Loading [MathJax]/jax/element/mml/optable/GeneralPunctuation.js
Research article Special Issues

An efficient hybridization scheme for time-fractional Cauchy equations with convergence analysis

  • In this paper, a time-fractional Cauchy equation (TFCE) is analyzed by using the q-homotopy analysis Shehu transform algorithm (q-HASTA) with convergence analysis. The q-HASTA comprises with the reduced differential transform algorithm (RDTA). The solution of TFCE is represented in the series form by using the q-HASTA scheme. The TFCE is transformed into algebraic form for finding the general solution efficiently. This provides a compact form solution with minimized error. There are three key outcomes of the work. First, the small size of input parameters by the RDTA transforms into the subsidiary equation so that it takes short time to solve. As the second advantage, the structure of the problem is reduced by controlling the solution series; hence the characterization of the solution becomes classified for finding the particular solution. The third advantage of this work is that the approximate solution with absolute error approximation for the fractional model of the problem is handled by using a generalized and efficient scheme q-HASTA. These outcomes are illustrated by graphs and tables.

    Citation: Saud Fahad Aldosary, Ram Swroop, Jagdev Singh, Ateq Alsaadi, Kottakkaran Sooppy Nisar. An efficient hybridization scheme for time-fractional Cauchy equations with convergence analysis[J]. AIMS Mathematics, 2023, 8(1): 1427-1454. doi: 10.3934/math.2023072

    Related Papers:

    [1] Azzh Saad Alshehry, Humaira Yasmin, Rasool Shah, Roman Ullah, Asfandyar Khan . Numerical simulation and analysis of fractional-order Phi-Four equation. AIMS Mathematics, 2023, 8(11): 27175-27199. doi: 10.3934/math.20231390
    [2] Mamta Kapoor, Nehad Ali Shah, Wajaree Weera . Analytical solution of time-fractional Schrödinger equations via Shehu Adomian Decomposition Method. AIMS Mathematics, 2022, 7(10): 19562-19596. doi: 10.3934/math.20221074
    [3] Rasool Shah, Abd-Allah Hyder, Naveed Iqbal, Thongchai Botmart . Fractional view evaluation system of Schrödinger-KdV equation by a comparative analysis. AIMS Mathematics, 2022, 7(11): 19846-19864. doi: 10.3934/math.20221087
    [4] Maysaa Al-Qurashi, Saima Rashid, Fahd Jarad, Madeeha Tahir, Abdullah M. Alsharif . New computations for the two-mode version of the fractional Zakharov-Kuznetsov model in plasma fluid by means of the Shehu decomposition method. AIMS Mathematics, 2022, 7(2): 2044-2060. doi: 10.3934/math.2022117
    [5] Rehana Ashraf, Saima Rashid, Fahd Jarad, Ali Althobaiti . Numerical solutions of fuzzy equal width models via generalized fuzzy fractional derivative operators. AIMS Mathematics, 2022, 7(2): 2695-2728. doi: 10.3934/math.2022152
    [6] Aslı Alkan, Halil Anaç . A new study on the Newell-Whitehead-Segel equation with Caputo-Fabrizio fractional derivative. AIMS Mathematics, 2024, 9(10): 27979-27997. doi: 10.3934/math.20241358
    [7] Mubashir Qayyum, Efaza Ahmad, Hijaz Ahmad, Bandar Almohsen . New solutions of time-space fractional coupled Schrödinger systems. AIMS Mathematics, 2023, 8(11): 27033-27051. doi: 10.3934/math.20231383
    [8] Fouad Mohammad Salama, Nur Nadiah Abd Hamid, Norhashidah Hj. Mohd Ali, Umair Ali . An efficient modified hybrid explicit group iterative method for the time-fractional diffusion equation in two space dimensions. AIMS Mathematics, 2022, 7(2): 2370-2392. doi: 10.3934/math.2022134
    [9] Aslı Alkan, Halil Anaç . The novel numerical solutions for time-fractional Fornberg-Whitham equation by using fractional natural transform decomposition method. AIMS Mathematics, 2024, 9(9): 25333-25359. doi: 10.3934/math.20241237
    [10] Zeliha Korpinar, Mustafa Inc, Dumitru Baleanu . On the fractional model of Fokker-Planck equations with two different operator. AIMS Mathematics, 2020, 5(1): 236-248. doi: 10.3934/math.2020015
  • In this paper, a time-fractional Cauchy equation (TFCE) is analyzed by using the q-homotopy analysis Shehu transform algorithm (q-HASTA) with convergence analysis. The q-HASTA comprises with the reduced differential transform algorithm (RDTA). The solution of TFCE is represented in the series form by using the q-HASTA scheme. The TFCE is transformed into algebraic form for finding the general solution efficiently. This provides a compact form solution with minimized error. There are three key outcomes of the work. First, the small size of input parameters by the RDTA transforms into the subsidiary equation so that it takes short time to solve. As the second advantage, the structure of the problem is reduced by controlling the solution series; hence the characterization of the solution becomes classified for finding the particular solution. The third advantage of this work is that the approximate solution with absolute error approximation for the fractional model of the problem is handled by using a generalized and efficient scheme q-HASTA. These outcomes are illustrated by graphs and tables.



    The fractional calculus, and its application, have proved itself as an optimal method to study the real world problems. This branch of applied analysis has been used in various domains of science, engineering and technology [1,2,3,4,5,6,7]. In 2013, Bulut et al. [8] analyzed the time-fractional generalized Burger equation and trial equations for optimizing the wave equation. He [9] presented the compact solution in porous media for seepage flow equation in 1998. In 2020, Dubey et al. [10] examined the fractional order computer virus propagation model. Kumar et al. [11] presented the mathematical model for chemical system. Singh et al. [12] examined the fractional order multi-dimensional diffusion problems.

    In 2015, Ramswaroop et al. [13] presented the new computational method for a biological system as fractional Lotka-Volterra application. Ghanbari and Kumar [14] studied a fractional order predator-prey model with Beddington-DeAngelis functional response by using a numerical scheme. Zhou [15] gave variation iteration method for solving Cauchy equation. A detailed analysis of Cauchy problems have been given in several works [16,17,18]. Dubey et al. [19] studied fractional order Black-Scholes European option pricing model. Recently, Maitama et al. [20,21] proposed an integrated fractional transformation for analyzing the steady heat transfer problem. In 2019, the Caputo-fractional differential equation is analyzed by an improved Shehu transformation by Belgacem et al. [22]. Bokhari et al. [23] presented a novel application of the Shehu transformation for solving Atangana-Baleanu derivatives in 2019. El-Tawil [24,25] introduced the q-homotopy analysis method whose mechanism is based on homotopy which is generalized of the homotopy analysis method introduced and applied by Liao [26,27,28,29]. In 2018, Noeiaghdam et al. [30] applied homotopy analysis on a modified epidemiological model of computer viruses. In 2021, Noeiaghdam et al. [31] approached homotopy analysis transform method for the nonlinear bio-mathematical model of malaria infection. In 2021, Noeiaghdam et al. [32] presented a nonlinear fractional order model of COVID-19. In 2016, Noeiaghdam et al. [33] applied homotopy analysis transform for solving Abel's integral equations of first kind. In 2017, Singh et al. [34] introduced an efficient method for solving the time fractional Rosenau-Hyman equation. In 2010, Keskin et al. [35] introduced a new method based on fractional PDE. This method is applied for reducing the domain of differential transformation. Gupta [36] analyzed fractional Bennery-Lin equation by fractional PDE in 2011. The key outcome of this approach is, the discreteness of approximate solutions. Srivastava et al. [37] defined the RDTM solutions over the Caputo-time fractional order hyperbolic telegraph equation. In recent years several methods and applied aspects for fractional calculus have been studied by many authors [38,39,40,41,42].

    In this paper, the time-fractional Cauchy problem is analyzed by the q-HASTA and the RDTA over the Caputo's sense fractional derivatives. The q-HASTA is a well coupling of the q-HAM. The homotopical approach comprises with differential topology, the Shehu transform and the Laplace-type integral transform [20,21,22,23]. The q-HAM [24,25] is an extension of homotopy analysis methods [26,27,28,29,30]. The RDTA technique is an optimized method developed by Keskin et al. [35]. There are 3 key outcomes of this paper stated as, small parameters, compact system of equation and approximate functional range. Thus, the proposed method is referred as the efficient and compact with respect to time and computations. The initial equation is introduced next.

    The time fractional Cauchy differential equation as follows:

    Dητw(ζ,τ)+δ(ζ,τ)wζ(ζ,τ)=β(ζ),0<η1,τ>0, (1.1)
    w(ζ,0)=ψ(ζ),ζR. (1.2)

    If δ(ζ,τ)=δ(constant), β(ζ)=0 and η=1, Eq (1.1) is called as the transport equation [16,18] that can play crucial role in the moving of wind and the spread of AIDS. If we assume δ(ζ,τ)=w(ζ,τ), η=1 the Eq (1.2) is formed as the inviscid Burgers' equation [17,18] approaches the one-dimensional stream of particles have zero viscosity. Next, the pre-requisites are given.

    This section presents the applied notations, feature and definitions related to fractional calculus deals with generalization of integer order derivatives and integrations.

    Definition 2.1. [43] A real function £(τ),τ>0 is said to be in the space Cυ,υR if there exists a real numberρ(>υ), such that £(τ)=τρβ(τ), where β(τ)C[0,), and its said to be in the space Cnυ if and only if £(n)Cυ;nN.

    Definition 2.2. If nN,n1<ηn, the derivative property of the Laplace transform in the Caputo sense Dητ£(τ) is obtained by the Caputo [1,2] and Kilbas et al. [3] in the form

    L{Dητ£(τ)}=sηL{£(τ)}n1k=0sηk1£(k)(0+). (2.1)

    Definition 2.3. For η>0,£(τ)Cν,ν1, the Riemann-Liouville fractional integral Iη£(τ) is expressed as

    Iη£(τ)={1Γ(η)τ0(τt)η1£(τ)dτ,η>0,τ>0,£(τ),η=0. (2.2)

    Definition 2.4. For nN,n1<ηn, £(τ)Cnν,ν1,τ>0, then the Caputo [1] fractional derivative of £(τ) is illustrated as

    Dητ£(τ)=1Γ(nη)τ0(τt)nη1£n(τ)dt. (2.3)

    Definition 2.5. The fractional derivative property of Shehu transform in the Riemann-Liouville form, [20] if n1<ηn,η>0,r=1+[η]and £(τ),Irη£(τ),ddτIrη£(τ),, drdτrIrη£(τ), Dητ£(τ)A, was obtained by

    S[Dη£(τ)]=(su)ηS[£(τ)]r1k=0(su)rk1dk1dτk1Irη£(0+). (2.4)

    And the Caputo form, [21] if η > 0, r=1+[η]and £(τ),ddt£(τ),,drdtr£(τ), Dη£(t)A, was obtained by the Caputo [1,2] as

    S[Dητ£(τ)]=(su)ηS[£(τ)]r1k=0(su)rk1dk1dτk1£(k)(0+). (2.5)

    Definition 2.6. Let we consider V(s,u) denote the Shehu transform of v(τ), and then the inverse Shehu transform is given by [21]; defined as

    v(τ)=S1[V(s,u)]=limp12πiη+iρηiρ1uexp(sτu)V(s,u)ds,s>0,u>0. (2.6)

    We analysis the q-HASTA for a general fractional differential equation of order η given in the following manners:

    Dητw(ζ,τ)+Rw(ζ,τ)+Nw(ζ,τ)=κ(ζ,τ),τ>0,n1<ηn,nN. (3.1)

    Where Dητw(ζ,τ) denote the fractional Caputo derivative of w(ζ,τ),R and N are the linear and the nonlinear differential operators respectively, κ(ζ,τ) denoted the source term.

    Next, we employ the Shehu transform on Eq (3.1), we get

    S[Dητw]+S[Rw]+S[Nw]=S[κ(ζ,τ)]. (3.2)

    Using the result of Shehu transform for Caputo fractional derivative, we get

    S[w](us)ηn1k=0sηk1w(k)(ζ,0)+(us)η[S[Rw]+S[Nw]S[κ(ζ,τ)]]=0. (3.3)

    We involved the nonlinear operator as

    N[χ(ζ,τ;ρ)]=S[χ(ζ,τ;ρ)](us)ηn1k=0sηk1χ(k)(ζ,τ;ρ)(0+)+(us)η[S[Rχ(ζ,τ;ρ)]+S[Nχ(ζ,τ;ρ)]S[κ(ζ,τ)]]=0. (3.4)

    Now we use the classical HAM and a homotopy equation is presented as

    (1nρ)S[χ(ζ,τ;ρ)w0(ζ,τ)]=ρH(ζ,τ)N[w(ζ,τ)], (3.5)

    where S is the Shehu transform operator, ρ[0,1n],n1 and 0 are the embedding parameter and auxiliary parameter respectively, H(ζ,τ) a non-zero auxiliary function, w0(ζ,τ) is an basis assumption of w(ζ,τ) and χ(ζ,τ;ρ) is a unknown real function which construct the following result

    χ(ζ,τ;ρ)={w0(ζ,τ),ρ=0,w(ζ,τ),ρ=1n. (3.6)

    Consequently, as ρ goes from 0 to 1n, the solution χ(ζ,τ;ρ) converge from the initial guess w0(ζ,τ) to the solution w(ζ,τ). Expressing of χ(ζ,τ;ρ) as the Taylor's series form with respect to ρ, as

    χ(ζ,τ;ρ)=w0(ζ,τ)++m=1wm(ζ,τ)ρm, (3.7)

    where

    wm(ζ,τ)=1m!mχ(ζ,τ;ρ)ρm|ρ=0. (3.8)

    If we select appropriate values of the initial guess, auxiliary linear operator, the auxiliary parameter and the auxiliary function, the series (3.7) converges at ρ=1n, then it provides the solutions of the given problem Eq (3.1), in the form

    w(ζ,τ)=w0(ζ,τ)++m=1wm(ζ,τ)(1n)m. (3.9)

    And the governing equation can be deduced from the zero deformation Eq (3.5).

    Now differentiate the zero-order deformation Eq (3.5) m-times with respect to ρ and taking ρ=0 and finally dividing them by m!, it yields

    S[wm(ζ,τ)kmwm1(ζ,τ)]=H(ζ,τ)m(wm1). (3.10)

    We define the vectors as

    wm={w0(ζ,τ),w1(ζ,τ),w2(ζ,τ),...,wm(ζ,τ)}. (3.11)

    Taking the inverse Shehu transform on Eq (3.10), we have

    wm(ζ,τ)=kmwm1(ζ,τ)+S1[H(ζ,τ)m(wm1)], (3.12)

    where m(wm1) is given as

    m(wm1)=1(m1)![m1N[χ(ζ,τ;ρ)]ρm1]|ρ=0, (3.13)

    and

    km={0ifm1,nifm>1. (3.14)

    Finally, we solve the Eq (3.12) and we compute wm(ζ,τ) for m1, selecting appropriate parameter and n, we deduce the q-HASTA convergence solution series as

    w(ζ,τ)=w0(ζ,τ)++m=1wm(ζ,τ)(1n)m. (3.15)

    Theorem 3.1. If appropriate selection of convergences control parameters 0,n1,and also suitable selection of H(ζ,τ)0,w0(ζ,τ), in Eq (3.12) such that 0 < \Phi < n, then the solution series \sum _{m = 0}^{+\infty }w_{m} (\zeta, \tau) (1/n)^{m}, uniformly convergence, where \left. \left\| \cdot \right. \right\| _{\infty } presented the appropriate norm.

    Proof. We prove that the sequence \langle \vartheta _{m} \rangle _{m = 0}^{\infty }, is the Cauchy sequence. Let's assume that \vartheta _{m}, is the sequence of partially sums of \vartheta _{m} = \sum _{k = 0}^{m}w_{k} (\zeta, \tau)(1/n)^{k}.

    By observation, we have

    \left\| \vartheta _{m+1} -\vartheta _{m} \right\| = \left\| w_{m+1} \right\| \le (\Phi /n)\left\| w_{m} \right\| \le (\Phi /n)^{2} \left\| w_{m-1} \right\| \le \cdots \le (\Phi /n)^{m+1} \left\| w_{0} \right\| .

    For \forall \, m\ge l, \, m, l\in N, we deduced from the above equation

    \left\| \vartheta _{m} -\vartheta _{l} \right\| = \left\| \vartheta _{m} -\vartheta _{m-1} +\vartheta _{m-1} -\vartheta _{m-2} +\vartheta _{m-2} -\vartheta _{m-3} +\cdots +\vartheta _{l+1} -\vartheta _{l} \right\|
    \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \le \left\| \left. \vartheta _{m} -\vartheta _{m-1} \right\| +\left\| \vartheta _{m-1} -\vartheta _{m-2} \right\| +\left\| \vartheta _{m-2} -\vartheta _{m-3} \right\| +\cdots +\left\| \vartheta _{l+1} -\vartheta _{l} \right. \right\|
    \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \le (\Phi /n)^{m} \left\| w_{0} \right\| +(\Phi /n)^{m-1} \left\| w_{0} \right\| +(\Phi /n)^{m-2} \left\| w_{0} \right\| +\cdots +(\Phi /n)^{l+1} \left\| w_{0} \right\|
    \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, = \left((\Phi /n)^{m} +(\Phi /n)^{m-1} +(\Phi /n)^{m-2} +\cdots +(\Phi /n)^{l+1} \right)\left\| w_{0} \right\|,
    = \frac{\Phi ^{m+1} }{n^{m} (n-\Phi )} \left\| w_{0} \right\| . \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \,

    For m, l\to \infty, and then \left\| \vartheta _{m} -\vartheta _{l} \right\| \to 0. Therefore, the sequence \langle \vartheta _{m} \rangle _{m = 0}^{\infty }, is a Cauchy sequence, hence convergence.

    Table 1 gives the basic results of the Sehu transform.

    Table 1.  The basic results of the Shehu transform S\left[w\, (\tau)\right] = \int _{0}^{\infty }\exp \left(\frac{-s\tau }{u} \right) \, w(\tau)\, d\tau \,; \, \, s > 0, u > 0 .
    Original functions w(\tau) The Shehu transformed function S\left[w(\tau)\right]=W(s, u)
    1 u/s
    \tau ^{n}; \, \, n=0, 1, 2, 3, \cdots. \left(u/s\right)^{n+1}
    \exp (\beta (\tau)) u/s-\beta u
    \cos (\tau) us/s^{2} +u^{2}
    \sin (\tau) u^{2} /s^{2} +u^{2}

     | Show Table
    DownLoad: CSV

    To demonstrate the basis analysis of the RDTA, we take a function j(\zeta, \tau) such as j(\zeta, \tau) = \varepsilon (\alpha)\, \nu (\beta). According to the one dimension differential transform, we can be defined j(\zeta, \tau) such as:

    \begin{equation} j\, (\zeta , \, \, \tau ) = \, \, \sum\limits _{\alpha = 0}^{+\infty }\varepsilon (\alpha ) \, \zeta ^{\alpha } \sum\limits _{\beta = 0}^{+\infty }\nu (\beta )\, \tau ^{\beta } = \sum\limits _{\alpha = 0}^{+\infty }\sum\limits _{\beta = 0}^{+\infty }J(\alpha , \beta )\, \zeta ^{\alpha } \tau ^{\beta } , \end{equation} (4.1)

    where J(\alpha, \beta) = \varepsilon (\alpha)\, \nu (\beta) represent the spectrum of j(\zeta, \tau) .

    The basis preliminaries and operations of the RDTA are defined below.

    Definition 4.1. If j(\zeta, \tau) is analytical and differentiable about the \zeta and time scale \tau in the interest domain, then the spectrum function [36,37]

    \begin{equation} R_{D} [j(\zeta , \tau )] = \frac{1}{\Gamma (k\eta +1)} \left[\frac{\partial ^{\mu } }{\partial \tau ^{\mu } } j(\zeta , \tau )\right]_{\tau = \tau _{0} } \approx J_{\mu } (\zeta ). \end{equation} (4.2)

    Which presented the fractional reduced transformed of j(\zeta, \tau) and its inverse transform of J_{\mu } (\zeta) defined as

    \begin{equation} R_{D}^{-1} [J_{\mu } (\zeta )] = \sum\limits _{\mu = 0}^{+\infty }J_{\mu } (\zeta )\, (\tau -\tau _{0} )^{\mu \eta } \approx j\, (\zeta , \tau ), \end{equation} (4.3)

    where R_{D} is the reduced differential transform operator and it's inverse operator denoted by R_{D}^{-1}, [35].

    From Eqs (4.2) and (4.3), we can see that

    \begin{equation} j\, (\zeta , \tau ) = \sum\limits _{\mu = 0}^{+\infty }\frac{1}{\Gamma (\mu \eta +1\, )} \left. \left[\frac{\partial ^{\mu } }{\partial \tau ^{\mu } } j\, (\zeta , \tau )\right]\right|_{\tau = \tau _{0} } \, (\tau -\tau _{0} )^{\mu \eta } , \end{equation} (4.4)

    if we set \tau = 0, in above Eq (4.4), it convert to

    \begin{equation} j\, (\zeta , \tau ) = \sum\limits _{\mu = 0}^{+\infty }\frac{1}{\Gamma (\mu \eta +1\, )} \left. \left[\frac{\partial ^{\mu } }{\partial \tau ^{\mu } } j\, (\zeta , \tau )\right]\right|_{\tau = \tau _{0} } (\tau )^{\mu \eta } . \end{equation} (4.5)

    From the above, we noted that the reduced differential transform solution can be deduced by expansion of the power series.

    Definition 4.2. If w(\zeta, \tau) = R_{D}^{-1} [W_{\mu } (\zeta)], p(\zeta, \tau) = R_{D}^{-1} [P_{\mu } (\zeta)], and * denote the convolution, indicate form of the multiplication of the RDTA in fractional form. The mathematical fractional operation of the RDTA is shown in the Table 2.

    Table 2.  The fundamental concepts of the RDTA.
    Functions j(\zeta, \tau) Reduced differential transformed function R_{D} [j(\zeta, \tau)=J_{\mu } (\zeta)
    w(\zeta, \tau)*p(\zeta, \tau) W_{\mu } (\zeta)*P_{\mu } (\zeta)=\sum _{\ell =0}^{\mu }W_{\ell } (\zeta)*P_{\mu -\ell } (\zeta)
    c_{1} w(\zeta, \tau)\pm c_{2} p(\zeta, \tau) c_{1} W_{\mu } (\zeta)\pm c_{2} P_{\mu } (\zeta)
    \left(\partial ^{\aleph \eta } /\partial \tau ^{\aleph \eta } \right)w(x, \tau) \left(\Gamma (\mu \eta +\aleph \eta +1)/\Gamma (\mu \eta +1)\right)W_{\mu +\aleph } (\zeta)
    w(\zeta, \tau)p(\zeta, \tau) \sum _{i=0}^{\mu }W_{i} (\zeta)P_{\mu -i} (\zeta)= \sum _{\ell =0}^{\mu }P_{\ell } (\zeta)W_{\mu -\ell } (\zeta)
    \zeta ^{r} \tau ^{n} w(\zeta, \tau) \zeta ^{r} W_{\mu -n} (\zeta)
    \zeta ^{r} \tau ^{n} \zeta ^{r} \delta (\mu -n)
    e^{\lambda \tau } \lambda ^{\mu } /\Gamma (\mu +1)

     | Show Table
    DownLoad: CSV

    Here we analysis the validities of both the proposed algorithm by series solution and graphical representations, taking auxiliary function H(\zeta, \tau) = 1 . We use w = w(\zeta, \tau) is the function of space coordinate \zeta (\zeta \in R) and time scale \tau \, (\tau > 0), \, \, a is arbitrary constant.

    Example 1. We consider the following transpose equation [16,17,18] in fractional form

    \begin{equation} \frac{\partial ^{\eta } w}{\partial \tau ^{{}^{\eta } } } +\, a\frac{\partial w}{\partial \zeta } \, = 0, \end{equation} (5.1)

    and the initial conditions

    \begin{equation} w(\zeta , 0) = w_{0} = \zeta ^{2} . \end{equation} (5.2)

    Case 1: q-HASTA solution

    Computing Shehu transform on Eq (5.1) with the initial condition (5.2) as

    \begin{equation} S\left[w\, (\zeta , \tau )\right]-\frac{u}{s} \zeta ^{2} +\frac{u^{\eta } }{s^{\eta } } S\left[a\frac{\partial \, w(\zeta , \tau )}{\partial \zeta } \right] = 0.\, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \end{equation} (5.3)

    We presented the nonlinear operator as

    \begin{equation} {\rm N} \left[\chi (\zeta , \tau ;\rho )\right] = S\left[\chi (\zeta , \tau ;\rho )\right]-\frac{u}{s} \zeta ^{2} +a\frac{u^{\eta } }{s^{\eta } } S\left[\frac{\partial \chi (\zeta , \tau ;\rho )}{\partial \zeta } \right]\, , \, \, \, \, \, \, \, \, \, \, \, \, \, \, \end{equation} (5.4)

    and we have

    \begin{equation} \Re \, (\vec{w}_{m-1} ) = S(\vec{w}_{m-1} )-(1-\frac{k_{m} }{n} )\, \, \frac{u}{s} \zeta ^{2} +a\frac{u^{\eta } }{s^{\eta } } \left[\frac{\partial \, \vec{w}_{m-1} }{\partial \zeta } \right]. \end{equation} (5.5)

    The mth-order deformed equation is defined as

    \begin{equation} S\left[w_{m} (\zeta , \tau )-k_{m} w_{m-1} (\zeta , \tau )\right] = \hbar \Re _{m} (\vec{w}_{m-1} ).\, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \end{equation} (5.6)

    By using the inverse Shehu transform of Eq (5.6)

    \begin{equation} w_{m} (\zeta , \tau ) = k_{m} w_{m-1} (\zeta , \tau )+\hbar S^{-1} \left[\Re _{m} (\vec{w}_{m-1} )\right].\, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \end{equation} (5.7)

    Simplifying the Eq (5.7), for m = 1, 2, 3, \cdots, and we get

    w_{1} (\zeta , \, \tau ) = 2a\, \zeta \, \hbar \frac{\tau ^{\eta } }{\Gamma \left(\eta +1\right)} ,
    w_{2} (\zeta , \tau ) = 2a\, \zeta \, \hbar \, \left(\hbar +n\right)\frac{\tau ^{{}^{\eta } } }{\Gamma \left(\eta +1\right)} +2a^{2} \, \hbar ^{2} \frac{\tau ^{2^{\eta } } }{\Gamma \left(2\eta +1\right)} ,
    \begin{equation} w_{3} (\zeta , \tau ) = 2a\, \zeta \, \hbar \, \left(\hbar +n\right)^{2} \frac{\tau ^{{}^{\eta } } }{\Gamma \left(\eta +1\right)} +4a^{2} \, \hbar ^{2} \left(h+n\right)\frac{\tau ^{2^{\eta } } }{\Gamma \left(2\eta +1\right)} , \end{equation} (5.8)
    \vdots

    And so on, the components of w_{m} (\zeta, \tau), m\ge 4, can be easily obtained. The series solution is given as

    \begin{equation} w(\zeta , \tau ) = w_{0} (\zeta , \tau )+\sum\limits _{m = 1}^{\infty }w_{m} (\zeta , \tau ) (\frac{1}{n} )^{m} . \end{equation} (5.9)

    For \hbar = -1, \, n = 1 and \eta = 1 then clearly, the solution series (5.9) provides the solution and converges to the exact solution w(\zeta, \tau) = \zeta ^{2} -2a\zeta \tau +a^{2} \tau ^{2}, which is coincident to VIM [15].

    Case 2: RDTA solution

    We apply the RDTA to Eq (5.1), to obtain

    \begin{equation} \frac{\Gamma (m\eta +\eta +1\, )}{\Gamma (m\eta +1)} W_{m+1} = -\, a\frac{\partial W_{m} }{\partial \zeta } \, .\, \, \, \end{equation} (5.10)

    Applying the RDTA with initial condition (5.2), we have

    W_{0} (\zeta ) = \zeta ^{2} , \, \,
    \begin{equation} W_{1} (\zeta ) = -2a\, \zeta \frac{1}{\Gamma (\eta +1)} , W_{2} (\zeta ) = 2a^{2} \frac{1}{\Gamma \left(2\eta +1\right)} , W_{3} (\zeta ) = 0\, , \end{equation} (5.11)
    \vdots

    and so on, in this way, we found the exact solution in second terms iteration, selecting \eta = 1. Using (5.11) we get the following approximations for the RDTA series solution

    \begin{equation} \begin{array}{l} {w(\zeta , \tau ) = \sum _{m = 0}^{3}W_{m} (\zeta ) \, \tau ^{m\eta } = W_{0} (\zeta )+W_{1} (\zeta )\, \tau ^{\eta } +W_{2} (\zeta )\, \tau ^{2\eta } +W_{3} (\zeta )\, \tau ^{3\eta } .} \\ {\, \, \, \, \, \, \, \, \, \, \, \, = \, \, \, \zeta ^{2} -2a\zeta \frac{\tau ^{\eta } }{\Gamma (\eta +1)} +2a^{2} \frac{\tau ^{2\eta } }{\Gamma (2\eta +1)} .} \end{array} \end{equation} (5.12)

    Which is coincident obtained by the q-HASTA (\hbar = -1, n = 1) and VIM [15] at \eta = 1, \hbar = -1, n = 1, given as

    \begin{equation} w(\zeta , \tau ) = \zeta ^{2} -2a\zeta \tau +a^{2} \tau ^{2} . \end{equation} (5.13)

    The numerical analysis for the approximate series solution of Eq (5.1) obtained by using the q-HASTA & the RDTA with the exact solution (5.13) at a = 0.01 in Figures 15 are computed by using Maple package.

    Figure 1.  The surface shows the exact solution w(\zeta, \tau) v/s space variable \zeta and time variable \tau .
    Figure 2.  The surface shows the fractional order ( \eta = 0.9 ), RDTA (q-HASTA, \hbar = -1, n = 1 ) solution w(\zeta ,\tau ) v/s space variable \zeta and time variable \tau .
    Figure 3.  The surface represented the absolute error E_{3} (w) = \left|w_{ex.} -w_{apr.} \right| v/s space variable \zeta and time variable \tau at \hbar = -1,n = 1,\, \eta = 0.9 .
    Figure 4.  Response of family of RDTA (q-HASTA, \hbar = -1, n = 1 ) solution w(\zeta ,\tau ) v/s time variable \tau for varies values of \eta at space variable \zeta = 0.5 .
    Figure 5.  \hbar -curves depicted comparative study of q-HASTA for varies \eta at \zeta = 0.5, \, \tau = 0.005 and n = 1 .

    Example 2. The fractional nonlinear equation with variable coefficients is given as

    \begin{equation} \frac{\partial ^{\eta } w}{\partial \tau ^{{}^{\eta } } } +\zeta \frac{\partial w}{\partial \zeta } \, = \, 0, \end{equation} (5.14)

    and the initial conditions

    \begin{equation} w\, (\zeta , 0) = w_{0} = \zeta ^{2} . \end{equation} (5.15)

    Case 1: q-HASTA solution

    To solve the Eqs (5.14) and (5.15) by using the Shehu transform with the initial condition, as

    \begin{equation} S\left[w(\zeta , \tau )\right]-\frac{u}{s} \zeta ^{2} +\frac{u^{\eta } }{s^{\eta } } S\left[\zeta \frac{\partial v}{\partial \zeta } \right] = 0. \end{equation} (5.16)

    The nonlinear operator defined by

    \begin{equation} {\rm N} \left[\chi (\zeta , \tau \, ;\rho )\right] = S\left[\chi (\zeta , \tau ;\rho \, )\right]-\frac{u}{s} \zeta ^{2} +\frac{u^{\eta } }{s^{\eta } } S\left[\zeta \frac{\partial \chi (\zeta , \, \tau \, ;\rho \, )}{\partial \zeta } \right], \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \end{equation} (5.17)

    and thus

    \begin{equation} \Re \, (\vec{w}_{m-1} ) = S(w_{m-1} )-\, \, \left(1-\frac{k_{m} }{n} \right)\, \, \frac{u}{s} \zeta ^{2} \, +\frac{u^{\eta } }{s^{\eta } } \left[\zeta \frac{\partial w_{m-1} }{\partial \zeta } \right].\, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \end{equation} (5.18)

    The mth-order deformed equation is given as

    \begin{equation} S\left[w_{m} (\zeta , \tau )-k_{m} w_{m-1} (\zeta , \tau )\right] = \hbar \Re _{m} (\vec{w}_{m-1} ). \end{equation} (5.19)

    Computing the inverse Shehu transform, we get

    \begin{equation} w_{m} (\zeta , \tau ) = k_{m} w_{m-1} (\zeta , \tau )+\hbar L^{-1} \left[\Re _{m} (\vec{w}_{m-1} )\right]. \end{equation} (5.20)

    Simplifying the Eq (5.20), for m = 1, 2, 3, \cdots, we get

    v_{1} (\zeta , \tau ) = 2\, \hbar \zeta ^{2} \frac{\tau ^{\eta } }{\Gamma \left(\mu +1\right)} ,
    v_{2} (\zeta , \tau ) = 2\hbar \left(\hbar +n\right)\, \zeta ^{2} \frac{\tau ^{\eta } }{\Gamma \left(\eta +1\right)} +4\hbar ^{2} \, \zeta ^{2} \frac{\tau ^{2\eta } }{\Gamma \left(2\eta +1\right)} ,
    \begin{equation} \begin{array}{l} {v_{3} (\zeta , \tau ) = 2\hbar \left(\hbar +n\right)^{2} \zeta ^{2} \frac{\tau ^{\eta } }{\Gamma \left(\eta +1\right)} e^{\zeta } +8\hbar ^{2} \left(\hbar +n\right)\, \zeta ^{2} \frac{\tau ^{2\eta } }{\Gamma \left(2\eta +1\right)} +8\hbar ^{3} \, \zeta ^{2} \frac{\tau ^{3\eta } }{\Gamma \left(3\eta +1\right)} , } \\ {\, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \vdots } \end{array} \end{equation} (5.21)

    And so on, the components of w_{m} (\zeta, \tau), m\ge 4, can be easily obtained. Therefore, the approximate solution series given as

    \begin{equation} w(\zeta , \tau ) = w_{0} (\zeta , \tau )+\sum\limits _{m = 1}^{\infty }w_{m} (\zeta , \tau ) \left(\frac{1}{n} \right)^{m} . \end{equation} (5.22)

    If we select \hbar = -1, \, n = 1 and \eta = 1 then clearly, we can observe that the solution series (5.22), provide solution which is converges to the exact solution w(\zeta, \tau) = \zeta ^{2} e^{-2\tau }.

    Case 2: RDTA solution

    We apply the RDTA to Eq (5.14), we obtained the following relation

    \begin{equation} \frac{\Gamma (m\eta +\eta +1)}{\Gamma (m\eta +1)} W_{m+1} = -\, \zeta \frac{\partial W_{m} }{\partial \zeta } \, .\, \, \, \end{equation} (5.23)

    Using the RDTA with initial condition (5.15), we get

    \begin{equation} W_{0} (\zeta ) = \zeta ^{2}. \end{equation} (5.24)

    Solve the relation (5.23) and using Eq (5.24), we deduce the following components of W_{m} (\zeta), for m = 0, 1, 2, 3, \cdots, as

    W_{1} (\zeta ) = -2\zeta ^{2} \frac{1}{\Gamma (\eta +1)} , W_{2} (\zeta ) = 4\zeta ^{2} \frac{1}{\Gamma \left(2\eta +1\right)} , W_{3} (\zeta ) = -8\zeta ^{2} \frac{1}{\Gamma \left(3\eta +1\right)} ,
    \begin{equation} W_{4} (\zeta ) = 16\zeta ^{2} \frac{1}{\Gamma \left(4\eta +1\right)}, \end{equation} (5.25)

    and so on, the components of w_{m} (\zeta, t) for m > 4 can be obtained and the RDTA approximate series solution deduced as

    w(\zeta , \tau ) = \sum\limits _{m = 0}^{\infty }W_{m} (\zeta ) \, \tau ^{m\eta } . = W_{0} (\zeta )+W_{1} (\zeta )\, \tau ^{\eta } +W_{2} (\zeta )\tau ^{2\eta } +W_{3} (\zeta )\, \tau ^{3\eta } +W_{4} (\zeta )\, \tau ^{4\eta } +\cdots
    \begin{equation} = \zeta ^{2} -2\zeta ^{2} \frac{\tau ^{\eta } }{\Gamma (\eta +1)} +4\zeta ^{2} \frac{\tau ^{2\eta } }{\Gamma \left(2\eta +1\right)} -8\zeta ^{2} \frac{\tau ^{3\eta } }{\Gamma \left(3\eta +1\right)} +16\zeta ^{2} \frac{\tau ^{4\eta } }{\Gamma \left(4\eta +1\right)} +\cdots . \end{equation} (5.26)

    When we select \eta = 1 then the series (5.26), rapidly converges to the exact solution

    \begin{equation} w(\zeta , \tau ) = \zeta ^{2} e^{-2\tau } . \end{equation} (5.27)

    The above result (5.26) is in complete agreement with the q-HASTA (\hbar = -1, n = 1) and VIM [15] at \eta = 1 .

    The numerical analysis for the approximate solution of Eq (5.14) obtained by using the q-HASTA & the RDTA and the original solution (5.13) in Figures 610 are computed by using maple package.

    Figure 6.  The surface shows the exact solution w(\zeta, \tau) v/s space variable \zeta and time variable \tau .
    Figure 7.  The surface shows the RDTA (q-HASTA, \hbar = -1, n = 1 ) solution w(\zeta ,\tau ) v/s space variable \zeta and time variable \tau at \eta = 1 .
    Figure 8.  The surface represented the absolute error E_{4} (w) = \left|w_{ex.} -w_{apr.} \right| v/s space variable \zeta and time variable \tau at \hbar = -1,n = 1,\, \eta = 1 .
    Figure 9.  Comprehensive study b/w exact solution, RDTA solution ( \hbar = -1 ) and the family of q-HASTA solutions v/s time variable \tau at space variable \zeta = 1.5 and n = 1 .
    Figure 10.  \hbar -curves for comparative study of q-HASTA for varies values of \eta at \zeta = 1.5, \, \tau = 0.005 and n = 1 .

    Example 3. Next, we take the fractional non-homogeneous equation

    \begin{equation} \frac{\partial ^{\eta } w}{\partial \tau ^{\eta } } +\frac{\partial w}{\partial \zeta } \, = \, \zeta , \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \end{equation} (5.28)

    and the initial conditions

    \begin{equation} w\, (\zeta , 0) = w_{0} = e^{\zeta } .\, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \end{equation} (5.29)

    Case 1: q-HASTA solution

    Taking the Shehu transform of Eq (5.28) and using condition (5.29), as

    \begin{equation} S\left[w(\zeta , \tau )\right]-\frac{u}{s} e^{\zeta } +\frac{u^{\eta } }{s^{\eta } } S\left[\frac{\partial w}{\partial \zeta } -\zeta \right] = 0.\, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \end{equation} (5.30)

    The nonlinear operator is

    \begin{equation} {\rm N} \left[\chi (\zeta , \tau ;\rho )\right] = S\left[\chi (\zeta , \tau ;\rho )\right]-\frac{u}{s} e^{\zeta } +\frac{u^{\eta } }{s^{\eta } } S\left[\frac{\partial \chi (\zeta , \tau ;\rho )}{\partial \zeta } -\zeta \right], \end{equation} (5.31)

    and we have

    \begin{equation} \Re (\vec{w}_{m-1} ) = S(w_{m-1} )-(1-\frac{k_{m} }{n} )\frac{u}{s} e^{\zeta } +\frac{u^{\eta } }{s^{\eta } } S\left[\frac{\partial w}{\partial \zeta } -(1-\frac{k_{m} }{n} )\zeta \right].\, \, \, \, \, \, \, \, \, \end{equation} (5.32)

    The mth-order deformed equation is defined as

    \begin{equation} S\left[w_{m} (\zeta , \tau )-k_{m} w_{m-1} (\zeta , \tau )\right] = \hbar \Re _{m} (\vec{w}_{m-1} ). \end{equation} (5.33)

    The inverse Shehu transform of (5.33), we have

    \begin{equation} w_{m} (\zeta , \tau ) = k_{m} w_{m-1} (\zeta , \tau )+\hbar S^{-1} \left[\Re _{m} (\vec{w}_{m-1} )\right]. \end{equation} (5.34)

    For m = 1, 2, 3, \cdots, simplifying the Eq (5.34), we deduce

    w_{1} (\zeta , \tau ) = \hbar (e^{\zeta } -\zeta )\frac{\tau ^{\eta } }{\Gamma (\eta +1)} ,
    w_{2} (\zeta , \tau ) = \hbar \left(\hbar +n\right)(e^{\zeta } -\zeta )\frac{\tau ^{\eta } }{\Gamma \left(\eta +1\right)} +\hbar ^{2} (e^{\zeta } -1)\frac{\tau ^{2\eta } }{\Gamma \left(2\eta +1\right)} ,
    \begin{equation} w_{3} (\zeta , \tau ) = \hbar \left(\hbar +n\right)^{2} (e^{\zeta } -\zeta )\frac{\tau ^{\eta } }{\Gamma \left(\eta +1\right)} +2\hbar ^{2} (e^{\zeta } -1)\frac{\tau ^{2\eta } }{\Gamma \left(2\eta +1\right)} +\hbar ^{3} e^{\zeta } \frac{\tau ^{3\eta } }{\Gamma \left(3\eta +1\right)} , \end{equation} (5.35)
    \vdots

    and so on, the components of w_{m} (\zeta, \tau), m > 3, can be easily computed and the series solution is given by

    \begin{equation} w(\zeta , \tau ) = w_{0} (\zeta , \tau )+\sum\limits _{m = 1}^{\infty }w_{m} (\zeta , \tau )\left(\frac{1}{n} \right)^{m} . \end{equation} (5.36)

    If we select \hbar = -1, \, n = 1 and \eta = 1 then clearly, the series solution (5.36) converges to the exact solution w(\zeta, \tau) = \tau (\zeta -\frac{t}{2})+e^{\zeta -\tau }.

    Case 2: RDTA solution

    We use the RDTA to Eq (5.28), we obtained the following relation

    \begin{equation} \frac{\Gamma (m\eta +\eta +1)}{\Gamma (m\eta +1)} W_{m+1} = \zeta (1-k_{m} )-\frac{\partial W_{m} }{\partial \zeta } \, , \, \, \, \, \end{equation} (5.37)

    the RDTA to the initial condition (5.37), we have

    \begin{equation} W_{0} (\zeta ) = \zeta ^{2} . \end{equation} (5.38)

    Apply Eq (5.38) in Eq (5.37), we get the following components of W_{m} (\zeta), for m = 0, 1, 2, 3, \cdots,

    W_{1} (\zeta ) = -\left(\, e^{\zeta } -\zeta \right)\frac{1}{\Gamma (\eta +1)} , W_{2} (\zeta ) = \left(\, e^{\zeta } -1\right)\frac{1}{\Gamma \left(2\eta +1\right)} , W_{3} (\zeta ) = -e^{\zeta } \frac{1}{\Gamma \left(3\eta +1\right)} ,
    \begin{equation} \begin{array}{l} {W_{4} (\zeta ) = e^{\zeta } \frac{1}{\Gamma \left(4\eta +1\right)} , } \\ {\, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \vdots } \end{array} \end{equation} (5.39)

    And so on, the components of w_{m} (\zeta, \tau) can be easily obtained and the RDTA approximate series solution deduced as

    w(\zeta, \tau) = \sum _{m = 0}^{\infty }W_{m} (\zeta) \, \tau ^{m\eta }. = W_{0} (\zeta)+W_{1} (\zeta)\, \tau ^{\eta } +W_{2} (\zeta)\, \tau ^{2\eta } +W_{3} (\zeta)\, \tau ^{3\eta } +W_{4} (\zeta)\, \tau ^{4\eta } +\cdots

    \begin{equation} = \zeta ^{2} -\, (e^{\zeta } -\zeta )\frac{\, \, \tau ^{\eta } }{\Gamma (\eta +1)} +(e^{\zeta } -1)\frac{\, \tau ^{2\eta } }{\Gamma \left(2\eta +1\right)} -e^{\zeta } \frac{\, \tau ^{3\eta } }{\Gamma \left(3\eta +1\right)} +e^{\zeta } \frac{\tau ^{4\eta } }{\Gamma \left(4\eta +1\right)} -\cdots . \end{equation} (5.40)

    Which is the same as deduced by the q-HASTA (\hbar = -1, n = 1) and VIM [15] at \eta = 1 . We observed that the solution series (5.40) at \eta = 1 , converges to the exact solution

    \begin{equation} w(\zeta , \tau ) = \tau (\zeta -\frac{\tau }{2} )+e^{\zeta -\tau } . \end{equation} (5.41)

    The numerical simulations of the approximate solution (5.28) deduced by using the q-HASTA & the RDTA and the exact solution (5.41) are depicted in Figures 1116.

    Figure 11.  The surface shows the exact solution w(\zeta, \tau) v/s space variable \zeta and time variable \tau .
    Figure 12.  The surface shows the RDTA (q-HASTA, \hbar = -1, n = 1 ) solution w(\zeta ,\tau ) v/s space variable \zeta and time variable \tau at \eta = 1 .
    Figure 13.  The surface shows the absolute error E_{4} (w) = \left|w_{ex.} -w_{apr.} \right| v/s space variable \zeta and time variable \tau at \hbar = -1,n = 1,\, \eta = 1 .
    Figure 14.  Comprehensive study b/w exact solution, RDTA solution ( \hbar = -1 ) and the family of q-HASTA solutions v/s time variable \tau at space variable \zeta = 1.5 and n = 1 .
    Figure 15.  \hbar -curves comparative study of q-HASTA for varies \eta at \zeta = 0.5,\, \tau = 0.005 and n = 1 .
    Figure 16.  \hbar -curve for q-HASTA solution at \zeta = 0.5, \, \tau = 0.005, n = 50 and \eta = 1 .

    Example 4. Now, we consider the inviscid Bugers' equation in fractional form as

    \begin{equation} \frac{\partial ^{\eta } w}{\partial \tau ^{\eta } } +w\frac{\partial w}{\partial \zeta } \, = \, 0, \end{equation} (5.42)

    and the initial conditions

    \begin{equation} w(\zeta , 0) = w_{0} = \zeta , \, \, \, \, \, \zeta \in R. \end{equation} (5.43)

    Case 1: q-HASTA solution

    Taking the Shehu transform of Eq (5.42) with the initial condition (5.43), we have

    \begin{equation} S\left[w\, (\zeta , \tau )\right]-\frac{u}{s} \zeta +\frac{u^{\eta } }{s^{\eta } } S\left[w\frac{\partial w}{\partial \zeta } \right] = 0.\, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \end{equation} (5.44)

    The nonlinear operator is

    \begin{equation} {\rm N} \left[\chi (\zeta , \tau ;\rho )\right] = S\left[\chi (\zeta , \tau ;\rho )\right]-\frac{u}{s} \zeta +\frac{u^{\eta } }{s^{\eta } } S\left[\chi (\zeta , \tau ;\rho )\frac{\partial \chi (\zeta , \tau ;\rho )}{\partial \zeta } \right], \end{equation} (5.45)

    and thus

    \begin{equation} \Re _{m} (\vec{w}_{m-1} ) = S(w_{m-1} )-(1-\frac{k_{m} }{n} )\frac{u}{s} \zeta +\frac{u^{\eta } }{s^{\eta } } L\left[\sum\limits _{i = 0}^{m-1}w_{i} \frac{\partial w_{m-i-1} \;}{\partial \zeta } \right].\, \, \, \, \, \, \, \, \, \, \end{equation} (5.46)

    The mth-order deformed equation is given as

    \begin{equation} S\left[w_{m} (\zeta , \tau )-k_{m} w_{m-1} (\zeta , \tau )\right] = \hbar \Re _{m} (\vec{w}_{m-1} ). \end{equation} (5.47)

    The inverse Shehu transform of (5.47), we get

    \begin{equation} w_{m} (\zeta , \tau ) = k_{m} w_{m-1} (\zeta , \tau )+\hbar S^{-1} \left[\Re _{m} (\vec{w}_{m-1} )\right]. \end{equation} (5.48)

    For m = 1, 2, 3, \cdots, simplifying the above Eq (5.48), we get

    w_{1} (\zeta , \tau ) = \hbar \zeta \frac{\tau ^{\eta } }{\Gamma (\eta +1)} ,
    w_{2} (\zeta , \tau ) = \hbar \left(\hbar +n\right)\zeta \frac{\tau ^{\eta } }{\Gamma \left(\eta +1\right)} +2\hbar ^{2} \zeta \frac{\tau ^{2\eta } }{\Gamma \left(2\eta +1\right)} ,
    \begin{equation} \begin{array}{l} {w_{3} (\zeta , \tau ) = \hbar \left(\hbar +n\right)^{2} \zeta \frac{\tau ^{\eta } }{\Gamma \left(\eta +1\right)} +2\hbar (\hbar +n)^{2} \zeta \frac{\tau ^{2\eta } }{\Gamma \left(2\eta +1\right)} +4\hbar ^{3} \zeta \frac{\tau ^{3\eta } }{\Gamma \left(3\eta +1\right)} } \\ {\, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, +\hbar ^{3} \zeta \frac{\tau ^{3\eta } }{\Gamma \left(3\eta +1\right)} \frac{\Gamma \left(2\eta +1\right)}{\left(\Gamma \left(\eta +1\right)\right)^{2} } , } \\ { \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \vdots } \end{array} \end{equation} (5.49)

    Iterating in this procedure, the components of w_{m} (\zeta, \tau), m > 3, can be easily computed and the series solutions are determined by

    \begin{equation} w(\zeta , \tau ) = w_{0} (\zeta , \tau )+\sum\limits _{m = 1}^{\infty }w_{m} (\zeta , \tau ) (1/n)^{m} . \end{equation} (5.50)

    If we select \, \hbar \, -1, n = 1 and \eta = 1 , then the solution series (5.53) convert to w(\zeta, \tau) = \zeta -\tau \zeta +\tau ^{2} \zeta -\tau ^{3} \zeta +\tau ^{4} \zeta -\cdots +(-1)^{r} \tau ^{r} \zeta +\cdots = \zeta \, (1+\tau)^{-1}, which is exactly same as obtained by VIM [15].

    Case 2: RDTA solution

    Now we apply the RDTA to Eq (5.42), we get the following recurrence relation

    \begin{equation} \frac{\Gamma (m\eta +\eta +1)}{\Gamma (m\eta +1)} W_{m+1} = -\sum\limits _{i = 0}^{m}W_{i} \frac{\partial W_{m-i} }{\partial \zeta } \, , \, \, \, \, \end{equation} (5.51)

    apply the RDTA with the initial condition (5.43), we get

    \begin{equation} W_{0} (\zeta ) = \zeta . \end{equation} (5.52)

    Apply Eq (5.52) in Eq (5.51), we get the components of W_{m} (\zeta), for m = 0, 1, 2, 3, \cdots, as

    W_{1} (\zeta ) = -\zeta \frac{1}{\Gamma (\eta +1)} , W_{2} (\zeta ) = 2\zeta \frac{1}{\Gamma \left(2\eta +1\right)} , W_{3} (\zeta ) = -\zeta \frac{\Gamma \left(2\eta +1\right)}{\Gamma \left(3\eta +1\right)\Gamma \left(\eta +1\right)^{2} } -4\zeta \frac{1}{\Gamma \left(3\eta +1\right)} ,
    \begin{equation} \begin{array}{l} {W_{4} (\zeta ) = 2\zeta \frac{\Gamma \left(2\eta +1\right)}{\Gamma \left(4\eta +1\right)\Gamma \left(\eta +1\right)^{2} } +4\zeta \frac{\Gamma \left(3\eta +1\right)}{\Gamma \left(\eta +1\right)\Gamma \left(2\eta +1\right)\Gamma \left(4\eta +1\right)} +8\zeta \frac{1}{\Gamma \left(4\eta +1\right)} , } \\ { \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \vdots } \end{array} \end{equation} (5.53)

    In this processes, the components of w_{m} (\zeta, \tau), m > 4, can be easily found and the RDTA approximate solution deduced as

    w\, (\zeta , \tau ) = \sum\limits _{m = 0}^{\infty }W_{m} (\zeta ) \, \tau ^{m\eta } = W_{0} (\zeta )+W_{1} (\zeta )\, \tau ^{\eta } +W_{2} (\zeta )\tau ^{2\eta } +W_{3} (\zeta )\, \tau ^{3\eta } +W_{4} (\zeta )\, \tau ^{4\eta } +\cdots
    = \zeta -\zeta \frac{\tau ^{\eta } }{\Gamma (\eta +1)} +2\zeta \frac{\tau ^{2\eta } }{\Gamma \left(2\eta +1\right)} -\zeta \frac{\Gamma \left(2\eta +1\right)\tau ^{3\eta } }{\Gamma \left(3\eta +1\right)\Gamma \left(\eta +1\right)^{2} } -4\zeta \frac{\tau ^{3\eta } }{\Gamma \left(3\eta +1\right)}
    \begin{equation} \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, \, +2\zeta \frac{\Gamma \left(2\eta +1\right)\tau ^{4\eta } }{\Gamma \left(4\eta +1\right)\Gamma \left(\eta +1\right)^{2} } +4\zeta \frac{\Gamma \left(3\eta +1\right)\tau ^{4\eta } }{\Gamma \left(\eta +1\right)\Gamma \left(2\eta +1\right)\Gamma \left(4\eta +1\right)} +8\zeta \frac{\tau ^{4\eta } }{\Gamma \left(4\eta +1\right)} -\cdots . \end{equation} (5.54)

    Which is the coincident with the solution series deduced by q-HASTA (\hbar = -1, n = 1) and obtained by VIM [15] at \eta = 1. The solution series (5.54), \sum _{m = 0}^{\infty }W_{m} (\zeta) \, \tau ^{m\eta } convert to exact solution at \eta = 1, given as

    \begin{equation} w\, (\zeta , \tau ) = \zeta \, (1+\tau )^{-1} . \end{equation} (5.55)

    The numerical results of (5.42) deduced from the q-HASTA and the RDTA, and the exact solution (5.55) are depicted in Figures 1722 and in Table 3.

    Figure 17.  The surface shows the exact solution w(\zeta, \tau) v/s space variable \zeta and time variable \tau .
    Figure 18.  The nature of RDTA (q-HASTA, \hbar = -1, n = 1 ) solution w(\zeta ,\tau ) v/s space variable \zeta and time variable \tau at \eta = 1 .
    Figure 19.  The surface shows the absolute error E_{4} (w) = \left|w_{ex.} -w_{apr.} \right| v/s space variable \zeta and time variable \tau at \hbar = -1,n = 1,\, \eta = 1. .
    Figure 20.  Comprehensive nature b/w exact solution, RDTA solution ( \hbar = -1 ) and the family of q-HASTA solutions v/s time variable \tau at space variable \zeta = 1.5 and n = 1. .
    Figure 21.  \hbar -curves comparative behave of q-HASTA for varies \eta at \varsigma = 0.5,\, \tau = 0.002 and n = 1 .
    Figure 22.  \hbar -curve for q-HASTA solution at \zeta = 0.5, \, \tau = 0.002, n = 10 and \eta = 1 .
    Table 3.  Comparative study for q-HASTA at \zeta = 0.5, \eta = 1 .
    \tau Exact solution q-HASTA ( \hbar =-1, n=1 ) q-HASTA \hbar =-1, n=2
    Approximate solution Absolute error Approximate solution Absolute error
    0 0.5 0.5 0 0.5 0
    0.01 0.4950495050 0.4950495000 0.5000000 {\mathrm{\times}} 10 {}^{-9} 0.4849995000 1.0050005 {\mathrm{\times}} 10 {}^{-2}
    0.02 0.4901960784 0.4901960000 7.8400000 {\mathrm{\times}} 10 {}^{-8} 0.4699960000 2.0200078 {\mathrm{\times}} 10 {}^{-2}
    0.03 0.4854368932 0.4854365000 3.9320000 {\mathrm{\times}} 10 {}^{-7} 0.4549865000 3.0450393 {\mathrm{\times}} 10 {}^{-2}
    0.04 0.4807692308 0.4807680000 1.2308000 {\mathrm{\times}} 10 {}^{-6} 0.4399680000 4.0801230 {\mathrm{\times}} 10 {}^{-2}
    0.05 0.4761904762 0.4761875000 2.9762000 {\mathrm{\times}} 10 {}^{-6} 0.4249375000 5.1252976 {\mathrm{\times}} 10 {}^{-2}

     | Show Table
    DownLoad: CSV

    We observed from the numerical results and from graphically representations (Figures 122) of the fractional Cauchy problems v/s space variable \zeta and time variable \tau with order of fractional derivatives. The q-HASTA control the convergence of the solution series by using the appropriate values of auxiliary parameters \hbar and n at large admissible domain. \hbar -curves show that the validated convergence range and also the horizontal line segments denoted the range for convergence of solution series. We observe that the convergence region directly proportional to auxiliary parameter n have the advantage of the q-HASTA to the HAM, which is depicted in Figures 16 and 22. We also observed that the HAM (q-HASTA, n = 1 ) and RDTA, VIM (q-HASTA, \hbar = -n ) are special cases of q-HASTA. Maple plotting represents the comparative approximate solutions behavior of the RDTA and the q-HASTA v/s exact and existing solutions.

    In this paper, we successfully applied computational algorithm namely q-HASTA and compared with the RDTA for solving the time fractional Cauchy equations and found the approximate solution series, closed to the exact solution. We observed that the RDTA is special condition of the q-HASTA. The q-HASTA is provide many more options for the interest of the convergence region by taking the number of parameters and auxiliary functions, whereas the RDTA algorithm provides solution series components from recursive relation, easy computational work, coming complex calculations and reducing the time and size of calculations.

    The authors extend their appreciation to the Deputyship for research and innovation, Ministry of Education in Saudi Arabia for funding this research work through the project number IF-PSAU-2021/01/17698.

    The authors declare that there are no conflicts of interest regarding the publication of this paper.



    [1] M. Caputo, Linear model of dissipation whose Q is almost frequency independent-Ⅱ, Geophys. J. Int., 13 (1967), 529–539. https://doi.org/10.1111/j.1365-246X.1967.tb02303.x doi: 10.1111/j.1365-246X.1967.tb02303.x
    [2] M. Caputo, Elasticit\grave{a} e dissipazione, Zani-Chelli, Bologna 1969.
    [3] K. B. Oldham, J. Spanier, The fractional calculus: Theory and application of differentiation and integration to arbitrary order, New York: Academic Press, 1974.
    [4] M. Hedayati, R. Ezzati, S. Noeiaghdam, New procedures of a fractional order model of novel coronavirus (COVID-19) outbreak via wavelets method, Axioms, 10 (2021), 1–23. https://doi.org/10.3390/axioms10020122 doi: 10.3390/axioms10020122
    [5] A. Carpinteri, F. Mainardi, Fractional calculus in continuum mechanics, New York: Springer, 1997.
    [6] I. Podlubny, Fractional differential equations, San Diego, Calif: Academic Press, 1999.
    [7] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Amsterdam: Elsevier, 2006.
    [8] H. Bulut, H. M. Baskonus, Y. Pandir, The modified trial equation method for fractional wave equation and time-fractional generalized Burgers equation, Abstr. Appl. Anal., 2013 (2013), 1–8. https://doi.org/10.1155/2013/636802 doi: 10.1155/2013/636802
    [9] J. H. He, Approximate analytical solution for seepage flow with fractional derivatives in porous media, Comput. Methods Appl. Mech. Eng., 167 (1998), 57–58. https://doi.org/10.1016/S0045-7825(98)00108-X doi: 10.1016/S0045-7825(98)00108-X
    [10] V. P. Dubey, R. Kumar, D. Kumar, A hybrid analytical scheme for the numerical computation of time fractional computer virus propagation model and its stability analysis, Chaos Soliton. Fract., 133 (2020), 109626. https://doi.org/10.1016/j.chaos.2020.109626 doi: 10.1016/j.chaos.2020.109626
    [11] S. Kumar, Y. Khan, A. Yildirim, A mathematical modelling arising in the chemical system and its approximate numerical solution, Asia Pacific J. Chem. Eng., 7 (2012), 835–840. https://doi.org/10.1002/apj.647 doi: 10.1002/apj.647
    [12] J. Singh, D. Kumar, S. D. Purohit, A. M. Mishra, M. Bohra, An efficient numerical approach for fractional multi-dimensional diffusion equations with exponential memory, Numer. Methods Partial Differ. Eq., 37 (2021), 1631–1651. https://doi.org/10.1002/num.22601 doi: 10.1002/num.22601
    [13] Ramswroop, J. Singh, D. Kumar, Numerical computation of fractional Lotka-Volterra equation arising in biological systems, Nonlinear Eng., 4 (2015), 117–125. https://doi.org/10.1515/nleng-2015-0012 doi: 10.1515/nleng-2015-0012
    [14] B. Ghanbari, D. Kumar, Numerical solution of predator-prey model with Beddington-DeAngelis functional response and fractional derivatives with Mittag-Leffler kernel, Chaos, 29 (2019), 063103. https://doi.org/10.1063/1.5094546 doi: 10.1063/1.5094546
    [15] X. W. Zhou, L. Yao, The variation iteration method for Cauchy problems, Comput. Math. Appl., 60 (2010), 756–760. https://doi.org/10.1016/j.camwa.2010.05.022
    [16] R. C. McOwn, Partial differential equation: Method and applications, Prentice Hall, Inc., 1996.
    [17] A. Tveito, R. Winther, Interoduction to partial differential equations, Berlin, Heidelberg: Springer-Verlag, 2005.
    [18] N. H. Asmar, Partial differential equations with Fourier series and boundary value problems, Prentice Hall, Inc., 2004.
    [19] V. P. Dubey, R. Kumar, D. Kumar, A reliable treatment of residual power series method for time-fractional Black-Scholes European option pricing equations, Phys. A, 533 (2019), 122040. https://doi.org/10.1016/j.physa.2019.122040 doi: 10.1016/j.physa.2019.122040
    [20] S. Maitama, W. Zhao, New Laplace-type integral transform for solving steady heat transfer problem, Therm. Sci., 25 (2021), 1–12. https://doi.org/10.2298/TSCI180110160M doi: 10.2298/TSCI180110160M
    [21] S. Maitama, W. Zhao, New integral transform: Shehu transform a generalization of Sumudu and Laplace transform for solving differential equations, Int. J. Anal. Appl., 17 (2019), 167–190. https://doi.org/10.28924/2291-8639-17-2019-167 doi: 10.28924/2291-8639-17-2019-167
    [22] R. Belgacem, D. Baleanu, A. Bokhari, Shehu transform and application to Caputo-fractional differential equations, Int. J. Anal. Appl., 17 (2019), 917–927.
    [23] A. Bokhari, D. Baleanu, R. Belgacem, Application of Shehu transform to Atangana-Baleanu derivatives, J. Math. Comput. Sci., 20 (2019), 101–107. http://dx.doi.org/10.22436/jmcs.020.02.03 doi: 10.22436/jmcs.020.02.03
    [24] M. A. El-Tawil, S. Huseen, The q-homotopy analysis method (q-HAM), Int. J. Appl. Math. Mech., 8 (2012), 51–75.
    [25] M. A. El-Tawil, S. Huseen, On convergence of the q-homotopy analysis method, Int. J. Conte. Math. Sci., 8 (2013), 481–497.
    [26] S. J. Liao, The proposed homotopy analysis technique for the solution of nonlinear problems, Ph.D. Thesis, Shanghai Jiao Tong University, 1992.
    [27] S. J. Liao, Beyond perturbation: Introduction to the homotopy analysis method, Boca Raton: Chaoman and Hall/CRC Press, 2003.
    [28] S. J. Liao, On the homotopy analysis method for nonlinear problems, Appl. Math. Comput., 147 (2004), 499–513. https://doi.org/10.1016/S0096-3003(02)00790-7 doi: 10.1016/S0096-3003(02)00790-7
    [29] S. J. Liao, K. F. Cheung, Homotopy analysis of nonlinear progressive waves in deep water, J. Eng. Math., 45 (2003), 105–116. https://doi.org/10.1023/A:1022189509293 doi: 10.1023/A:1022189509293
    [30] S. Noeiaghdam, M. Suleman, H. Budak, Solving a modified nonlinear epidemiological model of computer viruses by homotopy analysis method, Math. Sci., 12 (2018), 211–222. https://doi.org/10.1007/s40096-018-0261-5 doi: 10.1007/s40096-018-0261-5
    [31] S. Noeiaghdam, S. Micula, Dynamical strategy to control the accuracy of the nonlinear bio-mathematical model of malaria infection, Mathematics, 9 (2021), 1031. https://doi.org/10.3390/math9091031 doi: 10.3390/math9091031
    [32] S. Noeiaghdam, S. Micula, J. J. Nieto, A novel technique to control the accuracy of a nonlinear fractional order model of COVID-19: Application of the CESTAC method and the CADNA library, Mathematics, 9 (2021), 1321. https://doi.org/10.3390/math9121321 doi: 10.3390/math9121321
    [33] S. Noeiaghdam, E. Zarei, H. B. Kelishami, Homotopy analysis transform method for solving Abel's integral equations of the first kind, Ain Shams Eng. J., 7 (2016), 483–495. https://doi.org/10.1016/j.asej.2015.03.006 doi: 10.1016/j.asej.2015.03.006
    [34] J. Singh, D. Kumar, R. Swroop, S. Kumar, An efficient computational approach for time-fractional Rosenau-Hyman equation, Neural Comput. Appl., 30 (2018), 3063–3070. https://doi.org/10.1007/s00521-017-2909-8 doi: 10.1007/s00521-017-2909-8
    [35] Y. Keskin, G. Oturanc, Reduced differential transform method: A new approach to factional partial differential equations, Nonlinear Sci. Lett. A, 1 (2010), 61–72.
    [36] P. K. Gupta, Approximate analytical solutions of fractional Benney-Lin equation by reduced differential transform method and the homotopy perturbation method, Comput. Math. Appl., 58 (2011), 2829–2842. https://doi.org/10.1016/j.camwa.2011.03.057 doi: 10.1016/j.camwa.2011.03.057
    [37] V. K. Srivastava, M. K. Awasthi, M. Tamsir, RDTM solution of Caputo time fractional-order hyperbolic telegraph equation, AIP Adv., 3 (2013), 032142. https://doi.org/10.1063/1.4799548 doi: 10.1063/1.4799548
    [38] J. Singh, Analysis of fractional blood alcohol model with composite fractional derivative, Chaos, Soliton. Fract., 140 (2020), 110127. https://doi.org/10.1016/j.chaos.2020.110127 doi: 10.1016/j.chaos.2020.110127
    [39] J. Singh, B. Ganbari, D. Kumar, D. Baleanu, Analysis of fractional model of guava for biological pest control with memory effect, J. Adv. Res., 32 (2021), 99–108. https://doi.org/10.1016/j.jare.2020.12.004 doi: 10.1016/j.jare.2020.12.004
    [40] V. P. Dubey, J. Singh, A. M. Alshehri, S. Dube, D. Kumar, Analysis of local fractional coupled Helmholtz and coupled Burgers' equations in fractal media, AIMS Math., 7 (2022), 8080–8111. https://doi.org/10.3934/math.2022450 doi: 10.3934/math.2022450
    [41] V. P. Dubey, J. Singh, A. M. Alshehri, S. Dubey, D. Kumar, An efficient analytical scheme with convergence analysis for computational study of local fractional Schrödinger equations, Math. Comput. Simul., 196 (2022), 296–318. https://doi.org/10.1016/j.matcom.2022.01.012 doi: 10.1016/j.matcom.2022.01.012
    [42] S. Yadav, D. Kumar, J. Singh, D. Baleanu, Analysis and dynamics of fractional order COVID-19 model with memory effect, Results Phys., 24 (2021), 104017. https://doi.org/10.1016/j.rinp.2021.104017 doi: 10.1016/j.rinp.2021.104017
    [43] Y. Luchko, R. Gorenflo, An operational method for solving fractional differential equations with the Caputo derivatives, Acta Math. Vietnam., 24 (1999), 207–233.
  • This article has been cited by:

    1. Qasim Khan, Anthony Suen, Hassan Khan, Poom Kumam, Comparative analysis of fractional dynamical systems with various operators, 2023, 8, 2473-6988, 13943, 10.3934/math.2023714
    2. Muhammad Saqib, Daud Ahmad, Ahmad N. Al-Kenani, Tofigh Allahviranloo, Fourth- and fifth-order iterative schemes for nonlinear equations in coupled systems: A novel Adomian decomposition approach, 2023, 74, 11100168, 751, 10.1016/j.aej.2023.05.047
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1955) PDF downloads(92) Cited by(2)

Figures and Tables

Figures(22)  /  Tables(3)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog