systems of linear equations,
such as LU, QR, and Cholesky decompositions. Other eigenvalue-based decompositions are related to
our study, but we did not cover them in this article; they include Jordan, Schur, Takagi, and QZ decom-
positions, among others. Second, we particularly selected SageMath to obtain a better understanding of
matrix factorization instead of another CAS. The main reason is that it is a free and open-source CAS,
and as stated on its website, its mission is to “create a viable free open source alternative to Magma,
Maple, Mathematica, and Matlab” [143]. Additionally, we can perform our computation directly on
the server without the hassle of installing the program on our computer, as long as we have an internet
connection.

Third, the outcome that ChatGPT presented disappointingly contains numerous mistakes. On the
one hand, this can be confusing for many students who are academically weak and just willing to
accept what is handed out by the chatbot. On the other hand, this can be an excellent opportunity for
further discussion on cultivating critical thinking among learners. Additionally, because our study was
conducted at the initial stage of ChatGPT development, the responses considered in this discussion
might no longer be relevant in the future, thus making it challenging for other researchers to replicate
a similar study. However, we are aware that updated versions will be released in the future and the
responses will be improved accordingly. (In fact, at the time of this writing, ChatGPT Plus subscribers
can already enjoy the more advanced version of the chatbot, that is the GPT-4 model.) Thus, we can

Mathematical Biosciences and Engineering Volume 20, Issue 9, 16551–16595.

16578

be confident that incorrect answers related to matrix factorization in particular or other mathematics
problems in general will eventually be minimized [94].

Many mathematics educators and linear algebra instructors have likely observed that while some
students grasp the subject with ease, others struggle to establish connections between different con-
cepts, leading to a sense of confusion and disorientation. This feature makes teaching linear algebra
challenging for undergraduate students. To investigate the first research question, we identified some
common mistakes and difficulties that students encountered in particular topics of linear algebra, that
is, (orthogonal) diagonalization and SVD. Indeed, these topics can be challenging for many learners
because they require previous, more basic knowledge of linear algebra, such as proficiency in per-
forming elementary row operations and finding orthogonal projections. At the same time, a lack of
understanding of matrix diagonalization will lead to more difficulties in the subsequent topics, such
as orthogonal diagonalization and SVD, as well as other topics related to diagonalization, which are
usually not covered in a standard linear algebra course but have some applications in data science or
machine learning.

Learners of linear algebra should be aware of the fact that not all square matrices can be diago-
nalized. Having a misconception that every matrix can be diagonalized can lead to confusion in sub-
sequent topics. To master computational thinking in the area of solving diagonalization problems, in
addition to understanding an algorithmic procedure to diagonalize a particular matrix, students should
have an intuitive feeling for less concrete objects, such as eigenvalues and their associated eigenvectors.
This also means that they should know how to find the characteristic equation of a matrix, compute
the eigenvalues, and find the corresponding eigenvectors via elementary row operations. Learners
who struggle with row reduction usually do not go far from figuring out how to express eigenvectors
in a simple way. Certainly, those who struggle with this more basic matrix algebra should practice
sufficiently until they are comfortable with the computational process.

Another difficulty arises when students learn orthogonal diagonalization for symmetric matrices.
Although the procedure is similar to previously learned matrix diagonalization, some students often
forget to normalize the obtained eigenvectors and check that these eigenvectors must be orthonormal
to each other. The absence of this step and simply establishing that P−1 = PT will not yield a correct
orthogonal diagonalization, that is, PDPT will not return to the original matrix A. Further difficulty will
occur when one needs to construct a set of orthogonal eigenvectors, whereas the resulting eigenvectors
are not orthogonal because they arise from the same eigenspace. Connecting to another concept of
vector projection and an orthogonalization procedure of the Gram-Schmidt algorithm requires a solid
understanding of related concepts, in addition to proficiency in the calculation of the orthogonal pro-
jection itself. By becoming competent in these computational thinking skills, any learner in the field
of linear algebra will be able to solve (orthogonal) diagonalization problems.

When learning SVD, a common mistake is the confusion between singular values and eigenvalues.
Even if learners are aware of the definition of singular values as the square root of eigenvalues, many
of them often forget that they should compute the eigenvalues of the symmetric matrix MT M instead
of the original matrix M. A small mistake in this early step of the algorithm will not lead to a correct
SVD, even though they understand the procedure—and implement it correctly—required to calculate
an SVD of a matrix. Another difficulty is in constructing matrix Σ, particularly when M is neither
square nor possesses a full rank. Indeed, we must correctly determine the number of blocks of zeros
that we should embed along the diagonal matrix D to construct Σ. An easy rule to remember is that

Mathematical Biosciences and Engineering Volume 20, Issue 9, 16551–16595.

16579

Σ must be the same size as M. If M has more rows than columns, the square orthogonal matrix U
will be larger than the square orthogonal matrix V , and vice versa. A challenge in constructing U
occurs when either M has a deficient rank or m > n, where m and n denote the number of rows and
columns, respectively. When we attempted to express a decomposition in the absence of the missing
eigenvector, we obtained a reduced SVD instead of a full, non-reduced one. Solid knowledge of both
inner (dot) and cross products, as well as not forgetting to normalize the vectors, will be sufficient to
master algorithmic thinking skills when attempting to find an SVD of a matrix.

This leads us to discuss the second research question, that is, how can a static CAS such as Sage-
Math assist learners in mastering topics in linear algebra that require algorithmic thinking skills, par-
ticularly (orthogonal) diagonalization and SVD? Using a CAS for assisting computational processes,
particularly in linear algebra, can be a tremendous help for many of us, including both learners and
teachers. SageMath in particular, being more powerful than a graphic calculator, is easier to use owing
to its offer web browser cell access to users with an internet connection. Similar to other symbolic
computation-type CASs, SageMath can assist many of us in solving many mathematical problems,
aiding us to investigate whether our calculations done by pen and paper are correct, which would save
a lot of time on lengthy and complex calculations that are otherwise too difficult or time-consuming to
perform by hand.

As we have shown in Section 3, despite its static nature, SageMath can assist us in finding the
(orthogonal) diagonalization and SVD of a given matrix. Calculating the characteristic polynomial,
eigenvalues, and eigenvectors is straightforward and quick. This is helpful for a larger-sized matrix,
where obtaining eigenvalues and eigenvectors may take a significant amount of time. Without wor-
rying about this step, learners in the subject of linear algebra can directly focus on the main business
of constructing matrices for (orthogonal) diagonalization and SVD. Once we have all of the matri-
ces, SageMath can help us to quickly determine whether those matrices are correct by multiplying the
products in the (orthogonal) diagonalization or SVD. Any correct factorization that does not have to
be unique will return the product to the original matrix. The static nature of SageMath also demands
that learners carefully observe outputs. For example, the command A.eigenvectors_right() gives
an output comprising of an eigenvalue, eigenvector(s), and its geometric multiplicity in that particular
order. Constructing a diagonal matrix D and invertible matrix P also requires hand intervention, which
requires some dynamics from the users’ side. This interaction between static SageMath and dynamic
learners makes the CAS a powerful tool for learning mathematics. Furthermore, the interactive feature
of SageMath allows users to experiment with distinct matrices, or matrices of different sizes or charac-
teristics. Although we do not really feature the visualization tools of SageMath in this study, its ability
to present plots or graphs will assist learners further in explaining more difficult concepts encountered
in mathematics.

As knowledge improves and technology progresses, the presence of a static CAS will increasingly
be accompanied by the emergence of dynamic chatbots that make use of the power of AI, such as
ChatGPT, Google Bard, and Bing Chat. Although ChatGPT is not primarily designed for responding
to inquiries related to mathematical problems, some attempts in this study and other researchers sug-
gest that it has the capability to handle mathematical problems. It is just a matter of time before the
responses will improve and get better. This triggers us to address the third and final research question,
that is, whether we can rely on ChatGPT, despite its dynamic nature, in understanding linear algebra,
particularly (orthogonal) diagonalization and SVD. The short answer is no. A quick and simple reason

Mathematical Biosciences and Engineering Volume 20, Issue 9, 16551–16595.

16580

for this argument is that ChatGPT often provides an incorrect answer. In our study, except for the
first inquiry, all other responses from ChatGPT contained mistakes in one way or another. If this is
the case, should we simply abandon ChatGPT and other similar AI-generated chatbots when it comes
to learning mathematics or understanding linear algebra, perhaps going all the way to forbidding the
students to access it entirely during the course of their study? How can we strike a balance between
utilizing AI-generated chatbots such as ChatGPT in learning mathematics and understanding linear
algebra, while still ensuring that students develop a deep and thorough understanding of the subject
matter without solely relying on the technology?

Although many would not agree, we have some reservations regarding abandoning or forbidding
ChatGPT, not only in terms of learning mathematics but also for other subjects. Whether we like it or
not, this “technological train” has left its compound and accelerated ever since, reaching all corners
of the earth where everyone has access to the Internet. Its dynamic features have captivated many
researchers. And, this is just the beginning. Since its release at the end of the last year, it has dis-
rupted many industries, and academia and education are no exception. Thus, instead of abandoning
or forbidding its use, we should embrace and integrate it into our teaching and learning. It is sim-
ilar to the period when the calculator or CAS infiltrated the traditional chalk-and-board classrooms.
Although in the beginning there was some resistance toward integrating technology in mathematics
teaching and learning, nowadays, it is standard practice, and aspiring educators are even encouraged
to do so [144–147]. After all, this is one way to connect the divide between digital natives and digital
migrants [148–151].

This early stage of ChatGPT development provides a tremendous opportunity for developing al-
gorithmic thinking skills among learners, especially when the output contains many mistakes. When
inquired, instead of providing an answer in one go, ChatGPT released the answer letter by letter, liter-
ally like someone else typing out the answer from the other side of the computer. This dynamic feature
makes ChatGPT superior to static CASs and attractive to many new users. In our study on matrix
factorization, ChatGPT demonstrated a proper step-by-step algorithm on how to diagonalize or find an
SVD of a given matrix. In the absence of specifying a particular matrix, it can even provide its own
choice of matrix example, usually with a relatively small matrix size.

As observed in Section 4 on orthogonal diagonalization, ChatGPT shows how to calculate the char-
acteristic polynomial of a matrix and solve the corresponding characteristic equation to find eigenval-
ues, albeit with a computational error. This provides an opportunity for learners to critically examine
the provided answers and identify where mistakes occur. The same principle can also be applied to
other mistakes when finding the associated eigenvectors, and when it abruptly stopped without com-
pleting the calculation, thus making the results incomplete. For the SVD, the first two attempts pro-
vided examples in which a detailed algorithm appeared to be eschewed. Instead, ChatGPT employed
a matrix algebra library in Python to perform the task. It then provided the final answers of the three
matrices involved in the decomposition, that is, U, Σ, and V . Our third attempt seems to be an im-
provement, where ChatGPT showed a step-by-step algorithm for computing singular values, finding
eigenvectors, constructing an orthogonal matrix V that contains right singular vectors on its columns,
forming matrix Σ, and calculating another orthogonal matrix U that contains left singular vectors on its
columns. The fact that ChatGPT is confused between eigenvalues and singular values, we can glean a
valuable lesson from this output because this issue is also commonly discovered among linear algebra
learners, as addressed in Section 2.

Mathematical Biosciences and Engineering Volume 20, Issue 9, 16551–16595.

16581

From our brief coverage of the applications of (orthogonal) diagonalization and SVD, it becomes
evident that students stand to gain immense benefits when they master algorithmic thinking skills and
develop a solid understanding of these topics. As they delve into fields like control engineering, image
processing, data science, and beyond, their proficiency in (orthogonal) diagonalization and SVD em-
powers them to efficiently tackle complex problems and optimize system behavior. Not only do these
techniques enhance computational efficiency and reduce data complexity, they also provide deeper in-
sights into the underlying structures of various scientific and engineering phenomena. By harnessing
the power of (orthogonal) diagonalization and SVD, students and researchers alike can uncover hidden
patterns, streamline analyses, and unlock innovative solutions across diverse disciplines, propelling
advancements in science and engineering to new heights.

The versatility and power of (orthogonal) diagonalization and SVD have revolutionized various
fields of science and engineering. Their ability to efficiently extract crucial information, reduce data
dimensionality, and optimize system behavior has made them indispensable tools in linear algebra,
signal processing, control engineering, data science, and more. From enabling stable control of com-
plex systems to enhancing image and signal analysis, these techniques have proven invaluable in the
advancement of research and technology. Moreover, their applications in population genetics, struc-
tural analysis, and biomedical signal processing have further extended their impact, contributing to
breakthroughs in life sciences and healthcare. With the potential to solve intricate problems and re-
veal hidden patterns, (orthogonal) diagonalization and SVD continue to drive innovation, deepen our
understanding of complex phenomena, and pave the way for future advancements in science and engi-
neering.

In conclusion, we have considered the relationship between algorithmic thinking skills in linear
algebra and some common mistakes among learners when they study particular topics such as (orthog-
onal) diagonalization and SVD, as well as how technological tools such as the static CAS SageMath
and dynamic AI ChatGPT can contribute to enhancing algorithmic comprehension of these topics. Un-
derstanding a procedure for matrix factorization and the ability to perform the computational process
accurately requires a solid understanding of other topics in linear algebra, including but not limited
to solving a system of linear equations using elementary row operations, finding eigenvalues and the
corresponding eigenvectors, orthogonality and vector projection (the Gram-Schmidt process), and dot
(inner) and cross products.

We observed that some common mistakes that students make can be eliminated with more practice
and by strengthening the basic concepts in linear algebra and their interrelationships. Although static
by nature, utilizing CAS SageMath can provide tremendous help in verifying calculation results done
by hand, handling a larger matrix size, checking whether the obtained factorizations were correct,
and other required computational activities for understanding the materials. Its free and open-source
characteristics, together with a web-based interface using cells and Python, are the primary strengths
of SageMath in comparison to other costly CASs such as Maple, Matlab, and Mathematica. The
current stage of ChatGPT, despite its dynamic and attractive features, can be used for complementing
the study, but neither as a primary tool nor to be relied upon, owing to its numerous output mistakes.
This has exciting future implications, particularly in the field of education, where updated versions of
ChatGPT will be improved and released in the future. One question remains as to how to utilize a
chatbot effectively for teaching and learning mathematics without compromising academic integrity.

Mathematical Biosciences and Engineering Volume 20, Issue 9, 16551–16595.

16582

Regarding this, we also hope that a sequence of follow-ups of this study from other researchers will
appear accordingly.

Use of AI tools declaration

The author declares that he has used the AI tool of ChatGPT in the creation of this article. The tool
was used to obtain responses to inquiries related to matrix (orthogonal) diagonalization and singular
value decomposition, which can be found in Section 4.

Acknowledgments

This research was supported by the National Research Foundation (NRF) of South Korea, as
funded by the South Korean Ministry of Science, Information, Communications, and Technology
(MSICT) through Grant No. NRF-2022-R1F1A1-059817 under the scheme of Broadening Oppor-
tunities Grants–General Research Program in Basic Science and Engineering.

Conflict of interest

The author declares that he has no conflict of interest to disclose.

References

1. S. Andrilli, D. Hecker, Elementary Linear Algebra, Sixth edition, Academic Press, Cambridge,
Massachusetts, US, 2022. https://doi.org/10.1016/C2019-0-03227-X

2. H. Anton, C. Rorres, Elementary Linear Algebra: Applications Version, 12th edition, John Wiley
& Sons, New York, US, 2013.

3. S. Axler, Linear Algebra Done Right, Third edition, Springer, Berlin Heidelberg, Germany, 2015.
https://doi.org/10.1007/978-3-319-11080-6

4. R. Baker, K. L. Kuttler, Linear Algebra with Applications, World Scientific, Singapore, 2021.
https://doi.org/10.1142/9111

5. T. S. Blyth, E. F. Robertson, Basic Linear Algebra, Springer Science & Business Media, Berlin,
Germany, 2002. https://doi.org/10.1007/978-1-4471-0681-4

6. O. Bretscher, Elementary Linear Algebra with Applications, Fifth edition, Pearson Education,
London, England, UK, 2018.

7. S. Boyd, L. Vandenberghe, Introduction to Applied Linear Algebra: Vectors, Matri-
ces, and Least Squares, Cambridge University Press, Cambridge, England, UK, 2018.
https://doi.org/10.1017/9781108583664

8. S. H. Friedberg, A. J. Insel, L. E. Spence, Linear Algebra, Fifth edition, Pearson Education, Lon-
don, England, UK, 2013.

9. R. O. Hill, Elementary Linear Algebra, Academic Press, Cambridge, Massachusetts, US, 2014.

10. K. Hoffman, R. Kunze, Linear Algebra, Second edition, Pearson Education, India, 2015.

Mathematical Biosciences and Engineering Volume 20, Issue 9, 16551–16595.

http://dx.doi.org/https://doi.org/10.1016/C2019-0-03227-X
http://dx.doi.org/https://doi.org/10.1007/978-3-319-11080-6
http://dx.doi.org/https://doi.org/10.1142/9111
http://dx.doi.org/https://doi.org/10.1007/978-1-4471-0681-4
http://dx.doi.org/https://doi.org/10.1017/9781108583664

16583

11. L. Johnson, D. Riess, J. Arnold, Introduction to Linear Algebra, Fifth edition, Pearson Education,
London, England, UK, 2017.

12. B. Kolman, D. Hill, Elementary Linear Algebra with Applications, Ninth edition, Pearson Educa-
tion, London, England, UK, 2017.

13. K. L. Kuttler, Elementary Linear Algebra, Independently published, 2021.

14. S. Lang, Introduction to Linear Algebra, Second edition, Springer Science & Business Media,
Berlin Heidelberg, Germany, 1997. https://doi.org/10.1007/978-1-4612-1070-2

15. R. Larson, Elementary Linear Algebra, Eight edition, Cengage Learning, Boston, Massachusetts,
US, 2016.

16. P. D. Lax, Linear Algebra and Its Applications, Second edition, John Wiley & Sons, New York,
US, 2007.

17. D. C. Lay, S. R. Lay, J. McDonald, Linear Algebra and its Applications, Sixth edition, Pearson
Education, London, England, UK, 2021.

18. L. Mirsky, An Introduction to Linear Algebra, Dover Publications, Mineola, New York, US, 2013.

19. L. Spence, A. Insel, S. Friedberg, Elementary Linear Algebra, Second edition, Pearson Education,
London, England, UK, 2017.

20. G. Strang, Linear Algebra and Its Applications, Fourth edition, Thomson, Brooks/Cole, Belmont,
California, US, Cengage Learning, Boston, Massachusetts, US, 2006.

21. T. S. Barcelos, R. Muñoz-Soto, R. Villarroel, E. Merino, I. F. Silveira, Mathematics learning
through computational thinking activities: A systematic literature review, J. Universal Comput.
Sci., 24 (2018), 815–845.

22. M. Stephens, D. M. Kadijevich, Computational/algorithmic thinking, in Encyclopedia of
Mathematics Education (Ed., S. Lerman), Springer, Cham, Switzerland, (2020), 117–123.
https://doi.org/10.1007/978-3-030-15789-0_100044

23. W. Sung, J. Ahn, J. B. Black, Introducing computational thinking to young learners: Practicing
computational perspectives through embodiment in mathematics education, Technol. Knowled.
Learn., 22 (2017), 443–463. https://doi.org/10.1007/s10758-017-9328-x

24. D. Weintrop, E. Beheshti, M. Horn, K. Orton, K. Jona, L. Trouille, U. Wilensky, Defining com-
putational thinking for mathematics and science classrooms, J. Sci. Educ. Technol., 25 (2016),
127–147. https://doi.org/10.1007/s10956-015-9581-5

25. S. Boyd, L. Vandenberghe, Convex Optimization, Cambridge University Press, Cambridge, Eng-
land, UK, 2004. https://doi.org/10.1017/CBO9780511804441

26. L. N. Trefethen, D. Bau, Numerical Linear Algebra, Society for Industrial and Applied Mathemat-
ics (SIAM), Philadelphia, Pennsylvania, US, 1997. https://doi.org/10.1137/1.9780898719574

27. S. R. Bennett, Linear Algebra for Data Science with Examples in R, Github, San Francisco, Cal-
ifornia, US, 2021. Available from https://shainarace.github.io/LinearAlgebra/. Re-
trieved August 17, 2023.

28. M. Cohen, Practical Linear Algebra for Data Science: From Core Concepts to Applications Using
Python, O’Reilly Media, Sebastopol, California, US, 2022.

Mathematical Biosciences and Engineering Volume 20, Issue 9, 16551–16595.

http://dx.doi.org/https://doi.org/10.1007/978-1-4612-1070-2
http://dx.doi.org/https://doi.org/10.1007/978-3-030-15789-0_100044
http://dx.doi.org/https://doi.org/10.1007/s10758-017-9328-x
http://dx.doi.org/https://doi.org/10.1007/s10956-015-9581-5
http://dx.doi.org/https://doi.org/10.1017/CBO9780511804441
http://dx.doi.org/https://doi.org/10.1137/1.9780898719574
https://shainarace.github.io/LinearAlgebra/

16584

29. G. H. Golub, C. F. Van Loan, Matrix Computations, John Hopkins University Press, Charles Vil-
lage, Baltimore, Maryland, US, 2013. https://doi.org/10.56021/9781421407944

30. P. N. Klein, Coding the Matrix: Linear Algebra through Applications to Computer Science, New-
tonian Press, Newton, Massachusetts, US, 2013.

31. G. Strang, Linear Algebra and Learning from Data, Wellesley-Cambridge Press, Wellesley, Mas-
sachusetts, US, 2019.

32. C. C. Aggarwal, Linear Algebra and Optimization for Machine Learning: A Textbook, Springer,
Cham, Switzerland, 2020. https://doi.org/10.1007/978-3-030-40344-7

33. R. Yoshida, Linear Algebra and Its Applications with R, CRC Press, Boca Raton, Florida, US,
2021. https://doi.org/10.1201/9781003042259

34. G. Gadanidis, R. Cendros, L. Floyd, I, Namukasa, Computational thinking in mathemat-
ics teacher education, Contempor. Issues Technol. Teacher Educ., 17 (2017), 458–477.
https://doi.org/10.1163/9789004418967_008

35. A. Yadav, C. Stephenson, H. Hong, Computational thinking for teacher education, Commun. ACM,
60 (2017), 55–62. https://doi.org/10.1145/2994591

36. H. Abdi, Singular value decomposition (SVD) and generalized singular value decomposition
(GSVD), in Encyclopedia of Measurement and Statistics (Ed., N. J. Salkind), Sage Publications,
Thousand Oaks, California, US, (2007), 907–912.

37. A. G. Akritas, G. I. Malaschonok, Applications of singular-value decomposition (SVD), Math.
Comput. Simul., 67 (2004), 15–31. https://doi.org/10.1016/j.matcom.2004.05.005

38. H. Andrews, C. Patterson, Singular value decompositions and digital image pro-
cessing, IEEE Transact. Acoust. Speech Signal Process., 24 (1976), 26–53.
https://doi.org/10.1109/TASSP.1976.1162766

39. E. Biglieri, K. Yao, K. Some properties of singular value decomposition and their applications
to digital signal processing, Signal Process., 18 (1989), 277–289. https://doi.org/10.1016/0165-
1684(89)90039-X

40. J. Bisgard, Analysis and Linear Algebra: The Singular Value Decomposition and
Applications, American Mathematical Society, Providence, Rhode Island, US, 2021.
https://doi.org/10.1090/stml/094

41. S. L. Freire, T. J. Ulrych, Application of singular value decomposition to vertical seismic profiling,
Geophysics, 53 (1988), 778–785. https://doi.org/10.1190/1.1442513

42. E. R. Henry, J. Hofrichter, Singular value decomposition: Application to analysis of experimental
data, in Essential Numerical Computer Methods (Eds., L. Brand, M. L. Johnson), volume 210
of Methods in Enzymology, Academic Press, Burlington, Massachusetts, US, (1992), 129–192.
https://doi.org/10.1016/0076-6879(92)10010-B

43. V. Klema, A. Laub, A. The singular value decomposition: Its computation and some applications,
IEEE Transact. Autom. Control, 25(1980), 164–176. https://doi.org/10.1109/TAC.1980.1102314

44. K. Lange, Singular value decomposition, in Numerical Analysis for Statisticians (Ed., K. Lange),
Statistics and Computing, Springer, New York, US, (2010), 129–142. https://doi.org/10.1007/978-
1-4419-5945-4_9

Mathematical Biosciences and Engineering Volume 20, Issue 9, 16551–16595.

http://dx.doi.org/https://doi.org/10.56021/9781421407944
http://dx.doi.org/https://doi.org/10.1007/978-3-030-40344-7
http://dx.doi.org/https://doi.org/10.1201/9781003042259
http://dx.doi.org/https://doi.org/10.1163/9789004418967_008
http://dx.doi.org/https://doi.org/10.1145/2994591
http://dx.doi.org/https://doi.org/10.1016/j.matcom.2004.05.005
http://dx.doi.org/https://doi.org/10.1109/TASSP.1976.1162766
http://dx.doi.org/https://doi.org/10.1016/0165-1684(89)90039-X
http://dx.doi.org/https://doi.org/10.1016/0165-1684(89)90039-X
http://dx.doi.org/https://doi.org/10.1090/stml/094
http://dx.doi.org/https://doi.org/10.1190/1.1442513
http://dx.doi.org/https://doi.org/10.1016/0076-6879(92)10010-B
http://dx.doi.org/https://doi.org/10.1109/TAC.1980.1102314
http://dx.doi.org/https://doi.org/10.1007/978-1-4419-5945-4_9
http://dx.doi.org/https://doi.org/10.1007/978-1-4419-5945-4_9

16585

45. A. A. Maciejewski, C. A. Klein, The singular value decomposition: Computation and applications
to robotics, Int. J. Robot. Res., 8 (1989), 63–79. https://doi.org/10.1177/027836498900800605

46. J. Mandel, Use of the singular value decomposition in regression analysis, Am. Statist., 36 (1982),
15–24. https://doi.org/10.1080/00031305.1982.10482771

47. A. Yildiz Ulus, Teaching the “diagonalization concept” in linear algebra with technology: A case
study at Galatasaray University, Turkish Online J. Educ. Technology-TOJET, 12 (2013), 119–130.

48. Z. Lazar, Teaching the Singular Value Decomposition of Matrices: A Computational Approach,
Masters’ thesis, Concordia University, Montreal, Quebec, Canada, 2012.

49. M. Zandieh, M. Wawro, C. Rasmussen, An example of inquiry in linear al-
gebra: The roles of symbolizing and brokering, PRIMUS, 27(2017), 96–124.
https://doi.org/10.1080/10511970.2016.1199618

50. B. Buchberger, G. E. Collins, R. Loos, R. Albrecht, (Eds.), Computer Algebra: Symbolic and
Algebraic Computation, Second edition, Springer Science & Business Media, Berlin Heidelberg,
Germany, 1983.

51. V. Chudnovsky, R. D. Jenks, (Eds.), Computers in Mathematics, CRC Press, Boca Raton, Florida,
US, 1990.

52. J. S. Cohen, Computer Algebra and Symbolic Computation: Elementary Algorithms, CRC Press,
Boca Raton, Florida, US, 2002. https://doi.org/10.1201/9781439863695

53. J. S. Cohen, Computer Algebra and Symbolic Computation: Mathematical Methods, CRC Press,
Boca Raton, Florida, US, 2003. https://doi.org/10.1201/9781439863701

54. J. H. Davenport, Y. Siret, É. Tournier, Computer Algebra: Systems and Algorithms for Algebraic
Computation, Second edition, Academic Press, Cambridge, Massachusetts, US, 1993.

55. J. T. Fey, (Ed.), Computer Algebra Systems in Secondary School Mathematics Education, National
Council of Teachers of Mathematics (NCTM), Reston, Virginia, US, 2003.

56. K. J. Fuchs, Computer algebra systems in mathematics education: Teacher training pro-
grams, challenges and new aims, Zentralblatt für Didaktik der Mathematik, 35 (2003), 20–23.
https://doi.org/10.1007/BF02652762

57. K. O. Geddes, S. R. Czapor, G. Labahn, Algorithms for Computer Algebra, Springer Science &
Business Media, Berlin Heidelberg, Germany, 1992. https://doi.org/10.1007/b102438

58. J. Grabmeier, E. Kaltofen, V. Weispfenning, (Eds.), Computer Algebra Handbook: Foundations,
Applications, Systems, Springer, Berlin Heidelberg, Germany, 2003. https://doi.org/10.1007/978-
3-642-55826-9

59. D. Harper, C. Wooff, D. Hodgkinson, A Guide to Computer Algebra Systems, John Wiley & Sons,
New York, US, 1991.

60. W. Koepf, Computer Algebra: An Algorithm-Oriented Introduction, Springer Nature, Berlin Hei-
delberg, Germany, 2021. https://doi.org/10.1007/978-3-030-78017-3

61. E. A. Lamagna, Computer Algebra: Concepts and Techniques, CRC Press, Boca Raton, Florida,
US, 2019. https://doi.org/10.1201/9781315107011

Mathematical Biosciences and Engineering Volume 20, Issue 9, 16551–16595.

http://dx.doi.org/https://doi.org/10.1177/027836498900800605
http://dx.doi.org/https://doi.org/10.1080/00031305.1982.10482771
http://dx.doi.org/https://doi.org/10.1080/10511970.2016.1199618
http://dx.doi.org/https://doi.org/10.1201/9781439863695
http://dx.doi.org/https://doi.org/10.1201/9781439863701
http://dx.doi.org/https://doi.org/10.1007/BF02652762
http://dx.doi.org/https://doi.org/10.1007/b102438
http://dx.doi.org/https://doi.org/10.1007/978-3-642-55826-9
http://dx.doi.org/https://doi.org/10.1007/978-3-642-55826-9
http://dx.doi.org/https://doi.org/10.1007/978-3-030-78017-3
http://dx.doi.org/https://doi.org/10.1201/9781315107011

16586

62. G. Simon, Interoperability Between Computer Algebra Systems, Wilhelm-Schickard-Institut für
Informatik (WSI), Tübingen, Germany, 1996.

63. N. M. Soiffer, The Design of A User Interface for Computer Algebra Systems, PhD thesis, Univer-
sity of California, Berkeley, California, US, 1992.

64. J. von zur Gathen, J. Gerhard, Modern Computer Algebra, Third edition, Cambridge University
Press, Cambridge, England, UK, 2013. https://doi.org/10.1017/CBO9781139856065

65. M. J. Wester, Computer Algebra Systems: A Practical Guide, John Wiley & Sons, New York, US,
1999.

66. Z. Hannan, wxMaxima for Calculus I, wxMaxima for Calculus II, Solano Community College,
Fairfield, California, US, 2015. Available from https://wxmaximafor.wordpress.com/. Last
accessed August 17, 2023.

67. M. Kanagasabapathy, Introduction to wxMaxima for Scientific Computations, BPB Publications,
New Delhi, India, 2018.

68. S. Kadry, P. Awad, Mathematics for Engineers and Science Labs Using Maxima, CRC Press, Boca
Raton, Florida, US, 2019. https://doi.org/10.1201/9780429469718

69. F. Senese, Symbolic Mathematics for Chemists: A Guide for Maxima Users, John Wiley & Sons,
Hoboken, New Jersey, US, 2019.

70. T. K. Timberlake, J. W. Mixon, Classical Mechanics with Maxima, Springer, New York, US, 2016.
https://doi.org/10.1007/978-1-4939-3207-8

71. M. L. Abell, J. P. Braselton, Mathematica by Example, Sixth edition, Academic Press, London,
England, UK and Cambridge, Massachusetts, US, 2022. https://doi.org/10.1016/C2013-0-10266-
8

72. A. Grozin, Introduction to Mathematica R© for Physicists, Springer, Cham, Switzerland, 2014.
https://doi.org/10.1007/978-3-319-00894-3

73. R. Maeder, Programming in Mathematica, Second edition, Addison-Wesley Longman Publishing,
Boston, Massachusetts, US, 1991.

74. M. Trott, The Mathematica Guidebook for Symbolics, Springer Science & Business Media New
York, US, 2007. https://doi.org/10.1007/0-387-28815-5

75. S. Wagon, Mathematica in Action, Second edition, Springer-Verlag, New York, US, 1999.
https://doi.org/10.1007/978-0-387-75477-2

76. S. Wolfram, The MATHEMATICA R© Book, Fifth edition, Wolfram Media, Champaign, Illinois,
US, 2003.

77. M. L. Abell, J. P. Braselton, Maple by Example, Third edition, Elsevier, Burlington, Massachusetts,
US, 2005.

78. W. P. Fox, W. Bauldry, Advanced Problem Solving Using Maple: A First Course, Chapman and
Hall/CRC Press, Boca Raton, Florida, US, 2019. https://doi.org/10.1201/9780429469633

79. W. P. Fox, W. Bauldry, Advanced Problem Solving Using Maple: Applied Mathematics, Opera-
tions Research, Business Analytics, and Decision Analysis, Chapman and Hall/CRC Press, Boca
Raton, Florida, US, 2020. https://doi.org/10.1201/9780429469626

Mathematical Biosciences and Engineering Volume 20, Issue 9, 16551–16595.

http://dx.doi.org/
http://dx.doi.org/https://doi.org/10.1017/CBO9781139856065
http://dx.doi.org/
https://wxmaximafor.wordpress.com/
http://dx.doi.org/
http://dx.doi.org/
http://dx.doi.org/https://doi.org/10.1201/9780429469718
http://dx.doi.org/
http://dx.doi.org/https://doi.org/10.1007/978-1-4939-3207-8
http://dx.doi.org/https://doi.org/10.1016/C2013-0-10266-8
http://dx.doi.org/https://doi.org/10.1016/C2013-0-10266-8
http://dx.doi.org/https://doi.org/10.1007/978-3-319-00894-3
http://dx.doi.org/
http://dx.doi.org/https://doi.org/10.1007/0-387-28815-5
http://dx.doi.org/https://doi.org/10.1007/978-0-387-75477-2
http://dx.doi.org/
http://dx.doi.org/
http://dx.doi.org/https://doi.org/10.1201/9780429469633
http://dx.doi.org/https://doi.org/10.1201/9780429469626

16587

80. F. Garvan, The Maple Book, Chapman and Hall/CRC Press, Boca Raton, Florida, US, 2001.
https://doi.org/10.1201/9781420035605

81. J. Carette, Understanding expression simplification, in Proceedings of the 2004 International Sym-
posium on Symbolic and Algebraic Computation, ISSAC’04, July 4–7, 2004, Santander, Spain,
(2004), 72–79. https://doi.org/10.1145/1005285.1005298

82. A. Heck, Introduction to Maple, Third edition, Springer, New York, US, 2003.
https://doi.org/10.1007/978-1-4613-0023-6

83. S. Attaway, MATLAB: A Practical Introduction to Programming and Problem Solving, Sixth
edition, Butterworth-Heinemann, Oxford, England, UK, 2013. https://doi.org/10.1016/C2011-0-
07060-6

84. T. A. Davis, MATLAB Primer, Eight edition, CRC Press, Boca Raton, Florida, US, 2010.
https://doi.org/10.1201/9781439828632

85. D. M. Etter, Introduction to MATLAB, Fourth edition, Pearson, New York, US, 2017.

86. D. J. Higham, N. J. Higham, MATLAB Guide, Third edition, SIAM, Philadelphia, Pennsylvania,
US, 2017. https://doi.org/10.1137/1.9781611974669

87. D. T. Valentine, B. Hahn, Essential MATLAB for Engineers and Scientists, Eight edition, Aca-
demic Press, Cambridge, Massachusetts, US, 2022.

88. G. V. Bard, Sage for Undergraduates, American Mathematical Society, Providence, Rhode Island,
US, 2015. https://doi.org/10.1090/mbk/143

89. C. Finch, Sage Beginner’s Guide, Packt Publishing, Birmingham, England, UK, 2011.

90. D. Joyner, W. Stein, Sage Tutorial, CreateSpace Independent Publishing Platform, Scotts Valley,
California, US, 2008.

91. V. Kumar, Basic of SageMath: Mathematics (Practical), Amazon Kindle Direct Publishing, Seat-
tle, Washington, US, 2022.

92. P. Szabó, J. Galanda, Sage math for education and research, in 2017 15th Interna-
tional Conference on Emerging eLearning Technologies and Applications (ICETA), Institute
of Electrical and Electronics Engineers (IEEE), Manhattan, New York, US, (2017), 1–4.
https://doi.org/10.1109/ICETA.2017.8102535

93. P. Zimmermann, A. Casamayou, N. Cohen, G. Connan, T. Dumont, L. Fousse, et al., in
Computational Mathematics with SageMath, SIAM, Philadelphia, Pennsylvania, US, 2018.
https://doi.org/10.1137/1.9781611975468

94. S. Frieder, L. Pinchetti, R. R. Griffiths, T. Salvatori, T. Lukasiewicz, P. C. Petersen, et al., Mathe-
matical capabilities of ChatGPT, arXiv preprint, (2023). arXiv:2301.13867.

95. P. Shakarian, A. Koyyalamudi, N. Ngu, L. Mareedu, An independent evaluation of ChatGPT on
mathematical word problems (MWP), arXiv preprint, arXiv:2302.13814.

96. A. Azaria, ChatGPT usage and limitations, HAL preprint, hal-03913837, 2022.
https://doi.org/10.31219/osf.io/5ue7n

97. A. Borji, A categorical archive of ChatGPT failures, arXiv preprint, arXiv:2302.03494.

Mathematical Biosciences and Engineering Volume 20, Issue 9, 16551–16595.

http://dx.doi.org/https://doi.org/10.1201/9781420035605
http://dx.doi.org/https://doi.org/10.1145/1005285.1005298
http://dx.doi.org/https://doi.org/10.1007/978-1-4613-0023-6
http://dx.doi.org/https://doi.org/10.1016/C2011-0-07060-6
http://dx.doi.org/https://doi.org/10.1016/C2011-0-07060-6
http://dx.doi.org/https://doi.org/10.1201/9781439828632
http://dx.doi.org/
http://dx.doi.org/https://doi.org/10.1137/1.9781611974669
http://dx.doi.org/
http://dx.doi.org/https://doi.org/10.1090/mbk/143
http://dx.doi.org/
http://dx.doi.org/
http://dx.doi.org/
http://dx.doi.org/https://doi.org/10.1109/ICETA.2017.8102535
http://dx.doi.org/https://doi.org/10.1137/1.9781611975468
http://arxiv.org/pdf/2301.13867
http://arxiv.org/pdf/2302.13814
hal-03913837
http://dx.doi.org/https://doi.org/10.31219/osf.io/5ue7n
http://arxiv.org/pdf/2302.03494

16588

98. X. Q. Dao, N. B. Le, ChatGPT is good but Bing Chat is better for Vietnamese students, arXiv
preprint, arXiv:2307.08272.

99. P. Nguyen, P. Nguyen, P. Bruneau, L. Cao, J. Wang, H. Truong, H. Evaluation of mathematics
performance of Google Bard on the mathematics test of the Vietnamese national high school grad-
uation examination, preprint, 2023. https://doi.org/10.36227/techrxiv.23691876

100. M. M. Meerschaert, Mathematical Modeling, Fourth edition, Academic Press, Waltham, Mas-
sachusetts, US, 2013. https://doi.org/10.1016/C2010-0-66940-9

101. J. M. Cushing, Matrix models and population dynamics, Math. Biol., 14 (2009), 47–150.
https://doi.org/10.1090/pcms/014/04

102. W. E. Boyce, R. C. DiPrima, D. B. Meade, Elementary Differential Equations and Boundary
Value Problems, 12th edition, John Wiley & Sons, New York, US, 2022.

103. S. J. Leon, L. de Pillis, Linear Algebra with Applications, 10th edition, Pearson Education, Upper
Saddle River, New Jersey, US, 2020.

104. M. P. S. Chawla, PCA and ICA processing methods for removal of artifacts and noise in
electrocardiograms: A survey and comparison, Appl. Soft Comput., 11 (2011), 2216–2226.
https://doi.org/10.1016/j.asoc.2010.08.001

105. A. Cichocki, S. I. Amari, Adaptive Blind Signal and Image Processing: Learning
Algorithms and Applications, John Wiley & Sons, Hoboken, New Jersey, US, 2002.
https://doi.org/10.1002/0470845899

106. M. Ringnér, What is principal component analysis?, Nat. Biotechnol., 26 (2008), 303–304.
https://doi.org/10.1038/nbt0308-303

107. S. Sanei, J. A. Chambers, EEG Signal Processing and Machine Learning, John Wiley & Sons,
Hoboken, New Jersey, US, 2021. https://doi.org/10.1002/9781119386957

108. M. W. Blows, A tale of two matrices: multivariate approaches in evolutionary biology, J. Evolut.
Biol., 20 (2007), 1–8. https://doi.org/10.1111/j.1420-9101.2006.01164.x

109. G. Abraham, M. Inouye, Fast principal component analysis of large-scale genome-wide data,
PloS One, 9 (2014), e93766. https://doi.org/10.1371/journal.pone.0093766

110. N. Duforet-Frebourg, K. Luu, G. Laval, E. Bazin, M. G. Blum, Detecting genomic signatures
of natural selection with principal component analysis: Application to the 1000 genomes data,
Molecular Biol. Evolut., 33 (2016), 1082–1093. https://doi.org/10.1093/molbev/msv334

111. X. Zheng, B. S. Weir, Eigenanalysis of SNP data with an identity by descent interpretation, Theor.
Population Biol., 107 (2016), 65–76. https://doi.org/10.1016/j.tpb.2015.09.004

112. N. Abu-Shikhah, F. Elkarmi, Medium-term electric load forecasting using singular value decom-
position, Energy, 36 (2011), 4259–4271. https://doi.org/10.1016/j.energy.2011.04.017

113. L. Cai, N. F. Thornhill, B. C. Pal, Multivariate detection of power system disturbances based on
fourth order moment and singular value decomposition, IEEE Transactions on Power Systems, 32
(2017), 4289–4297. https://doi.org/10.1109/TPWRS.2016.2633321

114. K. Ellithy, M. Shaheen, M. Al-Athba, A. Al-Subaie, S. Al-Mohannadi, S. Al-Okkah, S. Abu-
Eidah, Voltage stability evaluation of real power transmission system using singular value de-

Mathematical Biosciences and Engineering Volume 20, Issue 9, 16551–16595.

http://arxiv.org/pdf/2307.08272
http://dx.doi.org/https://doi.org/10.36227/techrxiv.23691876
http://dx.doi.org/https://doi.org/10.1016/C2010-0-66940-9
http://dx.doi.org/https://doi.org/10.1090/pcms/014/04
http://dx.doi.org/
http://dx.doi.org/
http://dx.doi.org/https://doi.org/10.1016/j.asoc.2010.08.001
http://dx.doi.org/https://doi.org/10.1002/0470845899
http://dx.doi.org/https://doi.org/10.1038/nbt0308-303
http://dx.doi.org/https://doi.org/10.1002/9781119386957
http://dx.doi.org/https://doi.org/10.1111/j.1420-9101.2006.01164.x
http://dx.doi.org/https://doi.org/10.1371/journal.pone.0093766
http://dx.doi.org/https://doi.org/10.1093/molbev/msv334
http://dx.doi.org/https://doi.org/10.1016/j.tpb.2015.09.004
http://dx.doi.org/https://doi.org/10.1016/j.energy.2011.04.017
http://dx.doi.org/https://doi.org/10.1109/TPWRS.2016.2633321

16589

composition technique, in 2008 IEEE Second International Power and Energy Conference, IEEE,
Manhattan, New York, US, (2008), 1691–1695. https://doi.org/10.1109/PECON.2008.4762751

115. A. M. A. Hamdan, An investigation of the significance of singular value decomposi-
tion in power system dynamics, Int. J. Electr. Power Energy Syst., 21 (1999), 417–424.
https://doi.org/10.1016/S0142-0615(99)00011-3

116. C. Madtharad, S. Premrudeepreechacharn, N. R. Watson, Power system state estima-
tion using singular value decomposition, Electr. Power Syst. Res., 67 (2003), 99–107.
https://doi.org/10.1016/S0378-7796(03)00080-4

117. G. Kerschen, J. C. Golinval, Physical interpretation of the proper orthogonal
modes using the singular value decomposition, J. Sound Vibr., 249 (2002), 849–865.
https://doi.org/10.1006/jsvi.2001.3930

118. N. K. Mani, E. J. Haug, K. E. Atkinson, Application of singular value decomposi-
tion for analysis of mechanical system dynamics, J. Mechan. Design, 107 (1985), 82–87.
https://doi.org/10.1115/1.3258699

119. G. Sun, W. Li, Q. Luo, Q. Li, Modal identification of vibrating structures using singular value
decomposition and nonlinear iteration based on high-speed digital image correlation, Thin-Walled
Structures, 163 (2021), 107377. https://doi.org/10.1016/j.tws.2020.107377

120. C. Cloud, G. Li, E. H. Maslen, L. E. Barrett, W. C. Foiles, Practical applications of sin-
gular value decomposition in rotordynamics, Australian J. Mechan. Eng., 2 (2005), 21–32.
https://doi.org/10.1080/14484846.2005.11464477

121. D. W. Gu, P. Petkov, M. M. Konstantinov, Robust Control Design with MATLAB R©, Springer
Science & Business Media, London, England, UK, 2005. https://doi.org/10.1007/978-1-4471-
4682-7

122. F. Lin, Robust Control Design: An Optimal Control Approach, John Wiley & Sons, Hoboken,
New Jersey, US, 2007. https://doi.org/10.1002/9780470059579

123. J. Ringwood, Multivariable control using the singular value decomposition in steel
rolling with quantitative robustness assessment, Control Eng. Pract., 3 (1995), 495–503.
https://doi.org/10.1016/0967-0661(95)00021-L

124. C. R. Smith III, Multivariable Process Control using Singular Value Decomposition, PhD disser-
tation, The University of Tennessee, Knoxville, Tennessee, US, 1981.

125. G. Tao, Adaptive Control Design and Analysis, John Wiley & Sons, Hoboken, New Jersey, US,
2003. https://doi.org/10.1002/0471459100

126. S. Gai, G. Yang, M. Wan, L. Wang, Denoising color images by reduced quaternion ma-
trix singular value decomposition, Multidimen. Syst. Signal Process., 26 (2015), 307–320.
https://doi.org/10.1007/s11045-013-0268-x

127. E. Ganic, A. M. Eskicioglu, Robust embedding of visual watermarks using discrete
wavelet transform and singular value decomposition, J. Electron. Imag., 14 (2005), 043004.
https://doi.org/10.1117/1.2137650

128. R. C. Gonzalez, R. E. Woods, Digital Image Processing, Fourth edition, Pearson Education, New
York, US, and Harlow, Essex, UK, 2018.

Mathematical Biosciences and Engineering Volume 20, Issue 9, 16551–16595.

http://dx.doi.org/https://doi.org/10.1109/PECON.2008.4762751
http://dx.doi.org/https://doi.org/10.1016/S0142-0615(99)00011-3
http://dx.doi.org/https://doi.org/10.1016/S0378-7796(03)00080-4
http://dx.doi.org/https://doi.org/10.1006/jsvi.2001.3930
http://dx.doi.org/https://doi.org/10.1115/1.3258699
http://dx.doi.org/https://doi.org/10.1016/j.tws.2020.107377
http://dx.doi.org/https://doi.org/10.1080/14484846.2005.11464477
http://dx.doi.org/https://doi.org/10.1007/978-1-4471-4682-7
http://dx.doi.org/https://doi.org/10.1007/978-1-4471-4682-7
http://dx.doi.org/https://doi.org/10.1002/9780470059579
http://dx.doi.org/https://doi.org/10.1016/0967-0661(95)00021-L
http://dx.doi.org/
http://dx.doi.org/https://doi.org/10.1002/0471459100
http://dx.doi.org/https://doi.org/10.1007/s11045-013-0268-x
http://dx.doi.org/https://doi.org/10.1117/1.2137650
http://dx.doi.org/

16590

129. C. C. Lai, C. C. Tsai, Digital image watermarking using discrete wavelet transform and
singular value decomposition, IEEE Transact. Instrument. Measur., 59 (2010), 3060–3063.
https://doi.org/10.1109/TIM.2010.2066770

130. S. Malini, R. S. Moni, Image denoising using multiresolution singular value decomposition trans-
form, Proced. Computer Sci., 46 (2015), 1708–1715. https://doi.org/10.1016/j.procs.2015.02.114

131. J. P. Pandey, S. L. Umrao, Digital image processing using singular value decomposition, in Pro-
ceedings of Second International Conference on Advanced Computing and Software Engineering
(ICACSE), February 8–9, 2019, Kamla Nehru Institute of Technology, Sultanpur, India, (2019), 3.
https://doi.org/10.2139/ssrn.3350278

132. A. Rajwade, A. Rangarajan, A. Banerjee, Image denoising using the higher order singu-
lar value decomposition, IEEE Transact. Pattern Anal. Machine Intell., 35 (2012), 849–862.
https://doi.org/10.1109/TPAMI.2012.140

133. F. Renault, D. Nagamalai, M. Dhanuskodi, Advances in digital image processing and information
technology, in Proceedings of the First International Conference in Digital Image Processing
and Pattern Recognition, September 23–25, 2011, Tirunelveli, Tamil Nadu, India, (2011), 23–25.
https://doi.org/10.1007/978-3-642-24055-3

134. J. Bisgard, Analysis and Linear Algebra: The Singular Value Decomposition and
Applications, American Mathematical Society, Providence, Rhode Island, US, 2020.
https://doi.org/10.1090/stml/094

135. A. Blum, J. Hopcroft, R. Kannan, Foundations of Data Science, Cambridge University Press,
Cambridge, England, UK, 2020. https://doi.org/10.1017/9781108755528

136. S. Deerwester, S. T. Dumais, G. W. Furnas, T. K. Landauer, R. Harshman, Indexing by latent
semantic analysis, Journal of the American society for Information Science, 41 (1990), 391–407.
https://doi.org/10.1002/(SICI)1097-4571(199009)41:6<391::AID-ASI1>3.0.CO;2-9

137. T. Hastie, R. Tibshirani, J. H. Friedman, The Elements of Statistical Learning: Data Mining,
Inference, and Prediction, Springer, New York, US, 2009. https://doi.org/10.1007/978-0-387-
84858-7

138. Y. Koren, R. Bell, C. Volinsky, Matrix factorization techniques for recommender systems, Com-
puter, 42 (2009), 30–37. https://doi.org/10.1109/MC.2009.263

139. X. Li, S. Wang, Y. Cai, Tutorial: Complexity analysis of singular value decomposition and its
variants, arXiv preprint, arXiv:1906.12085.

140. F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, et al., Scikit-learn:
Machine learning in Python, J. Machine Learn. Res., 12 (2011), 2825–2830.

141. J. B. Tenenbaum, V. D. Silva, J. C. Langford, A global geometric frame-
work for nonlinear dimensionality reduction, Science, 290 (2000), 2319–2323.
https://doi.org/10.1126/science.290.5500.2319

142. Z. Zhang, The singular value decomposition, applications and beyond, arXiv preprint,
arXiv:1510.08532.

143. https://www.sagemath.org/

Mathematical Biosciences and Engineering Volume 20, Issue 9, 16551–16595.

http://dx.doi.org/https://doi.org/10.1109/TIM.2010.2066770
http://dx.doi.org/https://doi.org/10.1016/j.procs.2015.02.114
http://dx.doi.org/https://doi.org/10.2139/ssrn.3350278
http://dx.doi.org/https://doi.org/10.1109/TPAMI.2012.140
http://dx.doi.org/https://doi.org/10.1007/978-3-642-24055-3
http://dx.doi.org/https://doi.org/10.1090/stml/094
http://dx.doi.org/https://doi.org/10.1017/9781108755528
http://dx.doi.org/https://doi.org/10.1002/(SICI)1097-4571(199009)41:6<391::AID-ASI1>3.0.CO;2-9
http://dx.doi.org/https://doi.org/10.1007/978-0-387-84858-7
http://dx.doi.org/https://doi.org/10.1007/978-0-387-84858-7
http://dx.doi.org/https://doi.org/10.1109/MC.2009.263
http://arxiv.org/pdf/1906.12085
http://dx.doi.org/
http://dx.doi.org/
http://dx.doi.org/https://doi.org/10.1126/science.290.5500.2319
http://arxiv.org/pdf/1510.08532
http://dx.doi.org/
https://www.sagemath.org/

16591

144. S. M. D’Souza, L. N. Wood, Secondary students’ resistance toward incorporating com-
puter technology into mathematics learning, Math. Comput. Educ., 37 (2003), 284–295.
https://doi.org/10.1007/978-94-6300-761-0_8

145. M. L. Niess, Guest Editorial: Preparing teachers to teach mathematics with technology, Contem-
por. Issues Technol. Teacher Educ., 6 (2006), 195–203. https://doi.org/10.1007/978-0-387-35596-
2_69

146. Q. Li, Student and teacher views about technology: A tale of two cities?, J. Res. Center Educ.
Technol., 39 (2007), 377–397. https://doi.org/10.1080/15391523.2007.10782488

147. H. Crompton, Mathematics in the age of technology: There is a place for technology in the
mathematics classroom, J. Res. Center Educ. Technol., 7 (2011), 54–66.

148. M. Prensky, Digital natives, digital immigrants Part 1, On the Horizon, 9 (2001), 1–6.
https://doi.org/10.1108/10748120110424816

149. M. Prensky, Digital natives, digital immigrants Part 2: Do they really think differently?, On the
Horizon, 9 (2001), 2–6. https://doi.org/10.1108/10748120110424843

150. M. Prensky, H. sapiens digital: From digital immigrants and digital natives to digital wisdom,
Innovate J. Online Educ., 5 (2009), 1–9.

151. M. Prensky, Teaching Digital Natives: Partnering for Real Learning, Corwin Press, Thousand
Oaks, California, US, 2010.

A. SageMath code

This appendix provides SageMath code for matrix diagonalization, orthogonal diagonalization, and
SVD.

A.1. Matrix diagonalization

A=matrix([[1,2,2],[0,2,1],[0,1,2]])
print("Matrix A = ")
print(A)
print()
print("Characteristic polynomial of A: p(x) =", A.charpoly())
print()
print("Eigenvalues of A =", A.eigenvalues())
print()
print("Eigenvalue, eigenvector, and geometric multiplicity:",)
print(A.eigenvectors_right())
print()
lambda1 = A.eigenvalues()[0]
lambda2 = A.eigenvalues()[1]
lambda3 = A.eigenvalues()[2]
print("Extracting eigenvalues:")
print("lambda1 =", lambda1)

Mathematical Biosciences and Engineering Volume 20, Issue 9, 16551–16595.

http://dx.doi.org/https://doi.org/10.1007/978-94-6300-761-0_8
http://dx.doi.org/https://doi.org/10.1007/978-0-387-35596-2_69
http://dx.doi.org/https://doi.org/10.1007/978-0-387-35596-2_69
http://dx.doi.org/https://doi.org/10.1080/15391523.2007.10782488
http://dx.doi.org/
http://dx.doi.org/https://doi.org/10.1108/10748120110424816
http://dx.doi.org/https://doi.org/10.1108/10748120110424843
http://dx.doi.org/

16592

print("lambda2 =", lambda2)
print("lambda3 =", lambda3)
print()
D=diagonal_matrix(A.eigenvalues())
print("Diagonal matrix D = ")
print(D)
print()
r1=A.eigenvectors_right()[0][1]
p1=2*r1[0]
r2=A.eigenvectors_right()[1][1]
p2=r2[0]
r3=A.eigenvectors_right()[1][1]
p3=r3[1]
print("Extracting eigenvectors:")
print("p1 =", p1)
print("p2 =", p2)
print("p3 =", p3)
print()
P=matrix([p1,p2,p3]).transpose()
print("Invertible matrix P = ")
print(P)
print()
print("Inverse of P, P^(-1) = ")
print(P.inverse())
print()
print("Calculate PDP^(-1) = ")
print(P*D*P.inverse())
print("= A")

A.2. Orthogonal diagonalization

A=matrix([[3,-4,-4],[-4,3,-4],[-4,-4,3]])
print("Matrix A = ")
print(A)
print()
print("Characteristic polynomial of A: p(x) =", A.charpoly())
print()
print("Eigenvalues of A =", A.eigenvalues())
print()
lambda1 = A.eigenvalues()[0]
lambda2 = A.eigenvalues()[1]
lambda3 = A.eigenvalues()[2]
print("Extracting eigenvalues:")
print("lambda1 =", lambda1)

Mathematical Biosciences and Engineering Volume 20, Issue 9, 16551–16595.

16593

print("lambda2 =", lambda2)
print("lambda3 =", lambda3)
print()
D=diagonal_matrix(A.eigenvalues())
print("Diagonal matrix D = ")
print(D)
print()
print("Eigenvalue, eigenvector, and geometric multiplicity:",)
print(A.eigenvectors_right())
print()
q1=A.eigenvectors_right()[0][1][0]
q2=A.eigenvectors_right()[1][1][0]
q3=A.eigenvectors_right()[1][1][1]
print("Extracting eigenvectors:")
print("q1 =", q1)
print("q2 =", q2)
print("q3 =", q3)
print()
print("Checking orthogonality:")
print("<q1,q2> =", q1.inner_product(q2))
print("<q1,q3> =", q1.inner_product(q3))
print("<q2,q3> =", q2.inner_product(q3))
print()
print("q2 and q3 are not orthogonal; apply the Gram-Schmidt process:")
print()
q31 = q3 - q2.inner_product(q3)/q2.inner_product(q2)*q2
print("q3’ =", q31)
print()
print("Check that now q2 and q3’ are orthogonal: <q2,q3’> =", q2.inner_product(q31))
print()
print("Normalize all orthogonal eigenvectors:")
print()
p1 = q1/sqrt(q1.inner_product(q1))
print("p1 =", p1)
print()
p2 = q2/sqrt(q2.inner_product(q2))
print("p2 =", p2)
print()
q32 = 2*q31
p3 = -q32/sqrt(q32.inner_product(q32))
print("p3 =", p3)
print()
print("Construct an invertible and orthogonal matrix P:")

Mathematical Biosciences and Engineering Volume 20, Issue 9, 16551–16595.

16594

P = matrix([p1,p2,p3]).transpose()
print("P = ")
print(P)
print()
print("Inverse of P, P^(-1) = ")
print(P.inverse())
print()
print("Calculate PDP^(-1) = ")
print(P*D*P.inverse())
print("= A")
print()
print("Transpose of P, P^T = ")
print(P.transpose())
print()
print("Calculate PDP^T = ")
print(P*D*P.transpose())
print("= A")

A.3. SVD

M = matrix([[2,-2], [-3,-4], [-4,-3]])
print("Matrix M = ")
print(M)
print()
A = M.transpose()*M
print("Matrix M^T M = ")
print(A)
print()
print("Eigenvalues of M^T M =", A.eigenvalues())
print()
print("Eigenvalue, eigenvector, and geometric multiplicity:",)
print(A.eigenvectors_right())
print()
sigma1 = sqrt(A.eigenvalues()[0])
sigma2 = sqrt(A.eigenvalues()[1])
print("Singular value of M:")
print("sigma1 =", sigma1)
print("sigma2 =", sigma2)
print()
Sigma = matrix([[sigma1, 0], [0, sigma2], [0,0]])
print("Matrix Sigma =")
print(Sigma)
print()
w1 = A.eigenvectors_right()[0][1][0]

Mathematical Biosciences and Engineering Volume 20, Issue 9, 16551–16595.

16595

v1 = w1/w1.norm()
w2 = A.eigenvectors_right()[1][1][0]
v2 = w2/w2.norm()
print("Eigenvectors of M^T M:")
print("v1 =", v1)
print("v2 =", v2)
print()
print("Matrix V =")
V = matrix([v1, v2])
print(V)
print()
u1 = 1/sigma1*M*v1
u2 = 1/sigma2*M*v2
u3 = u1.cross_product(u2)
print("Left singular vectors of M:")
print("u1 =", u1)
print("u2 =", u2)
print("u3 =", u3)
print()
print("Checking orthogonality")
print("u1.u2 =", u1.dot_product(u2))
print("u1.u3 =", u1.dot_product(u3))
print("u2.u3 =", u3.dot_product(u2))
print()
UT = matrix([u1, u2, u3])
U = UT.transpose()
print("Matrix U =")
print(U)
print()
print("SVD of M = U*Sigma*V^T =")
print(U*Sigma*V.transpose())
print("= M")

c© 2023 the author, licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

Mathematical Biosciences and Engineering Volume 20, Issue 9, 16551–16595.

http://creativecommons.org/licenses/by/4.0

	Introduction
	Common mistakes in matrix factorization
	Matrix diagonalization
	Orthogonal diagonalization
	SVD

	(Orthogonal) diagonalization and SVD using SageMath
	Matrix diagonalization using SageMath
	Orthogonal diagonalization using SageMath
	SVD using SageMath

	(Orthogonal) diagonalization and SVD in ChatGPT
	Matrix diagonalization in ChatGPT
	Orthogonal diagonalization in ChatGPT
	SVD in ChatGPT

	Applications
	Applications in life sciences
	Applications in engineering

	Discussion and conclusion
	SageMath code
	Matrix diagonalization
	Orthogonal diagonalization
	SVD

