Processing math: 100%
Research article Special Issues

A new study on the Newell-Whitehead-Segel equation with Caputo-Fabrizio fractional derivative

  • Received: 12 May 2024 Revised: 15 July 2024 Accepted: 02 August 2024 Published: 27 September 2024
  • MSC : 35C05, 35R11, 65R10

  • In this research, we propose a new numerical method that combines with the Caputo-Fabrizio Elzaki transform and the q-homotopy analysis transform method. This work aims to analyze the Caputo-Fabrizio fractional Newell-Whitehead-Segel (NWS) equation utilizing the Caputo-Fabrizio q-Elzaki homotopy analysis transform method. The Newell-Whitehead-Segel equation is a partial differential equation employed for modeling the dynamics of reaction-diffusion systems, specifically in the realm of pattern generation in biological and chemical systems. A convergence analysis of the proposed method was performed. Two-dimensional and three-dimensional graphs of the solutions have been drawn with the Maple software. It is seen that the resulting proposed method is more powerful and effective than the Aboodh transform homotopy perturbation method and conformable Laplace decomposition method in the results.

    Citation: Aslı Alkan, Halil Anaç. A new study on the Newell-Whitehead-Segel equation with Caputo-Fabrizio fractional derivative[J]. AIMS Mathematics, 2024, 9(10): 27979-27997. doi: 10.3934/math.20241358

    Related Papers:

    [1] Khalil Ur Rehman, Wasfi Shatanawi, Zeeshan Asghar, Haitham M. S. Bahaidarah . Neural networking analysis for MHD mixed convection Casson flow past a multiple surfaces: A numerical solution. AIMS Mathematics, 2023, 8(7): 15805-15823. doi: 10.3934/math.2023807
    [2] Khalil Ur Rehman, Wasfi Shatanawi, Zead Mustafa . Artificial intelligence (AI) based neural networks for a magnetized surface subject to tangent hyperbolic fluid flow with multiple slip boundary conditions. AIMS Mathematics, 2024, 9(2): 4707-4728. doi: 10.3934/math.2024227
    [3] Khalil Ur Rehman, Wasfi Shatanawi, Weam G. Alharbi . On nonlinear coupled differential equations for corrugated backward facing step (CBFS) with circular obstacle: AI-neural networking. AIMS Mathematics, 2025, 10(3): 4579-4597. doi: 10.3934/math.2025212
    [4] Manal Alqhtani, J.F. Gómez-Aguilar, Khaled M. Saad, Zulqurnain Sabir, Eduardo Pérez-Careta . A scale conjugate neural network learning process for the nonlinear malaria disease model. AIMS Mathematics, 2023, 8(9): 21106-21122. doi: 10.3934/math.20231075
    [5] Kottakkaran Sooppy Nisar, Muhammad Shoaib, Muhammad Asif Zahoor Raja, Yasmin Tariq, Ayesha Rafiq, Ahmed Morsy . Design of neural networks for second-order velocity slip of nanofluid flow in the presence of activation energy. AIMS Mathematics, 2023, 8(3): 6255-6277. doi: 10.3934/math.2023316
    [6] Manal Abdullah Alohali, Fuad Al-Mutiri, Kamal M. Othman, Ayman Yafoz, Raed Alsini, Ahmed S. Salama . An enhanced tunicate swarm algorithm with deep-learning based rice seedling classification for sustainable computing based smart agriculture. AIMS Mathematics, 2024, 9(4): 10185-10207. doi: 10.3934/math.2024498
    [7] Naret Ruttanaprommarin, Zulqurnain Sabir, Rafaél Artidoro Sandoval Núñez, Soheil Salahshour, Juan Luis García Guirao, Wajaree Weera, Thongchai Botmart, Anucha Klamnoi . Artificial neural network procedures for the waterborne spread and control of diseases. AIMS Mathematics, 2023, 8(1): 2435-2452. doi: 10.3934/math.2023126
    [8] Muhammad Ali Khan, Saleem Abdullah, Alaa O. Almagrabi . Analysis of deep learning technique using a complex spherical fuzzy rough decision support model. AIMS Mathematics, 2023, 8(10): 23372-23402. doi: 10.3934/math.20231188
    [9] Lin Zheng, Liang Chen, Yanfang Ma . A variant of the Levenberg-Marquardt method with adaptive parameters for systems of nonlinear equations. AIMS Mathematics, 2022, 7(1): 1241-1256. doi: 10.3934/math.2022073
    [10] Muhammad Asif Zahoor Raja, Kottakkaran Sooppy Nisar, Muhammad Shoaib, Ajed Akbar, Hakeem Ullah, Saeed Islam . A predictive neuro-computing approach for micro-polar nanofluid flow along rotating disk in the presence of magnetic field and partial slip. AIMS Mathematics, 2023, 8(5): 12062-12092. doi: 10.3934/math.2023608
  • In this research, we propose a new numerical method that combines with the Caputo-Fabrizio Elzaki transform and the q-homotopy analysis transform method. This work aims to analyze the Caputo-Fabrizio fractional Newell-Whitehead-Segel (NWS) equation utilizing the Caputo-Fabrizio q-Elzaki homotopy analysis transform method. The Newell-Whitehead-Segel equation is a partial differential equation employed for modeling the dynamics of reaction-diffusion systems, specifically in the realm of pattern generation in biological and chemical systems. A convergence analysis of the proposed method was performed. Two-dimensional and three-dimensional graphs of the solutions have been drawn with the Maple software. It is seen that the resulting proposed method is more powerful and effective than the Aboodh transform homotopy perturbation method and conformable Laplace decomposition method in the results.



    In mathematics and various sciences, the changes of output and input of nonlinear systems are out of proportion. Most of the systems involved in life are essentially nonlinear, so solving nonlinear problems has attracted various scientists. Scholars have proposed more efficient iterative methods for solving nonlinear systems. One of the most famous iterative methods for solving nonlinear systems is Newton's method [1],

    x(k+1) =x(k)[F(x(k))]1F(x(k)), (1.1)

    for k=0,1,2,..., x0 is the starting point. The Newton's method is second order convergent and effective in solving some nonlinear systems.

    With the advancement of computers and numerical algebra, scholars have developed many iterative methods based on Newton's method that are more efficient than second-order Newton's method for solving nonlinear problems [2,3,4,5,6,7]. In addition, when the Jacobian matrix cannot be calculated for nonlinear systems, some effective derivative free methods can also solve nonlinear systems well (see [8,9,10,11,12]). We propose an eighth order iterative method with high computational efficiency, which is suitable for solving large systems of equations [13]. The specific iteration format is as follows

    {y(k) =x(k)ΓkF(x(k)),w(k)=y(k)[I+(I+54M(k))M(k)]ΓkF(y(k)),x(k+1)=w(k)[I+(I+32M(k))M(k)]ΓkF(w(k)), (1.2)

    where M(k)=Γk(F(x(k))F(y(k))), and Γk=[F(x(k))]1.

    The theoretical results of local convergence and semilocal convergence of the iterative method are also important in the study. Local convergence requires the existence of the assumed solution and the initial value is close enough to the solution. Semilocal convergence does not require the existence of an assumed solution, but the selection of initial values also needs to meet certain conditions (see [14,15,16,17,18]). Therefore, for some systems that cannot be analyzed and solved, the results of semilocal convergence cannot only prove the convergence of iterative sequences, but also prove the existence of solutions of these systems, so as to obtain the existence domain and uniqueness domain of system solutions; for further study (see [19,20,21,22]). Based on this, we perform a semilocal convergence analysis on the method (1.2) .

    This paper consists of five sections. In Section 2 of the paper, the recurrence relation is explained. The semilocal convergence of the iterative method (1.2) is proved in Section 3. In Section 4, the numerical experiments of two nonlinear systems are completed. Finally, the conclusion of this paper is made.

    In this section, let X and Y be Banach spaces and let F:ΩXY be a twice differetiable nonlinear Fréchet operator in an open Ω [23]. Let us assume that the inverse of the Jacobian matrix of the system in the iteration (1.2) is Γ0L(Y,X), which is the set of linear operation from Y to X.

    Moreover, in order to obtain the semilocal convergence result for this iterative method (1.2) , Kantorovich conditions are assumed:

    (M1)Γ0β,

    (M2)Γ0F(x0)η,

    (M3)F(x)F(y)Kxy,

    where K, β, η are non-negative real numbers. For the sake of simplicity, we denote a0=Kβη and define the sequence

    ak+1=akf(ak)2g(ak), (2.1)

    where we use the following auxiliary functions

    h(x)=1256(256+256x+384x2+640x3+576x4+576x5+528x6+298x7+170x8+75x9), (2.2)
    f(x)=11xh(x), (2.3)

    and

    g(x)=x131072(196608+327680x+589824x2+819200x3+1064960x4+1351680x5+1569792x6+1689600x7+1752576x8+1693696x9+1490432x10+1226752x11+913920x12+596928x13+354724x14+180520x15+73600x16+25500x17+5625x18). (2.4)

    These functions play a key role in the analysis that will be performed next.

    Preliminary results. In order to get the difference of the first two elements in the iterative method (1.2) , we have

    w0x0=y0x0[I+(I+54Γ0(F(x0)F(y0)))Γ0(F(x0)F(y0))]Γ0F(y0). (2.5)

    The Taylor series expansion of F around x0 evaluated in y0 is

    F(y0)=F(x0)+F(x0)(y0x0)+y0x0(F(x)F(x0))dx, (2.6)

    where the term F(x0)+F(x0)(y0x0) is equal to zero, since it comes from a Newton's step. With the change x=x0+t(y0x0), we get

    F(y0)=10(F(x0+t(y0x0))F(x0))(y0x0)dt. (2.7)

    Then,

    w0x0=y0x0(I+Γ0(F(x0)F(y0))+54Γ0(F(x0)F(y0))Γ0(F(x0)F(y0)))Γ0F(y0)=y0x0(Γ0F(y0)+Γ0(F(x0)F(y0))Γ0F(y0)+54Γ0(F(x0)F(y0))Γ0(F(x0)F(y0))Γ0F(y0))=y0x0(Γ010(F(x0+t(y0x0))F(x0))(y0x0)dt+Γ0(F(x0)F(y0))Γ010(F(x0+t(y0x0))F(x0))(y0x0)dt+54Γ0(F(x0)F(y0))Γ0(F(x0)F(y0))×Γ010(F(x0+t(y0x0))F(x0))(y0x0)dt). (2.8)

    Taking norms and applying Lipschitz condition, we get

    w0x0y0x0+K2Γ0y0x02+K22Γ0y0x0Γ0y0x02+5K38Γ0y0x0Γ0y0x0Γ0y0x02η+12Kβη2+12K2β2η3+58K3β3η4=η(1+12a0+12a20+58a30), (2.9)

    so that,

    w0x0η(1+12(a0+a20+54a30)). (2.10)

    Using a method similar to (2.5), we get w0y0

    w0y0=y0y0[I+(I+54Γ0(F(x0)F(y0)))Γ0(F(x0)F(y0))]Γ0F(y0). (2.11)

    So,

    w0y0y0y0+K2Γ0y0x02+K22Γ0y0x0Γ0y0x02+5K38Γ0y0x0Γ0y0x0Γ0y0x0212Kβη2+12K2β2η3+58K3β3η4=η(12a0+12a20+58a30). (2.12)

    Next, the next step analysis

    x1x0=w0x0[I+(I+32Γ0(F(x0)F(y0)))Γ0(F(x0)F(y0))]Γ0F(w0). (2.13)

    Using Taylor's expansion of F(w0) around x0 and applying Lipschitz condition, we obtain

    x1x0w0x0+K2Γ0w0x02+K22Γ0y0x0Γ0w0x02+3K34Γ0y0x0Γ0y0x0Γ0w0x02η(1+12(a0+a20+54a30))+Kβη22(1+12(a0+a20+54a30))2+K2β2η32(1+12(a0+a20+54a30))2+3K3β3η44(1+12(a0+a20+54a30))2=η((1+12(a0+a20+54a30))+a02(1+12(a0+a20+54a30))2+a202(1+12(a0+a20+54a30))2+3a304(1+12(a0+a20+54a30))2)=η(1256(256+256a0+384a20+640a30+576a40+576a50+528a60+298a70+170a80+75a90)). (2.14)

    By applying Banach's lemma, one has

    IΓ0F(x1)=Γ0F(x0)Γ0F(x1)=Γ0F(x0)Γ0F(x1)Kβx1x0Kβη(1256(256+256a0+384a20+640a30+576a40+576a50+528a60+298a70+170a80+75a90))=a0(h(a0))<1, (2.15)

    where

    h(x)=1256(256+256x+384x2+640x3+576x4+576x5+528x6+298x7+170x8+75x9).

    Then, as far as a0(h(a0))<1 (by taking a0<0.45807), Banach's lemma guarantees that

    (Γ0F(x1))1=Γ1Γ10

    exists and

    Γ111a0(h(a0))Γ0=f(a0)Γ0, (2.16)

    so

    f(x)=111256(256+256x+384x2+640x3+576x4+576x5+528x6+298x7+170x8+75x9).

    Based on the above analysis, we can obtain the following theorem.

    Theorem 1. For k1, the following conditions are valid:

    (O1k)Γkf(ak1)Γk1,

    (O2k)ykxk=ΓkF(xk)f(ak1)g(ak1)yk1xk1,

    (O3k)KΓkykxkak,

    (O4k)xkxk1h(ak1)yk1xk1.

    Proof. The above theorem is proven through induction. Starting with k=1, (2.16) proved the (O11).

    (O21): The Taylor's expansion of F(x1) around y0, we can get

    F(x1)=F(y0)+F(y0)(x1y0)+x1y0(F(x)F(y0))dx=F(y0)+(F(y0)F(x0))(x1y0)+F(x0)(x1y0)+10(F(y0+t(x1y0))F(y0))(x1y0)dt. (2.17)

    So, we must to have x1y0

    x1y0=w0y0[I+(I+32Γ0(F(x0)F(y0)))Γ0(F(x0)F(y0))]Γ0F(w0). (2.18)

    And bounding its norm, the following inequality is obtained

    x1y0w0y0+K2Γ0w0x02+K22Γ0y0x0Γ0w0x02+3K34Γ0y0x0Γ0y0x0Γ0w0x02η(12a0+12a20+58a30)+Kβη22(1+12(a0+a20+54a30))2+K2β2η32(1+12(a0+a20+54a30))2+3K3β3η44(1+12(a0+a20+54a30))2η(1256(256+384a0+640a20+576a30+576a40+528a50+298a60+170a70+75a80)). (2.19)

    Then, using (2.17)–(2.19), the F(x1) is bounded

    F(x1)12Kη2+Kη2(1256(256+384a0+640a20+576a30+576a40+528a50+298a60+170a70+75a80))+1βη(1256(256+384a0+640a20+576a30+576a40+528a50+298a60+170a70+75a80))+12Kη2(1256(256+384a0+640a20+576a30+576a40+528a50+298a60+170a70+75a80))2. (2.20)

    Therefore, by applying (O11), we get

    y1x1=Γ1F(x1)=f(a0)Γ0F(x1)f(a0)[1131072a0(196608+327680a0+589824a20+819200a30+1064960a40+1351680a50+1569792a60+1689600a70+1752576a80+1693696a90+1490432a100+1226752a110+913920a120+596928a130+354724a140+180520a150+73600a160+25500a170+5625a180)]η. (2.21)

    That is,

    y1x1=f(a0)g(a0)ηf(a0)g(a0)y0x0,

    where,

    g(x)=x131072(196608+327680x+589824x2+819200x3+1064960x4+1351680x5+1569792x6+1689600x7+1752576x8+1693696x9+1490432x10+1226752x11+913920x12+596928x13+354724x14+180520x15+73600x16+25500x17+5625x18).

    (O31): Using (O11) and (O21),

    KΓ1y1x1Kf(a0)Γ0f(a0)g(a0)y0x0=a0f(a0)2g(a0)=a1.

    (O41): For k=1 it has been proven in (2.16).

    The proof of (O1k+1), (O2k+1), (O3k+1) and (O4k+1) is based on the same method of proving that the inductive assumption with (O1k), (O2k), (O3k) and (O4k) as k1 holds true.

    According to the convergence property of xk sequence in Banach space, we need to prove that this sequence is a Cauchy sequence. Based on the auxiliary function, we can obtain the following results.

    Lemma 1. According h(x),f(x) and g(x), we have:

    i. f(x) is inceasing and f(x)>1 for x(0,0.45807),

    ii. h(x) and g(x) are increasing for x(0,0.45807).

    The above lemma can be calculated from the Section 2, and the process is omitted.

    Lemma 2. The f(x) and g(x) defined by (2.3) and (2.4). Then

    i. f(a0)g(a0)<1 for a0<0.252232,

    ii. f(a0)2g(a0)<1 for a0<0.21715,

    iii. the sequence ak is decreasing and ak<0.21715 for k>0.

    Proof. It is straightforword that i, ii are satisfied. As f(a0)2g(a0)<1, then by construction of ak, it is a dereasing sequence. So ak<a00.21715, for all k1.

    Theorem 2. Let X, Y be Banach spaces and F:ΩXY be a nonlinear twice differentiable Fréchet operator in an open set domain Ω. Assume that Γ0=[F(x0)]1 exists in x0Ω and meet the conditions of (M1)(M3). Let be a0=Kβη, and assume that a0<0.21. The sequence {xk} defined in (2.1) and starting in x0 converges to the solution x of F(x)=0, if Be(x0,Rη)=xX:xx0<RηΩ where R=h(a0)1f(a0)g(a0). In the case, the iterates {xk} and {yk} are contained in Be(x0,Rη) and xBe(x0,Rη). In addition, the x is the only solution of equation F(x)=0 in Bn(x0,2KβRη)Ω.

    Proof. By recursively applying (O4k), we can write

    xk+1xkh(ak)ykxkh(ak)f(ak1)g(ak1)yk1xk1h(ak)[k1i=0f(ai)g(ai)]y0x0. (3.1)

    Then,

    xk+mxkxk+mxk+m1+xk+m1xk+m2++xk+1xkh(ak+m1)ηk+m2i=0f(ai)g(ai)+h(ak+m2)ηk+m3i=0f(ai)g(ai)++h(ak)ηk1i=0f(ai)g(ai). (3.2)

    As h(x) is increasing and ak dreasing, it can be stated that

    xk+mxkh(ak)ηm1l=0[k+l1i=0f(ai)g(ai)]h(ak)ηm1l=0(f(a0)g(a0))l+k. (3.3)

    Moreover, according Lemmas 1 and 2, by using the expression for the partial sum of a geometrical series,

    xk+mxkh(ak)1(f(a0)g(a0))m1f(a0)g(a0)(f(a0)g(a0))kη. (3.4)

    So, the Cauchy sequence if and only if f(a0)g(a0)<1 (Lemma 2).

    For k=0,

    xmx0xmxm1+xm1xm2++x1x0h(a0)y0x0m1r=0(f(a0)g(a0))r.=h(a0)1(f(a0)g(a0))m1f(a0)g(a0)η<Rη, (3.5)

    when m, we get the radius od convergence Rη=h(a0)1f(a0)g(a0)η.

    Let's prove that x is the solution of F(x)=0 starting from the boundary of F(xn),

    F(xk)F(x0)+F(xk)F(x0)F(x0)+Kxkx0F(x0)+KRη. (3.6)

    Then, acorrding M2 and (3.1)

    F(xk)F(xk)ykxkF(xk)h(ak)[n1i=0f(ai)g(ai)]η, (3.7)

    as h(x), f(x) and g(x) are increasing and ak is the decreasing sequence,

    F(xk)F(xk)h(ak)(f(a0)g(a0))kη. (3.8)

    Taking into account that F(xk) is bounded and (f(a0)g(a0))k tends to zero when k, we conclude that F(xk)0. As F is continuous in Ω, then F(x)=0.

    Finally, the uniqueness of x in B(x0,2KβRη)Ω.

    0=F(y)F(x)=(F(x)+10F(x+t(yx))(yx)dt)(F(x)=(yx)10F(x+t(yx))dt). (3.9)

    In order to guarantee that yx=0 it is necesssary to prove that operator 10F(x+t(yx))dt is invertible. Applying hypothesis (M3),

    Γ010F(x+t(yx))F(x0)dtKβ10x+t(yx)x0dtKβ10((1t)xx0+tyx0)dt<Kβ2(Rη+2KβRη)=1. (3.10)

    By the Banach lemma, the intergal operator is invertible and hence y=x.

    In this section, we provide some numerical examples to illustrate the theoretical results introduced earlier.

    Example 1. Hammerstein equation is a kind of important nonlinear integral equation [24], which is given as follows:

    x(s)=1+(1/5)10N(s,t)x(t)3dt, (4.1)

    where xC[0,1],s,t[0,1], with the kernel N is

    N(s,t)={(1s)tts,s(1t)st.

    To solve (4.1) we transform it into a syste of nonlinear equations through a discretization process. We approximate the integral appearing in Eq (4.1) by using Gauss-Legendre quadrature,

    10s(t)dt7i=1wjs(tj),

    being tj and wj the nodes and the weights of the Gauss-Legendre polynomial. Denoting the approximation of x(tj) as xi,i=1,...,7, then we estimate (4.1) with the nonlinear system of equations

    xi1157j=1aijx3j=0,i=1,...,7 (4.2)

    where

    aij={wjtj(1ti)ji,wjti(1tj)i<j.

    So, the system can be rewritten as

    F(x)=x115Avx,vx=(x31,x32,...,x37)T,
    F(x)=I35AD(x),D(x)=diag(x21,x22,...,x27),

    where F if a nonlinear operator in the Banach space RL, and F is its Fréchet derivative in L(RL,RL).

    According the method (1.2), we will use it to solve the nonlinear systems.

    Taking x0=(1.8,1.8,...,1.8)T,L=7 and the infinity norm, we get

    Γ0β,β1.2559,Γ0F(x0)η,η2.2062,F(x)F(y)kxy,k0.0671,a0=kβη,0.1860. (4.3)

    The above results satisfy the semilocal convergence condition, so this method can be applied to the system. Thus, we guarantee the existence of the solution in Be(x0,0.5646), and the uniqueness in Bn(x0,22.4874). Table 1 shows the the radius of the existence domain and the radius of the unique domain under different initial values. For x0i>1.87,i=1,2,...,7, convergence conditions are not satisfied and, therefore, the convergence is not guaranteed.

    Table 1.  Different initial values related parameters.
    x0i β η k a0 Re Rn
    0.2 1.0025 2.1204 0.0287 0.0610 0.0754 69.3528
    0.4 1.0102 1.6005 0.0337 0.0545 0.0657 58.6428
    0.6 1.0232 1.0827 0.0390 0.0433 0.0500 50.0651
    0.8 1.0420 0.5637 0.0451 0.0265 0.0288 42.5422
    1.0 1.0671 0.0461 0.0682 0.0034 0.0034 27.4813
    1.2 1.0996 0.4949 0.0505 0.0275 0.0300 36.0019
    1.4 1.1406 1.0420 0.0569 0.0676 0.0859 30.7271
    1.6 1.1919 1.6098 0.0622 0.1193 0.1970 26.6603
    1.7 1.2222 1.9038 0.0647 0.1505 0.3107 24.7005

     | Show Table
    DownLoad: CSV

    Using the iterative method (1.2) to solve (4.2), the exact solution is

    x=(1.003,1.012,1.023,1.028,1.023,1.012,1.003)T.

    Example 2. Let X=Y=R2 be equipped with the max-norm. Choose: x0=(0.9,0.9)T, s[0,12). Let s=0.49, define function F by

    F(x)=(x31s,x32s)T,x=(x1,x2)T. (4.4)

    The fréchet-derivative of operator F is given by

    F(x)=[3x21003x2].

    Taking x0=(0.9,0.9)T and the infinity norm, we get

    Γ0β,β0.4115,Γ0F(x0)η,η0.1391,F(x)F(y)kxy,k3.6113,a0=kβη,0.2067. (4.5)

    The convergence conditions are met and consequently the method can be applied to the system. The existence domain of the solution is Be(x0,0.9101), and the uniqueness domain is Bn(x0,1.2192).

    Taking x0=(0.73,0.73)T and the infinity norm, then

    Γ0β,β0.6255,Γ0F(x0)η,η0.0893,F(x)F(y)kxy,k3.2329,a0=kβη,0.1806. (4.6)

    The existence domain of the solution is Be(x0,0.5095), and the uniqueness domain is Bn(x0,0.943534).

    When the initial value satisfies the Kantorovich condition and the range of a0 obtained, the initial value within that range is taken to solve the system. Iterative method (1.2) for solving nonlinear (4.4) with roots of x=(0.7884,0.7884)T.

    Similar results can be obtained in Tables 2 and 3, that is, under the Kantorovich condition, by selecting different initial values, we can converge to a unique solution. When the initial value is closer to the root, the error estimate is lower. This semilocal convergence that can prove the existence and uniqueness of solutions under certain assumptions is very valuable.

    Table 2.  Numberical results of method (1.2) for nonliner equation.
    x0i iter xkxk1 F(xk)
    0.2 4 7.469e-336 2.149e-2021
    0.4 4 2.538e-352 4.629e-2120
    0.6 4 1.755e-383 8.222e-2307
    0.8 4 5.848e-445 2.318e-2675
    1.0 4 2.629e-701 3.000e-4096
    1.2 4 2.221e-467 5.991e-2809
    1.4 4 1.935e-353 8.489e-2126
    1.6 4 8.010e-286 2.379e-1720
    1.7 4 7.450e-259 1.285e-1558

     | Show Table
    DownLoad: CSV
    Table 3.  Numberical results of method (1.2) for nonliner equation.
    x0i iter xkxk1 F(xk) ρ
    0.72 4 4.048e-331 1.878e-2640 8
    0.74 4 2.665e-419 6.432e-3346 8
    0.76 4 1.046e-548 3.726e-4381 8
    0.78 4 2.052e-830 1.000e-6000 8
    0.8 4 2.246e-767 1.000e-6000 8
    0.82 4 2.005e-554 6.803e-4427 8
    0.84 4 1.127e-454 6.768e-3629 8
    0.86 4 9.380e-391 1.559e-3117 8
    0.88 4 1.414e-344 4.163e-2748 8
    0.9 4 5.796e-309 3.313e-2463 8

     | Show Table
    DownLoad: CSV

    In this paper, the semilocal convergence of the eighth order iterative method (1.2) is studied. By analyzing the behavior of the iterative method under the Kantorovich condition, the Lipschitz condition is applied to the first derivative, and the theory of semilocal convergence of the iterative method is obtained by using the recurrence relation. The existence and uniqueness domain of the solution of the nonlinear system is obtained. In the experimental part, a classical Hammerstein nonlinear integral equation and a matrix function are solved. The experimental results are consistent with expectations, and the high-precision approximation of the system solution also proves the effectiveness of the method numerically.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    This research was supported by the National Natural Science Foundation of China (No. 61976027), the Natural Science Foundation of Liaoning Province (Nos. 2022-MS-371, 2023-MS-296), Educational Commission Foundation of Liaoning Province of China (Nos. LJKMZ20221492, LJKMZ20221498) and the Key Project of Bohai University (No. 0522xn078).

    The authors declare no conflicts of interest.



    [1] S. Qureshi, N. A. Rangaig, D. Baleanu, New numerical aspects of Caputo-Fabrizio fractional derivative operator, Mathematics, 7 (2019), 1–14. https://doi.org/10.3390/math7040374 doi: 10.3390/math7040374
    [2] J. Soontharanon, S. Chasreechai, T. Sitthiwirattham, A coupled system of fractional difference equations with nonlocal fractional sum boundary conditions on the discrete half-line, Mathematics, 7 (2019), 1–22. https://doi.org/10.3390/math7030256 doi: 10.3390/math7030256
    [3] K. S. Miller, B. Ross, An introduction to the fractional calculus and fractional differential equations, New York: Wiley, 1993.
    [4] M. Dalir, M. Bashour, Applications of fractional calculus, Appl. Math. Sci., 4 (2010), 1021–1032.
    [5] D. Baleanu, K. Diethelm, E. Scalas, J. J. Trujillo, Fractional calculus: models and numerical methods, World Scientific, 2012.
    [6] F. Mainardi, A note on the equivalence of fractional relaxation equations to differential equations with varying coefficients, Mathematics, 6 (2018), 1–5. https://doi.org/10.3390/math6010008 doi: 10.3390/math6010008
    [7] K. M. Owolabi, A. Atangana, Chaotic behaviour in system of noninteger-order ordinary differential equations, Chaos Solitons Fract., 115 (2018), 362–370. https://doi.org/10.1016/j.chaos.2018.07.034 doi: 10.1016/j.chaos.2018.07.034
    [8] K. M. Owolabi, A. Atangana, Numerical simulations of chaotic and complex spatiotemporal patterns in fractional reaction-diffusion systems, Comput. Appl. Math., 37 (2018), 2166–2189. https://doi.org/10.1007/s40314-017-0445-x doi: 10.1007/s40314-017-0445-x
    [9] N. A. Rangaig, V. C. Convicto, On fractional modelling of dye removal using fractional derivative with non-singular kernel, J. King Saud Univ. Sci., 31 (2019), 525–527. https://doi.org/10.1016/j.jksus.2018.01.006 doi: 10.1016/j.jksus.2018.01.006
    [10] N. A. Rangaig, A. A. G. Pido, C. T. Pada-Dulpina, On the fractional-order dynamics of a double pendulum with a forcing constraint using the nonsingular fractional derivative approach, J. Appl. Math. Comput. Mech., 19 (2020), 95–106. https://doi.org/10.17512/jamcm.2020.2.08 doi: 10.17512/jamcm.2020.2.08
    [11] P. Veeresha, D. G. Prakasha, D. Baleanu, An efficient numerical technique for the nonlinear fractional Kolmogorov-Petrovskii-Piskunov equation, Mathematics, 7 (2019), 1–18. https://doi.org/10.3390/math7030265 doi: 10.3390/math7030265
    [12] P. Veeresha, D. G. Prakasha, H. M. Baskonus, Novel simulations to the time-fractional Fisher's equation, Math. Sci., 13 (2019), 33–42. https://doi.org/10.1007/s40096-019-0276-6 doi: 10.1007/s40096-019-0276-6
    [13] A. Alkan, T. Akturk, H. Bulut, The travelıng wave solutıons of the conformable time-fractıonal zoomeron equation by usıng the modıfıed exponentıal functıon method, Eskişehir Tech. Univ. J. Sci. Tech. A Appl. Sci. Eng., 25 (2024), 108–114. https://doi.org/10.18038/estubtda.1370631 doi: 10.18038/estubtda.1370631
    [14] C. Li, F. Zeng, Numerical methods for fractional calculus, New York: Chapman and Hall/CRC, 2015. https://doi.org/10.1201/b18503
    [15] N. A. Sheikh, F. Ali, M. Saqib, I. Khan, S. A. A. Jan, A. S. Alshomrani, et al., Comparison and analysis of the Atangana-Baleanu and Caputo-Fabrizio fractional derivatives for generalized Casson fluid model with heat generation and chemical reaction, Results Phys., 7 (2017), 789–800. https://doi.org/10.1016/j.rinp.2017.01.025 doi: 10.1016/j.rinp.2017.01.025
    [16] A. Atangana, D. Baleanu, Caputo-Fabrizio derivative applied to groundwater flow within confined aquifer, J. Eng. Mech., 143 (2017), D4016005.
    [17] K. Diethelm, N. J. Ford, Analysis of fractional differential equations, J. Math. Anal. Appl., 265 (2002), 229–248. https://doi.org/10.1006/jmaa.2000.7194 doi: 10.1006/jmaa.2000.7194
    [18] R. Hilfer, Y. Luchko, Desiderata for fractional derivatives and integrals, Mathematics, 7 (2019), 1–5. https://doi.org/10.3390/math7020149 doi: 10.3390/math7020149
    [19] A. Yusuf, M. Inc, A. I. Aliyu, D. Baleanu, Efficiency of the new fractional derivative with nonsingular Mittag-Leffler kernel to some nonlinear partial differential equations, Chaos Solitons Fract., 116 (2018), 220–226. https://doi.org/10.1016/j.chaos.2018.09.036 doi: 10.1016/j.chaos.2018.09.036
    [20] M. Inc, A. Yusuf, A. I. Aliyu, D. Baleanu, Investigation of the logarithmic-KdV equation involving Mittag-Leffler type kernel with Atangana-Baleanu derivative, Phys. A, 506 (2018), 520–531. https://doi.org/10.1016/j.physa.2018.04.092 doi: 10.1016/j.physa.2018.04.092
    [21] M. Caputo, M. Fabrizio, Applications of new time and spatial fractional derivatives with exponential kernels, Progr. Fract. Differ. Appl., 2 (2016), 1–11. http://dx.doi.org/10.18576/pfda/020101
    [22] X. J. Yang, H. M. Srivastava, J. A. T. Machado, A new fractional derivative without singular kernel: application to the modelling of the steady heat flow, Thermal Sci., 20 (2016), 753–756. https://doi.org/10.2298/TSCI151224222Y doi: 10.2298/TSCI151224222Y
    [23] K. Diethelm, N. J. Ford, A. D. Freed, A predictor-corrector approach for the numerical solution of fractional differential equations, Nonlinear Dyn., 29 (2002), 3–22. https://doi.org/10.1023/A:1016592219341 doi: 10.1023/A:1016592219341
    [24] K. Diethelm, N. J. Ford, A. D. Freed, Detailed error analysis for a fractional Adams method, Numer. Algorithms, 36 (2004), 31–52. https://doi.org/10.1023/B:NUMA.0000027736.85078.be doi: 10.1023/B:NUMA.0000027736.85078.be
    [25] K. Diethelm, N. J. Ford, A. D. Freed, Y. Luchko, Algorithms for the fractional calculus: a selection of numerical methods, Comput. Methods Appl. Mech. Eng., 194 (2005), 743–773. https://doi.org/10.1016/j.cma.2004.06.006 doi: 10.1016/j.cma.2004.06.006
    [26] R. Garrappa, Numerical solution of fractional differential equations: a survey and a software tutorial, Mathematics, 6 (2018), 1–23. https://doi.org/10.3390/math6020016 doi: 10.3390/math6020016
    [27] K. L. Wang, C. H. He, A remark on Wang's fractal variational principle, Fractals, 27 (2019), 1950134. https://doi.org/10.1142/S0218348X19501342 doi: 10.1142/S0218348X19501342
    [28] Y. H. Wei, Y. Q. Chen, S. S. Cheng, Y. Wang, A note on short memory principle of fractional calculus, Fract. Calc. Appl. Anal., 20 (2017), 1382–1404. https://doi.org/10.1515/fca-2017-0073 doi: 10.1515/fca-2017-0073
    [29] M. Caputo, F. Mauro, A new definition of fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 1 (2015), 73–85.
    [30] J. Losada, J. J. Nieto, Properties of a new fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 1 (2015), 87–92.
    [31] E. F. D. Goufo, Application of the Caputo-Fabrizio fractional derivative without singular kernel to Korteweg-de Vries-Burgers equation, Math. Model. Anal., 21 (2016), 188–198. https://doi.org/10.3846/13926292.2016.1145607 doi: 10.3846/13926292.2016.1145607
    [32] F. Ali, M. Saqib, I. Khan, N. A. Sheikh, Application of Caputo-Fabrizio derivatives to MHD free convection flow of generalized Walters'-B fluid model, Eur. Phys. J. Plus, 131 (2016), 377. https://doi.org/10.1140/epjp/i2016-16377-x doi: 10.1140/epjp/i2016-16377-x
    [33] A. Atangana, On the new fractional derivative and application to nonlinear Fisher's reaction-diffusion equation, Appl. Math. Comput., 273 (2016), 948–956. https://doi.org/10.1016/j.amc.2015.10.021 doi: 10.1016/j.amc.2015.10.021
    [34] D. Baleanu, A. Jajarmi, H. Mohammadi, S. Rezapour, A new study on the mathematical modelling of human liver with Caputo-Fabrizio fractional derivative, Chaos Solitons Fract., 134 (2020), 109705. https://doi.org/10.1016/j.chaos.2020.109705 doi: 10.1016/j.chaos.2020.109705
    [35] J. H. He, N. Anjum, C. H. He, A. A. Alsolami, Beyond Laplace and Fourier transforms challenges and future prospects, Thermal Sci., 27 (2023), 5075–5089. https://doi.org/10.2298/TSCI230804224H doi: 10.2298/TSCI230804224H
    [36] T. M. Elzaki, The new integral transform Elzaki transform, Global J. Pure Appl. Math., 7 (2011), 57–64.
    [37] T. M. Elzaki, Applications of new transform "Elzaki transform" to partial differential equations, Global J. Pure Appl. Math., 7 (2011), 65–70.
    [38] T. M. Elzaki, S. M. Elzaki, On the Elzaki transform and ordinary differential equation with variable coefficients, Adv. Theor. Appl. Math., 6 (2011), 41–46.
    [39] T. M. Elzaki, S. M. Elzaki, E. A. Elnour, Applications of new transform "Elzaki transform" to mechanics, electrical circuits and beams problems, Global J. Pure Appl. Math., 4 (2012), 25–34.
    [40] A. M. Wazwaz, A reliable modification of Adomian decomposition method, Appl. Math. Comput., 102 (1999), 77–86. https://doi.org/10.1016/S0096-3003(98)10024-3 doi: 10.1016/S0096-3003(98)10024-3
    [41] J. H. He, Homotopy perturbation method: a new nonlinear analytical technique, Appl. Math. Comput., 135 (2003), 73–79. https://doi.org/10.1016/S0096-3003(01)00312-5 doi: 10.1016/S0096-3003(01)00312-5
    [42] J. H. He, Homotopy perturbation method for solving boundary value problems, Phys. Lett. A, 350 (2006), 87–88. https://doi.org/10.1016/j.physleta.2005.10.005 doi: 10.1016/j.physleta.2005.10.005
    [43] M. Y. Adamu, P. Ogenyi, New approach to parameterized homotopy perturbation method, Thermal Sci., 22 (2018), 1865–1870. https://doi.org/10.2298/TSCI1804865A doi: 10.2298/TSCI1804865A
    [44] A. Alkan, Improving homotopy analysis method with an optimal parameter for time-fractional Burgers equation, Karamanoğlu Mehmetbey Ü niv. Mühendislik Doğa Bilim. Derg., 4 (2022), 117–134. https://doi.org/10.55213/kmujens.1206517 doi: 10.55213/kmujens.1206517
    [45] A. Alkan, H. Anaç , The novel numerical solutions for time-fractional Fornberg-Whitham equation by using fractional natural transform decomposition method, AIMS Math., 9 (2024), 25333–25359. https://doi.org/10.3934/math.20241237 doi: 10.3934/math.20241237
    [46] T. M. Elzaki, Solution of nonlinear differential equations using mixture of Elzaki transform and differential transform method, Int. Math. Forum, 7 (2012), 631–638.
    [47] T. M. Elzaki, E. M. A. Hilal, Homotopy perturbation and Elzaki transform for solving nonlinear partial differential equations, Math. Theory Model., 2 (2012), 33–42.
    [48] T. M. Elzaki, H. Kim, The solution of radial diffusivity and shock wave equations by Elzaki variational iteration method, Int. J. Math. Anal., 9 (2015), 1065–1071. http://dx.doi.org/10.12988/ijma.2015.5242
    [49] R. M. Jena, S. Chakraverty, Solving time-fractional Navier-Stokes equations using homotopy perturbation Elzaki transform, SN Appl. Sci., 1 (2019), 1–13. https://doi.org/10.1007/s42452-018-0016-9 doi: 10.1007/s42452-018-0016-9
    [50] H. Anaç , M. Merdan, T. Kesemen, Homotopy perturbation Elzaki transform method for obtaining the approximate solutions of the random partial differential equations, Gazi Univ. J. Sci., 35 (2022), 1051–1060. https://doi.org/10.35378/gujs.798705 doi: 10.35378/gujs.798705
    [51] M. Merdan, H. Anaç , Z. Bekiryazıcı, T. Kesemen, Solving of some random partial differential equations by using differential transformation method and Laplace-Padé method, Gümüşhane Ü niv. Fen Bilimleri Derg., 9 (2019), 108–118. https://doi.org/10.17714/gumusfenbil.404332 doi: 10.17714/gumusfenbil.404332
    [52] F. Ayaz, Solutions of the system of differential equations by differential transform method, Appl. Math. Comput., 147 (2004), 547–567. https://doi.org/10.1016/S0096-3003(02)00794-4 doi: 10.1016/S0096-3003(02)00794-4
    [53] J. U. Rahman, D. C. Lu, M. Suleman, J. H. He, M. Ramzan, He-Elzaki method for spatial diffusion of biological population, Fractals, 27 (2019), 1950069. https://doi.org/10.1142/S0218348X19500695 doi: 10.1142/S0218348X19500695
    [54] N. Anjum, J. H. He, Q. T. Ain, D. Tian, Li-He's modified homotopy perturbation method for doubly-clamped electrically actuated microbeams-based microelectromechanical system, Facta Univ. Ser. Mech. Eng., 19 (2021), 601–612. https://doi.org/10.22190/FUME210112025A doi: 10.22190/FUME210112025A
    [55] H. P. Jani, T. R. Singh, Aboodh transform homotopy perturbation method for solving fractional-order Newell-Whitehead-Segel equation, Math. Methods Appl. Sci., 47 (2024), 12028–12043. https://doi.org/10.1002/mma.8886 doi: 10.1002/mma.8886
    [56] M. Ayata, O. Ozkan, A new application of conformable Laplace decomposition method for fractional Newell-Whitehead-Segel equation, AIMS Math., 5 (2020), 7402–7412. https://doi.org/10.3934/math.2020474 doi: 10.3934/math.2020474
    [57] A. C. Newell, J. A. Whitehead, Finite bandwidth, finite amplitude convection, J. Fluid Mech., 38 (1969), 279–303. https://doi.org/10.1017/S0022112069000176 doi: 10.1017/S0022112069000176
    [58] U. Bektaş, H. Anaç , A hybrid method to solve a fractional-order Newell-Whitehead-Segel equation, Bound. Value Probl., 2024 (2024), 38. https://doi.org/10.1186/s13661-023-01795-2 doi: 10.1186/s13661-023-01795-2
    [59] A. Prakash, M. Goyal, S. Gupta, Fractional variational iteration method for solving time-fractional Newell-Whitehead-Segel equation, Nonlinear Eng., 8 (2019), 164–171. https://doi.org/10.1515/nleng-2018-0001 doi: 10.1515/nleng-2018-0001
    [60] M. Areshi, A. Khan, R. Shah, K. Nonlaopon, Analytical investigation of fractional-order Newell-Whitehead-Segel equations via a novel transform, AIMS Math., 7 (2022), 6936–6958. https://doi.org/10.3934/math.2022385 doi: 10.3934/math.2022385
    [61] S. Qureshi, N. A. Rangaig, D. Baleanu, New numerical aspects of Caputo-Fabrizio fractional derivative operator, Mathematics, 7 (2019), 1–14. https://doi.org/10.3390/math7040374 doi: 10.3390/math7040374
    [62] K. L. Wang, S. W. Yao, Numerical method for fractional Zakharov-Kuznetsov equations with He's fractional derivative, Thermal Sci., 23 (2019), 2163–2170. https://doi.org/10.2298/TSCI1904163W doi: 10.2298/TSCI1904163W
    [63] M. A. Hussein, Using the Elzaki decomposition method to solve nonlinear fractional differential equations with the Caputo-Fabrizio fractional operator, Baghdad Sci. J., 21 (2024), 1044–1054. https://doi.org/10.21123/bsj.2023.7310 doi: 10.21123/bsj.2023.7310
    [64] D. Kumar, J. Singh, D. Baleanu, A new analysis for fractional model of regularized long-wave equation arising in ion acoustic plasma waves, Math. Methods Appl. Sci., 40 (2017), 5642–5653. https://doi.org/10.1002/mma.4414 doi: 10.1002/mma.4414
    [65] P. Veeresha, D. G. Prakasha, H. M. Baskonus, Solving smoking epidemic model of fractional order using a modified homotopy analysis transform method, Math. Sci., 13 (2019), 115–128. https://doi.org/10.1007/s40096-019-0284-6 doi: 10.1007/s40096-019-0284-6
    [66] Á. A. Magreñán, A new tool to study real dynamics: the convergence plane, Appl. Math. Comput., 248 (2014), 215–224. https://doi.org/10.1016/j.amc.2014.09.061 doi: 10.1016/j.amc.2014.09.061
    [67] F. Haroon, S. Mukhtar, R. Shah, Fractional view analysis of Fornberg-Whitham equations by using Elzaki transform, Symmetry, 14 (2022), 1–16. https://doi.org/10.3390/sym14102118 doi: 10.3390/sym14102118
  • This article has been cited by:

    1. Farwah Ali Syed, Kwo-Ting Fang, Adiqa Kausar Kiani, Muhammad Shoaib, Muhammad Asif Zahoor Raja, Design of Neuro-Stochastic Bayesian Networks for Nonlinear Chaotic Differential Systems in Financial Mathematics, 2024, 0927-7099, 10.1007/s10614-024-10587-4
    2. Hira Ilyas, Iftikhar Ahmad, Syed Ibrar Hussain, Muhammad Shoaib, Muhammad Asif Zahoor Raja, Design of evolutionary computational intelligent solver for nonlinear corneal shape model by Mexican Hat and Gaussian wavelet neural networks, 2024, 1745-5030, 1, 10.1080/17455030.2024.2368867
    3. Syed Ali Asghar, Hira Ilyas, Shafaq Naz, Muhammad Asif Zahoor Raja, Iftikhar Ahmad, Muhammad Shaoib, Intelligent predictive computing for functional differential system in quantum calculus, 2024, 15, 1868-5137, 2153, 10.1007/s12652-023-04744-0
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(847) PDF downloads(73) Cited by(2)

Figures and Tables

Figures(2)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog