Processing math: 47%
Research article

An efficient modified hybrid explicit group iterative method for the time-fractional diffusion equation in two space dimensions

  • Received: 31 July 2021 Accepted: 04 November 2021 Published: 11 November 2021
  • MSC : 35XX, 65N12

  • In this paper, a new modified hybrid explicit group (MHEG) iterative method is presented for the efficient and accurate numerical solution of a time-fractional diffusion equation in two space dimensions. The time fractional derivative is defined in the Caputo sense. In the proposed method, a Laplace transformation is used in the temporal domain, and, for the spatial discretization, a new finite difference scheme based on grouping strategy is considered. The unique solvability, unconditional stability and convergence are thoroughly proved by the matrix analysis method. Comparison of numerical results with analytical and other approximate solutions indicates the viability and efficiency of the proposed algorithm.

    Citation: Fouad Mohammad Salama, Nur Nadiah Abd Hamid, Norhashidah Hj. Mohd Ali, Umair Ali. An efficient modified hybrid explicit group iterative method for the time-fractional diffusion equation in two space dimensions[J]. AIMS Mathematics, 2022, 7(2): 2370-2392. doi: 10.3934/math.2022134

    Related Papers:

    [1] Amjad Ali, Muhammad Arshad, Awais Asif, Ekrem Savas, Choonkil Park, Dong Yun Shin . On multivalued maps for φ-contractions involving orbits with application. AIMS Mathematics, 2021, 6(7): 7532-7554. doi: 10.3934/math.2021440
    [2] Muhammad Nazam, Hijaz Ahmad, Muhammad Waheed, Sameh Askar . On the Perov's type (β,F)-contraction principle and an application to delay integro-differential problem. AIMS Mathematics, 2023, 8(10): 23871-23888. doi: 10.3934/math.20231217
    [3] Gunaseelan Mani, Arul Joseph Gnanaprakasam, Choonkil Park, Sungsik Yun . Orthogonal F-contractions on O-complete b-metric space. AIMS Mathematics, 2021, 6(8): 8315-8330. doi: 10.3934/math.2021481
    [4] Pragati Gautam, Vishnu Narayan Mishra, Rifaqat Ali, Swapnil Verma . Interpolative Chatterjea and cyclic Chatterjea contraction on quasi-partial b-metric space. AIMS Mathematics, 2021, 6(2): 1727-1742. doi: 10.3934/math.2021103
    [5] Abdullah Shoaib, Tahair Rasham, Giuseppe Marino, Jung Rye Lee, Choonkil Park . Fixed point results for dominated mappings in rectangular b-metric spaces with applications. AIMS Mathematics, 2020, 5(5): 5221-5229. doi: 10.3934/math.2020335
    [6] Budi Nurwahyu, Naimah Aris, Firman . Some results in function weighted b-metric spaces. AIMS Mathematics, 2023, 8(4): 8274-8293. doi: 10.3934/math.2023417
    [7] Shaoyuan Xu, Yan Han, Suzana Aleksić, Stojan Radenović . Fixed point results for nonlinear contractions of Perov type in abstract metric spaces with applications. AIMS Mathematics, 2022, 7(8): 14895-14921. doi: 10.3934/math.2022817
    [8] Hongyan Guan, Jinze Gou, Yan Hao . On some weak contractive mappings of integral type and fixed point results in b-metric spaces. AIMS Mathematics, 2024, 9(2): 4729-4748. doi: 10.3934/math.2024228
    [9] Yunpeng Zhao, Fei He, Shumin Lu . Several fixed-point theorems for generalized Ćirić-type contraction in Gb-metric spaces. AIMS Mathematics, 2024, 9(8): 22393-22413. doi: 10.3934/math.20241089
    [10] Yan Han, Shaoyuan Xu, Jin Chen, Huijuan Yang . Fixed point theorems for b-generalized contractive mappings with weak continuity conditions. AIMS Mathematics, 2024, 9(6): 15024-15039. doi: 10.3934/math.2024728
  • In this paper, a new modified hybrid explicit group (MHEG) iterative method is presented for the efficient and accurate numerical solution of a time-fractional diffusion equation in two space dimensions. The time fractional derivative is defined in the Caputo sense. In the proposed method, a Laplace transformation is used in the temporal domain, and, for the spatial discretization, a new finite difference scheme based on grouping strategy is considered. The unique solvability, unconditional stability and convergence are thoroughly proved by the matrix analysis method. Comparison of numerical results with analytical and other approximate solutions indicates the viability and efficiency of the proposed algorithm.



    Schur complement of a matrix is widely used and has attracted the attention of many scholars. In 1979, the Schur complement question of a strictly diagonally dominant (SDD) matrix was studied by Carlson and Markham [1]. They certified the Schur complement of SDD matrix is also an SDD matrix. Before long, some renowned matrices such as doubly diagonally dominant matrices and Dashnic-Zusmanovich (DZ) matrices were researched, and the results were analogous [2,3,4,5]. In 2020, Li et al. proved that the Schur complements and the diagonal-Schur complements of Dashnic-Zusmanovich type (DZ-type) matrices are DZ-type matrices under certain conditions in [6]. In 2023, Song and Gao [7] proved that the Schur complements and the diagonal-Schur complements of CKV-type matrices are CKV-B-type matrices under certain conditions. Furthermore, there are many conclusions on Schur complements and diagonal-Schur complements for other classes of matrices, see [8,9,10,11,12,13,14,15].

    The upper bound of the inverse infinite norm of the non-singular matrix is widely used in mathematics, such as the convergence analysis of matrix splitting and matrix multiple splitting iterative method for solving linear equations. A traditional way to find the upper bound of an infinite norm for the inverse of a nonsingular matrix is to use the definition and properties of a given matrix class, see [16,17,18,19] for details. The first work was by Varah [19], who in 1975 gave the upper bound of the infinite norm of the inverse of the SDD matrix. However, in some cases, the bounds of Varah may yield larger values. In 2020, Li [20] obtained two upper bounds of the infinite norm of the inverse of the SDD matrix based on Schur complement, and in 2021, Sang [21] obtained two upper bounds for the infinity norm of DSDD matrices. In 2022, based on the Schur complement, Li and Wang obtained some upper bounds for the infinity norm of the inverse of GDSDD matrices [22].

    In this paper, n is a positive integer and N={1,2,...,n}. Let S be any nonempty subset of N, SN, ¯S:=NS for the complement of S. Cn×n denotes the set of complex matrices of all n×n. Rn×n denotes the set of all n×n real matrices. IRn×n is an identity matrix, A=[aij]Cn×n, |A|=[|aij|]Rn×n and

    ri(A)=ki,kN|aik|,rSi(A)=ki,kS|aik|,iN.

    The matrix A is known as the strictly diagonal dominance SDD matrix, abbreviated as A SDD, if

    |aii|>ri(A),iN.

    Definition 1. [23] Let S be an arbitrary nonempty proper subset of the index set. A=[aij]Cn×n,n2, is called an S-SOB (S-Sparse Ostrowski-Brauer) matrix if

    (i) |aii|>rSi(A) for all iS;

    (ii) |ajj|>r¯Sj(A) for all jS;

    (iii) For all iS and all jˉS such that aij0,

    [|aii|rSi(A)]|ajj|>r¯Si(A)rj(A); (1.1)

    (iv) For all iS and all jˉS such that aji0,

    [|ajj|r¯Sj(A)]|aii|>rSj(A)ri(A). (1.2)

    Definition 2. [24] A matrix A is called GDSDD matrix if J and there exists proper subsets N1,N2 of N such that N1N2=,N1N2=N and for any iN1 and jN2,

    [|aii|rN1i(A)][|ajj|rN2j(A)]>rN2i(A)rN1j(A),

    where J:={iN:|aii|>ri(A)}.

    Definition 3. [25] A matrix A is called an H-matrix, if its comparison matrix μ(A)=[μij] defined by

    μii=|aii|,μij=|aij|,i,jN,ij

    is an M-matrix, i.e., [μ(A)]10.

    It is shown in [1] that if A is an H-matrix, then,

    [μ(A)]1|A1|. (1.3)

    Let A be an M-matrix, then det(A)>0.

    In addition, it was shown that S-SOB, SDD and GDSDD matrices are nonsingular H-matrix in [23,26]. Varah [19] gave the following upper bound for the infinity norm of the inverse of SDD matrices:

    Theorem 1. [19] Let A=[aij] be an SDD matrix. Then,

    A1maxiN1|aii|ri(A). (1.4)

    Theorem 2. [27] Let A=[aij]Cn×n,n2, be an S-SOB matrix, where SN, 1|S|n1. Then,

    A1{maxiS:rˉSi(A)=01|aii|rSi(A),maxjˉS:rSj(A)=01|ajj|rˉSj(A),maxiS,jˉS:aij0fij(A,S),maxiS,jˉS:aji0fji(A,ˉS)}, (1.5)

    where

    fij(A,S)=|ajj|+rˉSi(A)[|aii|rSi(A)]|ajj|rˉSi(A)rj(A),iS,jˉS.

    Theorem 3. [28] Let A=[aij]Cn×n, n2, be an GDSDD matrix, where SN, 1|S|n1. Then,

    A1max{maxiN1,jN2|ajj|rN2j(A)+rN2i(A)[|aii|rN1i(A)][|ajj|rN2j(A)]rN2i(A)rN1j(A),maxiN1,jN2|aii|rN1i(A)+rN1j(A)[|aii|rN1i(A)][|ajj|rN2j(A)]>rN2i(A)rN1j(A)}. (1.6)

    In this paper, based on the Schur complement, we present some upper bounds for the infinity norm of the inverse of S-SOB matrices, and numerical examples are given to show the effectiveness of the obtained results. In addition, applying these new bounds, a lower bound for the smallest singular value of S-SOB matrices is obtained.

    Given a matrix A=(aij)Cn×n that is nonsingular, α={i1,i2,...,ik} is any nonempty proper subset of N, |α| is the cardinality of α (the number of elements in α, i.e., |α|=k), ˉα=Nα={j1,,jl} is the complement of α with respect to N, A(α,ˉα) is the submatrix of A lying in the rows indexed by α and the columns indexed by ˉα, A(α) is the leading submatrix of A whose row and column are both indexed by α, and the elements of α and of ˉα are both conventionally arranged in increasing order. If A(α) is not singular, the matrix A/α is called the Schur complement of A with respect to A(α). At this point

    A/α=A(ˉα)A(ˉα,α)[A(α)]1A(α,ˉα).

    Lemma 1. (Quotient formula [28,29]) Let A be a square matrix. Let B is a nonsingular principal submatrix of A and C is a nonsingular principal submatrix of B. Then, B/C is a nonsingular principal submatrix of A/C and A/B=(A/C)/(B/C), where B/C is the Schur complement of C in matrix B.

    Lemma 2. Let A=(aij)Cn×n be an S-SOB matrix, n2 and where αS or αˉS. Then, A(α) is an SDD matrix.

    Proof. When αS, since A is an S-SOB matrix and |aii|>rSi(A)rαi(A)=ki,kα|aik| for all iα, we have ri[A(α)]=ki,kα|aik|=rαi(A) and |aii|>ri[A(α)]. It is easy to obtain that A(α) is an SDD matrix. Homoplastically, so is αˉS.

    Lemma 3. Let A=(aij)Cn×n be an S-SOB matrix, n2 and α be a subset of N. Then, A(α) is an S-SOB matrix.

    Proof. If Sα, since A is an S-SOB matrix, then,

    (i) For all iS, |aii|>rSi(A)=rSi(A(α)),

    (ii) For all jˉSα, |ajj|>rˉSj(A)>rˉSαj(A)=rˉSαj(A(α)),

    (iii) For all iS,jˉSα such that aij0,

    [|aii|rSi(A(α))]|ajj|=[|aii|rSi(A)]|ajj|>rˉSi(A)rj(A)>rˉSi(A)rS(ˉSα)j(A)=rˉSi(A(α))rS(ˉSα)j(A(α)),

    (iv) For all iS,jˉSα such that aji0,

    [|ajj|rˉSαj(A(α))]|aii|=[|ajj|rˉSαj(A)]|aii|>rSj(A)ri(A)>rSj(A)rS(ˉSα)i(A)=rSj(A(α))rS(ˉSα)i(A(α)).

    Thus, A(α) is an S-SOB matrix and A(α)\{S-SOB}.

    In a similar way, if ˉSα, A(α) is an ˉS-SOB matrix. Meanwhile, when α is contained neither in S nor in ˉS, A(α) is an (Sα)-SOB matrix. Finally, A(α){S-SOB}.

    Lemma 4. Let A=(aij)Cn×n be an S-SOB matrix, n2 and let A be a matrix satisfying aij=0,aii>ri(A) and aji=0,ajj>rj(A) for iS,jˉS. If α={i1}S, denote

    B=(bij)=(|ai1i1|rSαi1(A)rˉSi1(A)|ajti1||ajtjt|rSαjt(A)rˉSjt(A)|ajsi1|rSαjs(A)|ajsjs|rˉSjs(A)), (2.1)

    where jt(Sα),jsˉS, then B{SGDD3}.

    Proof. Since A is an S-SOB matrix, if SB={1,2}, for all iSB, then,

    [|b11|rSB1(B)][|b33|rˉSB3(B)]=[|ai1i1|rSαi1(A)][|ajsjs|rˉSjs(A)]=[|ai1i1|rSi1(A)][|ajsjs|rˉSjs(A)].
    [|b22|rSB2(B)][|b33|rˉSB3(B)]=[|ajtjt|rSαjt(A)||ajti1|][|ajsjs|rˉSjs(A)]=[|ajtjt|rSjt(A)][|ajsjs|rˉSjs(A)].

    There exist four different cases.

    Case 1. When |ajsi1|0, |ai1js|0.

    (i) If |ajsjs|<rjs(A), from Definition 1, we have |ai1i1|ri1(A),

    [|b11|rSB1(B)][|b33|rˉSB3(B)]=[|ajsjs|rˉSjs(A)]|ai1i1|[|ajsjs|rˉSjs(A)]rSi1(A)>rSjs(A)ri1(A)rSjs(A)rSi1(A)=rSjs(A)rˉSi1(A)>rSαjs(A)rˉSi1(A)=rˉSB1(B)rSB3(B).

    (ii) If |ajsjs|>rjs(A), |ai1i1|ri1(A), we get

    [|b11|rSB1(B)][|b33|rˉSB3(B)]=[|ai1i1|rSi1(A)][|ajsjs|rˉSjs(A)]>rSjs(A)rˉSi1(A)>rSαjs(A)rˉSi1(A)=rˉSB1(B)rSB3(B).

    (iii) If |ajsjs|>rjs(A), |ai1i1|ri1(A), we obtain

    [|b11|rSB1(B)][|b33|rˉSB3(B)]=[|ai1i1|rSi1(A)]|ajsjs|[|ai1i1|rSi1(A)]rˉSjs(A)>rˉSi1(A)rjs(A)rˉSi1(A)rˉSjs(A)=rˉSi1(A)rSjs(A)>rSαjs(A)rˉSi1(A)=rˉSB1(B)rSB3(B).

    Case 2. When |ajsi1|0, |ai1js|=0, |ai1i1|ri1(A) the proof is analogous to (i) and (ii) in Case 1. We obtain

    [|b11|rSB1(B)][|b33|rˉSB3(B)]>rˉSB1(B)rSB3(B).

    Case 3. If |ajsi1|=0, |ai1js|0, then, |ajsjs|>rjs(A). By the same proof method as (ii) and (iii) in Case 1, we have

    [|b11|rSB1(B)][|b33|rˉSB3(B)]>rˉSB1(B)rSB3(B).

    Case 4. If |ajsi1|=0, |ai1js|=0, then, |ai1i1|>ri1(A), |ajsjs|>rjs(A), and

    [|b11|rSB1(B)][|b33|rˉSB3(B)]>rˉSB1(B)rSB3(B).

    To sum up, the inequality [|b11|rSB1(B)][|b33|rˉSB3(B)]>rˉSB1(B)rSB3(B) is held. In the same way, the inequality [|b22|rSB2(B)][|b33|rˉSB3(B)]>rˉSB2(B)rSB3(B) also holds. At last, we obtain B{GDSDD3} and B=μ(B) is an M-matrix. By Definition 3, we know that detB>0. The proof is completed.

    Theorem 4. Let A=(aij)Cn×n be an S-SOB matrix, n2 and let A be a matrix satisfying aij=0,aii>ri(A) and aji=0,ajj>rj(A) for iS,jˉS. Denote A/α=(ajtjs). If αS, then, A/α{ GDSDD(Sα),ˉSnk}.

    Proof. Note that α contains only one element. If α=i1S, for all jtSα, jsˉS, then we have

    [|ajtjt|rSαjt(A/α)][|ajsjs|rˉSjs(A/α)]rˉSjt(A/α)rSαjs(A/α)=[|ajtjt|jwSα,wt|ajtjw|][|ajsjs|jwˉS,ws|ajsjw|]jwˉS|ajtjw|jwSα|ajsjw|=[|ajtjtajti1ai1jtai1i1|jwSα,wt|ajtjwajti1ai1jwai1i1|]×[|ajsjsajsi1ai1jsai1i1|jwˉS,wt|ajsjwajsi1ai1jwai1i1|]jwˉS|ajtjwajti1ai1jwai1i1|jwSα|ajsjwajsi1ai1jwai1i1|[|ajtjt|rSαjt(A)|ajti1|rSαi1(A)|ai1i1|]×[|ajsjs|rˉSjs(A)|ajsi1|rˉSi1(A)|ai1i1|][rˉSjt(A)+|ajti1|rˉSi1(A)|ai1i1|]×[rSαjs(A)+|ajsi1|rSαi1(A)|ai1i1|]=det[B/{1}]=1|ai1i1|detB>0.

    We have A/{i1}{ GDSDD(S{i1}),ˉSn1} for any i1S. Consider that α contains more than one element. If i1α, by the quotient formula (in [9] Theorem 2 (ii)), we have A/α=(A/{i1})/((A(α)/i1){GDSDD(Sα),ˉSnk}. The proof is completed.

    Corollary 1. Let A=(aij)Cn×n be an S-SOB matrix, n2 and let A be a matrix satisfying aij=0,aii>ri(A) and aji=0,ajj>rj(A) for iS,jˉS. Denote A/α=(ajtjs). If αˉS, jtS,jsˉSα, then, A/α{GDSDDS,(ˉSα)nk}.

    Proof. The conclusion can be drawn by using the same proof method as Theorem 4.

    Corollary 2. Let A=(aij)Cn×n be an S-SOB matrix, n2 and let A be a matrix satisfying aij=0,aii>ri(A) and aji=0,ajj>rj(A) for iS,jˉS. Denote A/α=(ajtjs). If α is contained neither in S nor in ˉS, jtSα,jsˉSα, then A/α{GDSDD(Sα),(ˉSα)nk}.

    Proof. The proof is similar to ([9], Theorem 2 (iii)), so we get A/α=(A/(Sα))/((A(α)/(Sα)){GDSDD(Sα),(ˉSα)nk}.

    Theorem 5. Let A=(aij)Cn×n be an S-SOB matrix, n2 and denote A/α=(ajtjs). If α=S or α=ˉS, then A/α is an SDD matrix.

    Proof. If {i1}=α=S, for all jtˉα, then we have

    |ajtjt|rjt(A/α)=|ajtjt|jwˉα,wt|ajtjw|=|ajtjtajti1ai1jtai1i1|jwˉα,wt|ajtjwajti1ai1jwai1i1||ajtjt|rˉαjt(A)jwˉα|ajti1ai1jw||ai1i1|=|ajtjt|rˉαjt(A)|ajti1|rˉαi1(A)|ai1i1|=|ajtjt|rˉSjt(A)|ajti1|rˉSi1(A)|ai1i1|.

    If ajti1=0, then we get

    |ajtjt|rjt(A/α)|ajtjt|rˉSjt(A)0>0.

    If ajti10, then we obtain

    |ajtjt|rjt(A/α)rSjt(A)ri1(A)|ai1i1||ajti1|rˉSi1(A)|ai1i1|>0.

    Hence, for any {i1}=α=S, A/{i1} is an SDD matrix. Taking i1α=S and using the fact that A is SDD, we know its Schur complement is as well. At last, we have A/α=(A/{i1})/(A(α)/{i1}){SDD}. By the same argument, so is α=ˉS.

    Corollary 3. Let A=(aij)Cn×n be an S-SOB matrix, n2 and denote A/α=(ajtjs). If Sα or ˉSα, then A/α is an SDD matrix.

    Proof. From Theorem 5, A/S is an SDD matrix, consequently, A/α=[A/S]/[(A(α)/S]{SDD}. Similarly, if ˉSα, we have A/α=[A/ˉS]/[(A(α)/ˉS]{SDD}.

    Finally, making a summary of part of the content: if αS or αˉS, then A(α){SDD}, A/α{ GDSDD}; if Sα or ˉSα, then A(α){S-SOB}, A/α{SDD}; if S=α or ˉS=α, then A(α){SDD}, A/α{SDD}; if α is contained neither in S nor in ˉS, then A(α){S-SOB}, A/α{GDSDD}.

    In order to obtain the upper bound of the infinite norm of the inverse of the S-SOB matrix, we need to give the definition of a permutation matrix in which every row and every column of it has only one element of 1 and all the other elements are 0. It is easy to see from the definition that permutation matrices are also elementary matrices, so multiplication of any matrix only changes the position of the matrix elements, but does not change the size of the matrix elements.

    For a given nonempty proper subset α, there is a permutation matrix P such that

    PTAP=(A(α)A(α,ˉα)A(ˉα,α)A(ˉα)).

    We might as well assume that A(α) is nonsingular, let

    E(PTAP)F=(A(α)00A(ˉα)A(ˉα,α)A(α)1A(α,ˉα)), (3.1)

    under the circumstances

    E=(I10A(ˉα,α)A(α)1I2)

    and

    F=(I1A(α)1A(α,ˉα)0I2),

    where I1 (resp.I2) is the identity matrix of order l (resp.m). We know that if P is a permutation matrix, then PT is also a permutation matrix, and ||P||=1. From the above we can obtain

    ||A1||=||PF(EPTAPF)1EPT||,
    ||A1||||F||||(EPTAPF)1||||E||. (3.2)

    Therefore, if the upper bounds of ||F||, ||(EPTAPF)1||, and ||E|| can be obtained, the upper bounds of ||A1|| can also be obtained, that is, the product of the above three norm bounds needs to be calculated. It's not hard to figure out

    ||E||=1+||A(ˉα,α)A(α)1||, (3.3)
    ||F||=1+||A(α)1A(α,ˉα)||, (3.4)

    and

    ||(EPTAPF)1||=max{||A(α)1||,||(A/α)1||}. (3.5)

    In [20], Li gives an upper bound for ||E|| as follows:

    Lemma 5. [20] Let A=[aij]Cn×n be nonsingular with aii0, for iN, and αN. If A(α) is nonsingular and

    1>maxiαmaxjα,ji|aji||aii|(k1), (3.6)

    then,

    ||E||ζ(α)=1+kmaxiαmaxjˉα|aji||aii|(1maxiαmaxjα,ji|aji||aii|(k1))1. (3.7)

    Theorem 6. Let A=[aij]Cn×n be an S-SOB matrix and D=[dij]Cn×m. Then,

    A1Dmax{maxiS,jˉS:aij0|ajj|Ri(D)+rˉSi(A)Rj(D)[|aii|rSi(A)]|ajj|rˉSi(A)rj(A),maxiS,jˉS:aji0|aii|Rj(D)+rSj(A)Ri(D)[|ajj|rˉSj(A)]|aii|rSj(A)ri(A),maxiS:rˉSi(A)=0Ri(D)|aii|rSi(A),maxjˉS:rSj(A)=0Rj(D)|ajj|rˉSj(A)}, (3.8)

    where Ri(D)=kM|dik|.

    Proof. Since A=[aij]Cn×n is an S-SOB matrix, we know from [1] that A is an H-matrix, [μ(A)]1|A1|. Let

    φφ=|A1D|e=(φ1,φ2,...,φn)T,
    ψψ=(μ(A))1|D|e=(ψ1,ψ2,...,ψn)T,

    and e=(1,...,1)T be an m-dimensional vector, consequently,

    ψψ=μ(A)1|D|e|A1||D|e|A1D|e=φφ,andμ(A)ψψ=|D|e.

    Because of S\subset N , {{\psi}_{p}} = \underset{k\in S}{\mathop{\max }}\, \{{{\psi}_{k}}\}, \; {{\psi}_{q}} = \underset{k\in \bar{S}}{\mathop{\max }}\, \{{{\psi}_{k}}\}, it implies that

    |{{a}_{ii}}|{{\psi}_{i}}-\sum\limits_{k\in N, k\ne i}{|{{a}_{ik}}|}{{\psi}_{k}} = \sum\limits_{k\in M}{|{{d}_{ik}}}|, \; i\in N.

    If {{\psi}_{p}}\geq {{\psi}_{q}} , then,

    \begin{eqnarray*} \sum\limits_{k\in M}{|{{d}_{pk}}}|& = &|{{a}_{pp}}|{{\psi}_{p}}-\sum\limits_{k\in N, k\ne p}{|{{a}_{pk}}|}{{\psi}_{k}}\nonumber\\ & = &|{{a}_{pp}}|{{\psi}_{p}} -\sum\limits_{k\in S, k\ne p}{|{{a}_{pk}}|}{{\psi}_{k}}-\sum\limits_{k\in \bar{S}, k\ne p}{|{{a}_{pk}}|}{{\psi}_{k}}\nonumber\\ &\geq&|{{a}_{pp}}|{{\psi}_{p}} -\sum\limits_{k\in S, k\ne p}{|{{a}_{pk}}|}{{\psi}_{p}}-\sum\limits_{k\in \bar{S}, k\ne p}{|{{a}_{pk}}|}{{\psi}_{q}}\nonumber\\ & = &[|{{a}_{pp}}|-r_{p}^{S}(A)]{{\psi}_{p}}-r_{p}^{\bar{S}}(A){{\psi}_{q}}. \end{eqnarray*}

    That is to say, if {{\psi}_{p}}\geq {{\psi}_{q}} , r_{p}^{\bar{S}}(A) = 0 , then,

    \begin{eqnarray*} \sum\limits_{k\in M}{|{{d}_{pk}}}|\geq[|{{a}_{pp}}|-r_{p}^{S}(A)]{{\psi}_{p}}, \end{eqnarray*}

    and

    \begin{eqnarray} ||{{A}^{-1}}D|{{|}_{\infty }} = \underset{i\in N}{\mathop{\max }}\, {{\psi}_{i}}\le {{\psi}_{p}} &\leq&\frac{\sum\limits_{k\in M}{|{{d}_{pk}}}|}{|{{a}_{pp}}|-r_{p}^{S}(A)}\\ &\leq&\max\limits_{i\in S:r_{i}^{\bar{S}}(A) = 0}\frac{\sum\limits_{k\in M}|d_{ik}|}{|a_{ii}|-r_{i}^{S}(A)}. \end{eqnarray} (3.9)

    If {{\psi}_{p}}\geq {{\psi}_{q}} , r_{p}^{\bar{S}}(A)\neq0 , then,

    \begin{eqnarray} \sum\limits_{k\in M}{|{{d}_{pk}}}|\geq[|{{a}_{pp}}|-r_{p}^{S}(A)]{{\psi}_{p}}-r_{p}^{\bar{S}}(A){{\psi}_{q}}, \end{eqnarray} (3.10)

    and

    \begin{eqnarray} \sum\limits_{k\in M}{|{{d}_{qk}}}| = |{{a}_{qq}}|{{\psi}_{q}}-\sum\limits_{k\in N, k\ne q}{|{{a}_{qk}}|}{{\psi}_{k}}\geq|{{a}_{qq}}|{{\psi}_{q}}-r_{q}(A){{\psi}_{p}}. \end{eqnarray} (3.11)

    By Eq (3.10) \times|{{a}_{qq}}| + Eq (3.11) \times r_{p}^{\bar{S}}(A) , we have

    \begin{eqnarray*} &&|{{a}_{qq}}|\sum\limits_{k\in M}{|{{d}_{pk}}}|+ r_{p}^{\bar{S}}(A)\sum\limits_{k\in M}{|{{d}_{qk}}}| \geq\{|{{a}_{qq}}|[|{{a}_{pp}}|-r_{p}^{S}(A)]- r_{p}^{\bar{S}}(A)r_{q}(A)\}{{\psi}_{p}}. \end{eqnarray*}

    Thus,

    \begin{eqnarray} ||{{A}^{-1}}D|{{|}_{\infty }}& = &\underset{i\in N}{\mathop{\max }}\, {{\psi}_{i}}\le {{\psi}_{p}} \leq\frac{|{{a}_{qq}}|\sum\limits_{k\in M}{|{{d}_{pk}}}|+ r_{p}^{\bar{S}}(A)\sum\limits_{k\in M}{|{{d}_{qk}}}|}{|{{a}_{qq}}|[|{{a}_{pp}}|-r_{p}^{S}(A)]- r_{p}^{\bar{S}}(A)r_{q}(A)}\\ &\leq&\max\limits_{i\in S, j\in\bar{S}:a_{ij}\neq 0}\frac{|{{a}_{jj}}|\sum\limits_{k\in M}{|{{d}_{ik}}}|+ r_{i}^{\bar{S}}(A)\sum\limits_{k\in M}{|{{d}_{jk}}}|}{|{{a}_{jj}}|[|{{a}_{ii}}|-r_{i}^{S}(A)]- r_{i}^{\bar{S}}(A)r_{j}(A)}. \end{eqnarray} (3.12)

    If {{\psi}_{q}}\geq {{\psi}_{p}} , equally,

    \begin{eqnarray*} \sum\limits_{k\in M}{|{{d}_{qk}}}|& = &|{{a}_{qq}}|{{\psi}_{q}}-\sum\limits_{k\in N, k\ne q}{|{{a}_{qk}}|}{{\psi}_{k}}\nonumber\\ &\geq&|{{a}_{qq}}|{{\psi}_{q}} -\sum\limits_{k\in \bar{S}, k\ne q}{|{{a}_{qk}}|}{{\psi}_{q}}-\sum\limits_{k\in S, k\ne q}{|{{a}_{qk}}|}{{\psi}_{p}}\nonumber\\ & = &[|{{a}_{qq}}|-r_{q}^{\bar{S}}(A)]{{\psi}_{q}}-r_{q}^{S}(A){{\psi}_{p}}. \end{eqnarray*}

    When r_{q}^{S}(A) = 0 , \sum\limits_{k\in M}{|{{d}_{qk}}}|\geq[|{{a}_{qq}}|-r_{q}^{\bar{S}}(A)]{{\psi}_{q}} .

    \begin{eqnarray} ||{{A}^{-1}}D|{{|}_{\infty }} = \underset{i\in N}{\mathop{\max }}\, {{\psi}_{i}}\le {{\psi}_{q}} &\leq&\frac{\sum\limits_{k\in M}{|{{d}_{qk}}}|}{|{{a}_{qq}}|-r_{q}^{\bar{S}}(A)}\\ &\leq&\max\limits_{i\in S:r_{q}^{S}(A) = 0}\frac{\sum\limits_{k\in M}|d_{jk}|}{|a_{jj}|-r_{j}^{\bar{S}}(A)}. \end{eqnarray} (3.13)

    When r_{q}^{S}(A)\neq0 , then

    \begin{eqnarray} \sum\limits_{k\in M}{|{{d}_{pk}}}|\geq|{{a}_{pp}}|{{\psi}_{p}}-r_{p}(A){{\psi}_{q}}, \end{eqnarray} (3.14)
    \begin{eqnarray} \sum\limits_{k\in M}{|{{d}_{qk}}}|\geq[|{{a}_{qq}}|-r_{q}^{\bar{S}}(A)]{{\psi}_{q}}-r_{q}^{S}(A){{\psi}_{p}}. \end{eqnarray} (3.15)

    Eq (3.14) \times r_{q}^{S}(A) + Eq (3.15) \times |{{a}_{pp}}| , we have

    \begin{eqnarray*} &&r_{q}^{S}(A)\sum\limits_{k\in M}{|{{d}_{pk}}}|+ |{{a}_{pp}}|\sum\limits_{k\in M}{|{{d}_{qk}}}| \geq\{|{{a}_{pp}}|[|{{a}_{qq}}|-r_{q}^{\bar{S}}(A)]- r_{q}^{S}(A)r_{q}(A)\}{{\psi}_{q}}. \end{eqnarray*}

    Consequently,

    \begin{eqnarray} ||{{A}^{-1}}D|{{|}_{\infty }}& = &\underset{i\in N}{\mathop{\max }}\, {{\psi}_{i}}\le {{\psi}_{q}} \leq\frac{r_{q}^{S}(A)\sum\limits_{k\in M}{|{{d}_{pk}}}|+ |{{a}_{pp}}|\sum\limits_{k\in M}{|{{d}_{qk}}}|}{|{{a}_{pp}}|[|{{a}_{qq}}|-r_{q}^{\bar{S}}(A)]- r_{q}^{S}(A)r_{q}(A)}\\ &\leq&\max\limits_{i\in S, j\in\bar{S}:a_{ji}\neq 0}\frac{|{{a}_{ii}}|\sum\limits_{k\in M}{|{{d}_{jk}}}|+ r_{j}^{S}(A)\sum\limits_{k\in M}{|{{d}_{ik}}}|}{|{{a}_{ii}}|[|{{a}_{jj}}|-r_{j}^{\bar{S}}(A)]- r_{j}^{S}(A)r_{i}(A)}. \end{eqnarray} (3.16)

    The conclusion follows from inequalities Eqs (3.9), (3.12), (3.13) and (3.16).

    Replacing A and D in Theorem 6 with A(\alpha) and A(\alpha, \bar{\alpha}) , respectively, yields Corollary 4.

    Corollary 4. Let A = \left[{{a}_{ij}} \right]\in {{{C}}^{n\times n}} be an S -SOB matrix and \alpha\in N , then, ||F||_{\infty}\leq1+\max\{\max\limits_{i\in\alpha}\frac{R_{i}[A(\alpha, \bar{\alpha})]}{|a_{ii}|-r_{i}[A(\alpha)]}, \; \beta(\alpha), \; \gamma(\alpha), \lambda(\alpha)\}, where

    \begin{eqnarray*} \beta(\alpha) = \max\Bigg\{\max\limits_{i\in S, \atop j\in(\bar{S}\cap\alpha):a_{ij}\neq 0}\frac{|{{a}_{jj}}|R_{i}[A(\alpha, \bar{\alpha})]+r_{i}^{(\bar{S}\cap\alpha)}[A(\alpha)]R_{j}[A(\alpha, \bar{\alpha})]}{[|{{a}_{ii}}|-r_{i}^{S}[A(\alpha)]]|{{a}_{jj}}|-r_{i}^{(\bar{S}\cap\alpha)}[A(\alpha)] r_{j}[A(\alpha)]}, &\nonumber\\ \max\limits_{i\in S, \atop j\in(\bar{S}\cap\alpha):a_{ji}\neq 0}\frac{|{{a}_{ii}}|R_{j}[A(\alpha, \bar{\alpha})]+r_{j}^{S}[A(\alpha)]R_{i}[A(\alpha, \bar{\alpha})]}{[|{{a}_{jj}}|-r_{j}^{(\bar{S}\cap\alpha)}[A(\alpha)]]|{{a}_{ii}}|-r_{j}^{S}[A(\alpha)]r_{i}[A(\alpha)]}, & \nonumber\\ \max\limits_{i\in S\atop:r_{i}^{(\bar{S}\cap\alpha)}[A(\alpha)] = 0}\frac{R_{i}[A(\alpha, \bar{\alpha})]}{|a_{ii}|-r_{i}^{S}[A(\alpha)]}, \max\limits_{j\in \bar{S}\cap\alpha\atop:r_{j}^{S}[A(\alpha)] = 0}\frac{R_{j}[A(\alpha, \bar{\alpha})]}{|a_{jj}|-r_{j}^{(\bar{S}\cap\alpha)}[A(\alpha)]} \Bigg\}, \end{eqnarray*}
    \begin{eqnarray*} \gamma(\alpha) = \max\Bigg\{\max\limits_{i\in \bar{S}, \atop j\in(S\cap\alpha):a_{ij}\neq 0}\frac{|{{a}_{jj}}|R_{i}[A(\alpha, \bar{\alpha})]+r_{i}^{(S\cap\alpha)}[A(\alpha)]R_{j}[A(\alpha, \bar{\alpha})]}{[|{{a}_{ii}}|-r_{i}^{\bar{S}}[A(\alpha)]]|{{a}_{jj}}|-r_{i}^{(S\cap\alpha)}[A(\alpha)] r_{j}[A(\alpha)]}, &\nonumber\\ \max\limits_{i\in \bar{S}, \atop j\in(S\cap\alpha):a_{ji}\neq 0}\frac{|{{a}_{ii}}|R_{j}[A(\alpha, \bar{\alpha})]+r_{j}^{\bar{S}}[A(\alpha)]R_{i}[A(\alpha, \bar{\alpha})]}{[|{{a}_{jj}}|-r_{j}^{(S\cap\alpha)}[A(\alpha)]]|{{a}_{ii}}|-r_{j}^{\bar{S}}[A(\alpha)]r_{i}[A(\alpha)]}, & \nonumber\\ \max\limits_{i\in \bar{S}\atop:r_{i}^{(S\cap\alpha)}[A(\alpha)] = 0}\frac{R_{i}[A(\alpha, \bar{\alpha})]}{|a_{ii}|-r_{i}^{\bar{S}}[A(\alpha)]}, \max\limits_{j\in S\atop:r_{j}^{S}[A(\alpha)] = 0}\frac{R_{j}[A(\alpha, \bar{\alpha})]}{|a_{jj}|-r_{j}^{(S\cap\alpha)}[A(\alpha)]} \Bigg\}, \end{eqnarray*}
    \begin{eqnarray*} \lambda(\alpha) = \max\Bigg\{\max\limits_{i\in (S\cap\alpha), \atop j\in(\bar{S}\cap\alpha):a_{ij}\neq 0}\frac{|{{a}_{jj}}|R_{i}[A(\alpha, \bar{\alpha})]+r_{i}^{(\bar{S}\cap\alpha)}[A(\alpha)]R_{j}[A(\alpha, \bar{\alpha})]}{[|{{a}_{ii}}|-r_{i}^{(S\cap\alpha)}[A(\alpha)]]|{{a}_{jj}}|-r_{i}^{(\bar{S}\cap\alpha)}[A(\alpha)] r_{j}[A(\alpha)]}, &\nonumber\\ \max\limits_{i\in (S\cap\alpha), \atop j\in(\bar{S}\cap\alpha):a_{ji}\neq 0}\frac{|{{a}_{ii}}|R_{j}[A(\alpha, \bar{\alpha})]+r_{j}^{(S\cap\alpha)}[A(\alpha)]R_{i}[A(\alpha, \bar{\alpha})]}{[|{{a}_{jj}}|-r_{j}^{(\bar{S}\cap\alpha)}[A(\alpha)]]|{{a}_{ii}}|-r_{j}^{(S\cap\alpha)}[A(\alpha)]r_{i}[A(\alpha)]}, & \nonumber\\ \max\limits_{i\in (S\cap\alpha)\atop:r_{i}^{(\bar{S}\cap\alpha)}[A(\alpha)] = 0}\frac{R_{i}[A(\alpha, \bar{\alpha})]}{|a_{ii}|-r_{i}^{(S\cap\alpha)}[A(\alpha)]}, \max\limits_{j\in \bar{S}\cap\alpha\atop:r_{j}^{(S\cap\alpha)}[A(\alpha)] = 0}\frac{R_{j}[A(\alpha, \bar{\alpha})]}{|a_{jj}|-r_{j}^{(\bar{S}\cap\alpha)}[A(\alpha)]} \Bigg\}. \end{eqnarray*}

    Proof. Let \alpha\subseteq S or \alpha\subseteq\bar{S} , A(\alpha) be an SDD matrix (from Lemma 2). Thus,

    ||F|{{|}_{\infty }} = 1+||A{{(\alpha )}^{-1}}A\left( \alpha , \bar{\alpha}\right)|{{|}_{\infty }}\leq1+\max\limits_{i\in\alpha}\frac{R_{i}[A(\alpha, \bar{\alpha})]}{|a_{ii}|-r_{i}[A(\alpha)]}.

    From Lemma 3, we have

    (1) if S\subset\alpha , A(\alpha) is an S -SOB matrix, then

    \begin{eqnarray*} ||F|{{|}_{\infty }} = 1+||A{{(\alpha )}^{-1}}A\left( \alpha , \bar{\alpha}\right)|{{|}_{\infty }}\leq 1+&&\nonumber\\ \max\Bigg\{\max\limits_{i\in S, \atop j\in(\bar{S}\cap\alpha):a_{ij}\neq 0}\frac{|{{a}_{jj}}|R_{i}[A(\alpha, \bar{\alpha})]+r_{i}^{(\bar{S}\cap\alpha)}[A(\alpha)]R_{j}[A(\alpha, \bar{\alpha})]}{[|{{a}_{ii}}|-r_{i}^{S}[A(\alpha)]]|{{a}_{jj}}|-r_{i}^{(\bar{S}\cap\alpha)}[A(\alpha)] r_{j}[A(\alpha)]}, &\nonumber\\ \max\limits_{i\in S, \atop j\in(\bar{S}\cap\alpha):a_{ji}\neq 0}\frac{|{{a}_{ii}}|R_{j}[A(\alpha, \bar{\alpha})]+r_{j}^{S}[A(\alpha)]R_{i}[A(\alpha, \bar{\alpha})]}{[|{{a}_{jj}}|-r_{j}^{(\bar{S}\cap\alpha)}[A(\alpha)]]|{{a}_{ii}}|-r_{j}^{S}[A(\alpha)]r_{i}[A(\alpha)]}, & \nonumber\\ \max\limits_{i\in S\atop:r_{i}^{(\bar{S}\cap\alpha)}[A(\alpha)] = 0}\frac{R_{i}[A(\alpha, \bar{\alpha})]}{|a_{ii}|-r_{i}^{S}[A(\alpha)]}, \max\limits_{j\in \bar{S}\atop:r_{j}^{S}[A(\alpha)] = 0}\frac{R_{j}[A(\alpha, \bar{\alpha})]}{|a_{jj}|-r_{j}^{(\bar{S}\cap\alpha)}[A(\alpha)]} \Bigg\}. \end{eqnarray*}

    Hence, ||F|{{|}_{\infty }}\leq 1+\beta(\alpha) .

    (2) If \bar{S}\subset\alpha , A(\alpha) is an \bar{S} -SOB matrix, then

    \begin{eqnarray*} ||F|{{|}_{\infty }} = 1+||A{{(\alpha )}^{-1}}A\left( \alpha , \bar{\alpha}\right)|{{|}_{\infty }}\leq 1+&&\nonumber\\ \max\Bigg\{\max\limits_{i\in \bar{S}, \atop j\in(S\cap\alpha):a_{ij}\neq 0}\frac{|{{a}_{jj}}|R_{i}[A(\alpha, \bar{\alpha})]+r_{i}^{(S\cap\alpha)}[A(\alpha)]R_{j}[A(\alpha, \bar{\alpha})]}{[|{{a}_{ii}}|-r_{i}^{\bar{S}}[A(\alpha)]]|{{a}_{jj}}|-r_{i}^{(S\cap\alpha)}[A(\alpha)] r_{j}[A(\alpha)]}, &\nonumber\\ \max\limits_{i\in \bar{S}, \atop j\in(S\cap\alpha):a_{ji}\neq 0}\frac{|{{a}_{ii}}|R_{j}[A(\alpha, \bar{\alpha})]+r_{j}^{\bar{S}}[A(\alpha)]R_{i}[A(\alpha, \bar{\alpha})]}{[|{{a}_{jj}}|-r_{j}^{(S\cap\alpha)}[A(\alpha)]]|{{a}_{ii}}|-r_{j}^{\bar{S}}[A(\alpha)]r_{i}[A(\alpha)]}, & \nonumber\\ \max\limits_{i\in \bar{S}\atop :r_{i}^{(S\cap\alpha)}[A(\alpha)] = 0}\frac{R_{i}[A(\alpha, \bar{\alpha})]}{|a_{ii}|-r_{i}^{\bar{S}}[A(\alpha)]}, \max\limits_{j\in S\atop:r_{j}^{S}[A(\alpha)] = 0}\frac{R_{j}[A(\alpha, \bar{\alpha})]}{|a_{jj}|-r_{j}^{(S\cap\alpha)}[A(\alpha)]} \Bigg\}. \end{eqnarray*}

    Accordingly, ||F|{{|}_{\infty }}\leq 1+\gamma(\alpha) .

    (3) If \alpha is contained neither in S nor in \bar{S} , A(\alpha) is an (S\cap\alpha) -SOB matrix, then we have

    \begin{eqnarray*} ||F|{{|}_{\infty }} = 1+||A{{(\alpha )}^{-1}}A\left( \alpha , \bar{\alpha}\right)|{{|}_{\infty }}\leq 1+&&\nonumber\\ \max\Bigg\{\max\limits_{i\in (S\cap\alpha), \atop j\in(\bar{S}\cap\alpha):a_{ij}\neq 0}\frac{|{{a}_{jj}}|R_{i}[A(\alpha, \bar{\alpha})]+r_{i}^{(\bar{S}\cap\alpha)}[A(\alpha)]R_{j}[A(\alpha, \bar{\alpha})]}{[|{{a}_{ii}}|-r_{i}^{(S\cap\alpha)}[A(\alpha)]]|{{a}_{jj}}|-r_{i}^{(\bar{S}\cap\alpha)}[A(\alpha)] r_{j}[A(\alpha)]}, &\nonumber\\ \max\limits_{i\in (S\cap\alpha), \atop j\in(\bar{S}\cap\alpha):a_{ji}\neq 0}\frac{|{{a}_{ii}}|R_{j}[A(\alpha, \bar{\alpha})]+r_{j}^{(S\cap\alpha)}[A(\alpha)]R_{i}[A(\alpha, \bar{\alpha})]}{[|{{a}_{jj}}|-r_{j}^{(\bar{S}\cap\alpha)}[A(\alpha)]]|{{a}_{ii}}|-r_{j}^{(S\cap\alpha)}[A(\alpha)]r_{i}[A(\alpha)]}, & \nonumber\\ \max\limits_{i\in (S\cap\alpha)\atop:r_{i}^{(\bar{S}\cap\alpha)}[A(\alpha)] = 0}\frac{R_{i}[A(\alpha, \bar{\alpha})]}{|a_{ii}|-r_{i}^{(S\cap\alpha)}[A(\alpha)]}, \max\limits_{j\in \bar{S}\cap\alpha\atop:r_{j}^{(S\cap\alpha)}[A(\alpha)] = 0}\frac{R_{j}[A(\alpha, \bar{\alpha})]}{|a_{jj}|-r_{j}^{(\bar{S}\cap\alpha)}[A(\alpha)]} \Bigg\} = \lambda(\alpha). \end{eqnarray*}

    Hence, ||F|{{|}_{\infty }}\leq 1+\lambda(\alpha) . The proof is completed.

    Lemma 6. Let A = \left[{{a}_{ij}} \right]\in {{{C}}^{n\times n}} be an S -SOB matrix and x = [\mu(A(\alpha))]^{-1}y^{T} , where \alpha\subseteq S , or \alpha\subseteq \bar{S}. Let \; x = (x_{1}, x_{2}, \cdots, x_{k}) , y = (y_{1}, y_{2}, \cdots, y_{k}) , y_{k} > 0 , x_{g} = \max\limits_{i_{k}\in\alpha} x_{k} , then

    \begin{eqnarray} 0 \leq x_{k} \leq\max\limits_{i_{v}\in \alpha}\frac{y_{v}}{|a_{i_{v}i_{v}}|- r_{i_{v}}^{\alpha}(A)}, \; i_{k}\in\alpha. \end{eqnarray} (3.17)

    Proof. Note that x = [\mu(A(\alpha))]^{-1}y^{T} , so [\mu(A(\alpha))]x = y^{T}. For all \alpha\in S , or \alpha\in \bar{S} , from Lemma 2, \mu(A(\alpha)) is an H -matrix, so [\mu(A(\alpha))]^{-1}\geq0 by Eq (1.3). Then

    y_{g} = |a_{i_{g}i_{g}}|x_{g}-\sum\limits_{i_{v}\in \alpha}|a_{i_{g}i_{v}}|x_{v}\geq|a_{i_{g}i_{g}}|x_{g}-\sum\limits_{i_{v}\in \alpha}|a_{i_{g}i_{v}}|x_{g},

    which gives x_{g}\leq\frac{y_{g}}{|a_{i_{g}i_{g}}|-\sum\limits_{i_{v}\in \alpha}|a_{i_{g}i_{v}}|} = \frac{y_{g}}{|a_{i_{g}i_{g}}|- r_{i_{g}}^{\alpha}(A)}. Consequently, 0 \leq x_{k} \leq\max\limits_{i_{v}\in \alpha}\frac{y_{v}}{|a_{i_{v}i_{v}}|- r_{i_{v}}^{\alpha}(A)}, \; i_{k}\in\alpha .

    Lemma 7. Let A = \left[{{a}_{ij}} \right]\in {{{C}}^{n\times n}} be an S -SOB matrix, x, \; y^{T} from Lemma 6, if \alpha is contained neither in S nor in \bar{S} , x_{g} = \max\limits_{i_{k}\in\alpha} x_{k} , then

    \begin{eqnarray} 0 \leq x_{k} \leq \pi_{y^{T}}(\alpha), \; i_{k}\in\alpha, \end{eqnarray} (3.18)

    where

    \begin{eqnarray*} &&\pi_{y^{T}}(\alpha) = \max\{\max\limits_{i\in (S\cap\alpha), \atop j\in(\bar{S}\cap\alpha)}\frac{|{{a}_{jj}}|y_{i}+r_{i}^{(\bar{S}\cap\alpha)}[A(\alpha)]y_{j}}{[|{{a}_{ii}}| -r_{i}^{(S\cap\alpha)}[A(\alpha)]]|{{a}_{jj}}|-r_{i}^{(\bar{S}\cap\alpha)}[A(\alpha)] r_{j}[A(\alpha)]}, \nonumber\\ &&\max\limits_{i\in (S\cap\alpha), \atop j\in(\bar{S}\cap\alpha)}\frac{|{{a}_{ii}}|y_{j}+r_{j}^{(S\cap\alpha)}[A(\alpha)]y_{i}}{[|{{a}_{jj}}| -r_{j}^{(\bar{S}\cap\alpha)}[A(\alpha)]]|{{a}_{ii}}|-r_{j}^{(S\cap\alpha)}[A(\alpha)]r_{i}[A(\alpha)]}\}. \end{eqnarray*}

    Proof. When \alpha is contained neither in S nor in \bar{S} , A(\alpha) is an (S\cap\alpha) -SOB matrix, so is \mu(A(\alpha)) . Thus,

    ||[\mu(A(\alpha))]^{-1}y^{T}||_{\infty} = ||x||_{\infty} = \max\limits_{i_{k}\in\alpha}x_{k}.

    Replacing A and D in Theorem 6 with [\mu(A(\alpha))]^{-1} and y^{T} , respectively, yields

    \begin{eqnarray*} &&||[\mu(A(\alpha))]^{-1}y^{T}||_{\infty}\leq\max\{\max\limits_{i\in (S\cap\alpha), \atop j\in(\bar{S}\cap\alpha)}\frac{|{{a}_{jj}}|y_{i}+r_{i}^{(\bar{S}\cap\alpha)}[A(\alpha)]y_{j}}{[|{{a}_{ii}}| -r_{i}^{(S\cap\alpha)}[A(\alpha)]]|{{a}_{jj}}|-r_{i}^{(\bar{S}\cap\alpha)}[A(\alpha)] r_{j}[A(\alpha)]}, \nonumber\\ &&\max\limits_{i\in (S\cap\alpha), \atop j\in(\bar{S}\cap\alpha)}\frac{|{{a}_{ii}}|y_{j}+r_{j}^{(S\cap\alpha)}[A(\alpha)]y_{i}}{[|{{a}_{jj}}| -r_{j}^{(\bar{S}\cap\alpha)}[A(\alpha)]]|{{a}_{ii}}|-r_{j}^{S}[A(\alpha)]r_{i}[A(\alpha)]}\}\nonumber\\ = &&\max\{\max\limits_{i\in (S\cap\alpha), \atop j\in(\bar{S}\cap\alpha)}\frac{|{{a}_{jj}}|y_{i}+r_{i}^{(\bar{S}\cap\alpha)}(A)y_{j}}{[|{{a}_{ii}}| -r_{i}^{(S\cap\alpha)}(A)]|{{a}_{jj}}|-r_{i}^{(\bar{S}\cap\alpha)}(A) r_{j}^{\alpha}(A)}, \nonumber\\ &&\max\limits_{i\in (S\cap\alpha), \atop j\in(\bar{S}\cap\alpha)}\frac{|{{a}_{ii}}|y_{j}+r_{j}^{(S\cap\alpha)}(A)y_{i}}{[|{{a}_{jj}}| -r_{j}^{(\bar{S}\cap\alpha)}(A)]|{{a}_{ii}}|-r_{j}^{(S\cap\alpha)}(A)r_{i}^{\alpha}(A)}\} = \pi_{y^{T}}(\alpha). \end{eqnarray*}

    Which implies that: 0 \leq x_{k} \leq \pi_{y^{T}}(\alpha)), \; i_{k}\in\alpha.

    For the sake of convenience, assume that the symbol of A/\alpha in this part is the same as in the second part and denote:

    v_{j_{t}} = ({{a}_{j_{t}i_{1}}}, {{a}_{j_{t}i_{2}}}, \cdots, {{a}_{j_{t}i_{k}}}), w_{j_{s}} = ({{a}_{i_{1}j_{s}}}, {{a}_{i_{2}j_{s}}}, \cdots, {{a}_{i_{k}j_{s}}})^{T},
    |v_{j_{t}}| = (|{{a}_{j_{t}i_{1}}}|, |{{a}_{j_{t}i_{2}}}|, \cdots, |{{a}_{j_{t}i_{k}}}|), |w_{j_{s}}| = (|{{a}_{i_{1}j_{s}}}|, |{{a}_{i_{2}j_{s}}}|, \cdots, |{{a}_{i_{k}j_{s}}}|)^{T}.

    I = (1, 1, \cdots, 1)^{T} is an k order column vector.

    Theorem 7. Let A = ({{a}_{ij}})\in {{C}^{n\times n}} be an S -SOB matrix, n\ge 2 and A is a matrix satisfying {{a}_{ij}} = 0, {{a}_{ii}} > r_{i}(A) and {{a}_{ji}} = 0, {{a}_{jj}} > r_{j}(A) for i\in S, j\in \bar{S}. Denote A/\alpha = (a^{'}_{j_{t}j_{s}}) . If \alpha\subset S , then,

    ||A^{-1}||_{\infty}\leq\zeta(\alpha)\left[1+\max\limits_{i\in\alpha}\frac{R_{i}[A(\alpha, \bar{\alpha})]}{|a_{ii}|-r_{i}[A(\alpha)]}\right]\theta_{1}(\alpha),

    where \theta_{1}(\alpha) = \max\{\max\limits_{i\in\alpha}\frac{1}{|a_{ii}|-r_{i}(A(\alpha))}, \; \eta_{1}(\alpha)\},

    \begin{eqnarray*} &&\eta_{1}(\alpha) = \nonumber\\ &&\max\{\max\limits_{i\in (S\setminus\alpha), \atop j\in\bar{S}}\frac{|{{a}_{jj}}|-r_{j}^{\bar{S}}(A)+ r_{i}^{\bar{S}}(A)+\max\limits_{v\in \alpha}\frac{r_{v}^{\bar{S}}(A)}{|a_{vv}|- r_{v}^{\alpha}(A)}[r_{i}^{\alpha}(A)+r_{j}^{\alpha}(A)]} {h_{i, j}}, \nonumber\\ &&\max\limits_{i\in (S\setminus\alpha), \atop j\in\bar{S}}\frac{|{{a}_{ii}}|-r_{i}^{(S\setminus\alpha)}(A)+ r_{j}^{(S\setminus\alpha)}(A)+\max\limits_{v\in \alpha}\frac{r_{v}^{(S\setminus\alpha)}}{|a_{vv}|- r_{v}^{\alpha}(A)}[r_{i}^{\alpha}(A)+r_{j}^{\alpha}(A)]} {h_{i, j}} \}. \end{eqnarray*}
    \begin{eqnarray*} &&h_{i, j} = \left[|{{a}_{ii}}|-r_{i}^{(S\setminus\alpha)}(A)-|v_{i}|[\mu(A(\alpha))]^{-1}\sum\limits_{k\in(S\setminus\alpha)}|w_{k}|\right]\nonumber\\ &&\times \left[|{{a}_{jj}}|-r_{j}^{\bar{S}}(A)-|v_{j}|[\mu(A(\alpha))]^{-1}\sum\limits_{k\in\bar{S}}|w_{k}|\right]\nonumber\\ &&-\left[r_{i}^{\bar{S}}(A)|v_{i}|[\mu(A(\alpha))]^{-1}\sum\limits_{k\in \bar{S}}|w_{k}|\right] \times\left[r_{j}^{\bar{\alpha}}(A)+|v_{j}|[\mu(A(\alpha))]^{-1} \sum\limits_{k\in(S\setminus\alpha)}|w_{k}|\right]. \end{eqnarray*}

    Proof. By Lemma 2, we know A(\alpha) is an SDD matrix. Applying Varah's bound to A(\alpha) , we get

    \begin{eqnarray} ||A(\alpha)^{-1}||_{\infty}\leq\max\limits_{i\in\alpha}\frac{1}{|a_{ii}|-r_{i}(A(\alpha))}. \end{eqnarray} (3.19)

    By Corollary 4, we have

    \begin{eqnarray} ||F||_{\infty}\leq1+\max\limits_{i\in\alpha}\frac{R_{i}[A(\alpha, \bar{\alpha})]}{|a_{ii}|-r_{i}[A(\alpha)]}. \end{eqnarray} (3.20)

    By Theorem 4, it is easy to know A/\alpha\in\{ GDSDD _{n-k}^{(S\setminus\alpha), \bar{S}}\} . Therefore, from Theorem 3,

    \begin{eqnarray*} &&||(A/\alpha)^{-1}||_{\infty}\leq\nonumber\\ &&\max\{\max\limits_{j_{t}\in (S\setminus\alpha) , \atop j_{s}\in\bar{S}}\frac{|{{a}^{'}_{j_{s}j_{s}}}|-r_{j_{s}}^{\bar{S}}(A/\alpha)+r_{j_{t}}^{\bar{S}}(A/\alpha)} {[|{{a}^{'}_{j_{t}j_{t}}}|-r_{j_{t}}^{(S\setminus\alpha)}(A/\alpha)][|{{a}^{'}_{j_{s}j_{s}}}|-r_{j_{s}}^{\bar{S}}(A/\alpha)] -r_{j_{t}}^{\bar{S}}(A/\alpha)r_{j_{s}}^{(S\setminus\alpha)}(A/\alpha)}, \nonumber\\ &&\max\limits_{j_{t}\in (S\setminus\alpha) , \atop j_{s}\in\bar{S}}\frac{|{{a}^{'}_{j_{t}j_{t}}}|-r_{j_{t}}^{(S\setminus\alpha)}(A/\alpha)+r_{j_{s}}^{(S\setminus\alpha)}(A/\alpha)}{[|{{a}^{'}_{j_{t}j_{t}}}|-r_{j_{t}}^{(S\setminus\alpha)}(A/\alpha)] [|{{a}^{'}_{j_{s}j_{s}}}|-r_{j_{s}}^{\bar{S}}(A/\alpha)] -r_{j_{t}}^{\bar{S}}(A/\alpha)r_{j_{s}}^{(S\setminus\alpha)}(A/\alpha)}\}. \end{eqnarray*}

    And then

    \begin{eqnarray*} &&[|{{a}^{'}_{j_{t}j_{t}}}|-r_{j_{t}}^{(S\setminus\alpha)}(A/\alpha)][|{{a}^{'}_{j_{s}j_{s}}}|-r_{j_{s}}^{\bar{S}}(A/\alpha)] -r_{j_{t}}^{\bar{S}}(A/\alpha)r_{j_{s}}^{(S\setminus\alpha)}(A/\alpha)\nonumber\\ &&\geq\left[|{{a}_{j_{t}j_{t}}}|-r_{j_{t}}^{(S\setminus\alpha)}(A)-|v_{j_{t}}|[\mu(A(\alpha))]^{-1}\sum\limits_{j_{k}\in(S\setminus\alpha)} |w_{j_{k}}|\right]\nonumber\\ &&\times\left[|{{a}_{j_{s}j_{s}}}|-r_{j_{s}}^{\bar{S}}(A)-|v_{j_{s}}|[\mu(A(\alpha))]^{-1}\sum\limits_{j_{k}\in\bar{S}} |w_{j_{k}}|\right]\nonumber\\ &&-\left[r_{j_{t}}^{\bar{S}}(A)+|v_{j_{t}}|[\mu(A(\alpha))]^{-1}\sum\limits_{j_{k}\in \bar{S}}|w_{j_{k}}|\right] \times\left[r_{j_{s}}^{(S\setminus\alpha)}(A)+|v_{j_{s}}|[\mu(A(\alpha))]^{-1} \sum\limits_{j_{k}\in(S\setminus\alpha)}|w_{j_{k}}|\right] > 0. \end{eqnarray*}
    \begin{eqnarray} &&|{{a}^{'}_{j_{s}j_{s}}}|-r_{j_{s}}^{\bar{S}}(A/\alpha)+r_{j_{t}}^{\bar{S}}(A/\alpha)\\ &&\leq|{{a}_{j_{s}j_{s}}}|-r_{j_{s}}^{\bar{S}}(A)+ r_{j_{t}}^{\bar{S}}(A)+|v_{j_{s}}|[\mu(A(\alpha))]^{-1}\sum\limits_{j_{k}\in\bar{S}} |w_{j_{k}}| +|v_{j_{t}}|[\mu(A(\alpha))]^{-1}\sum\limits_{j_{k}\in \bar{S}}|w_{j_{k}}|\\ && = |{{a}_{j_{s}j_{s}}}|-r_{j_{s}}^{\bar{S}}(A)+ r_{j_{t}}^{\bar{S}}(A)+(|v_{j_{s}}|+|v_{j_{t}}|)[\mu(A(\alpha))]^{-1}\sum\limits_{j_{k}\in \bar{S}}|w_{j_{k}}|\\ &&\leq|{{a}_{j_{s}j_{s}}}|-r_{j_{s}}^{\bar{S}}(A)+ r_{j_{t}}^{\bar{S}}(A)+(|v_{j_{s}}|+|v_{j_{t}}|)\max\limits_{i_{v}\in \alpha}\frac{y_{v}}{|a_{i_{v}i_{v}}|- r_{i_{v}}^{\alpha}(A)}I(by\; \; (3.17))\\ && = |{{a}_{j_{s}j_{s}}}|-r_{j_{s}}^{\bar{S}}(A)+ r_{j_{t}}^{\bar{S}}(A)+\max\limits_{i_{v}\in \alpha}\frac{r_{i_{v}}^{\bar{S}}(A)}{|a_{i_{v}i_{v}}|- r_{i_{v}}^{\alpha}(A)}[r_{j_{t}}^{\alpha}(A)+r_{j_{s}}^{\alpha}(A)]. \end{eqnarray} (3.21)

    Similarly,

    \begin{eqnarray} &&|{{a}^{'}_{j_{t}j_{t}}}|-r_{j_{t}}^{(S\setminus\alpha)}(A/\alpha)+r_{j_{s}}^{(S\setminus\alpha)}(A/\alpha)\leq|{{a}_{j_{t}j_{t}}}|-r_{j_{t}}^{(S\setminus\alpha)}(A)+ r_{j_{s}}^{(S\setminus\alpha)}(A)\\ &&+\max\limits_{i_{v}\in \alpha}\frac{r_{i_{v}}^{(S\setminus\alpha)}(A)}{|a_{i_{v}i_{v}}|- r_{i_{v}}^{\alpha}(A)}[r_{j_{t}}^{\alpha}(A)+r_{j_{s}}^{\alpha}(A)]. \end{eqnarray} (3.22)

    Let

    \begin{eqnarray} &&h_{j_{t}, j_{s}} = \left[|{{a}_{j_{t}j_{t}}}|-r_{j_{t}}^{(S\setminus\alpha)}(A)-|v_{j_{t}}|[\mu(A(\alpha))]^{-1}\sum\limits_{j_{k}\in(S\setminus\alpha)} |w_{j_{k}}|\right]\\ &&\times\left[|{{a}_{j_{s}j_{s}}}|-r_{j_{s}}^{\bar{S}}(A)-|v_{j_{s}}|[\mu(A(\alpha))]^{-1}\sum\limits_{j_{k}\in\bar{S}} |w_{j_{k}}|\right]-\left[|v_{j_{t}}|[\mu(A(\alpha))]^{-1}\sum\limits_{j_{k}\in \bar{S}}|w_{j_{k}}|\right]\\ &&\times\left[r_{j_{s}}^{(S\setminus\alpha)}(A)+|v_{j_{s}}|[\mu(A(\alpha))]^{-1} \sum\limits_{j_{k}\in(S\setminus\alpha)}|w_{j_{k}}|\right] > 0. \end{eqnarray} (3.23)

    Furthermore, by Eqs (3.21)–(3.23), we have

    \begin{eqnarray} &&||(A/\alpha)^{-1}||_{\infty}\leq\\ &&\max\{\max\limits_{j_{t}\in (S\setminus\alpha), \atop j_{s}\in\bar{S}}\frac{|{{a}_{j_{s}j_{s}}}|-r_{j_{s}}^{\bar{S}}(A)+ r_{j_{t}}^{\bar{S}}(A)+\max\limits_{i_{v}\in \alpha}\frac{r_{i_{v}}^{\bar{S}}(A)}{|a_{i_{v}i_{v}}|- r_{i_{v}}^{\alpha}(A)}[r_{j_{t}}^{\alpha}(A)+r_{j_{s}}^{\alpha}(A)]} {h_{j_{t}, j_{s}}}, \\ &&\max\limits_{j_{t}\in(S\setminus\alpha) , \atop j_{s}\in\bar{S}}\frac{|{{a}_{j_{t}j_{t}}}|-r_{j_{t}}^{(S\setminus\alpha)}(A)+ r_{j_{s}}^{(S\setminus\alpha)}(A)+\max\limits_{i_{v}\in \alpha}\frac{r_{i_{v}}^{(S\setminus\alpha)}(A)}{|a_{i_{v}i_{v}}|- r_{i_{v}}^{\alpha}(A)}[r_{j_{t}}^{\alpha}(A)+r_{j_{s}}^{\alpha}(A)]} {h_{j_{t}, j_{s}}} \}\\ && = \max\{\max\limits_{i\in (S\setminus\alpha), \atop j\in\bar{S}}\frac{|{{a}_{jj}}|-r_{j}^{\bar{S}}(A)+ r_{i}^{\bar{S}}(A)+\max\limits_{v\in \alpha}\frac{r_{v}^{\bar{S}}(A)}{|a_{vv}|- r_{v}^{\alpha}(A)}[r_{i}^{\alpha}(A)+r_{j}^{\alpha}(A)]} {h_{i, j}}, \\ &&\max\limits_{i\in(S\setminus\alpha) , \atop j\in\bar{S}}\frac{|{{a}_{ii}}|-r_{i}^{(S\setminus\alpha)}(A)+ r_{j}^{(S\setminus\alpha)}(A)+\max\limits_{v\in \alpha}\frac{r_{v}^{(S\setminus\alpha)}}{|a_{vv}|- r_{v}^{\alpha}(A)}[r_{i}^{\alpha}(A)+r_{j}^{\alpha}(A)]} {h_{i, j}} \}. \end{eqnarray} (3.24)

    Finally, by Eqs (3.2), (3.3), (3.19), (3.20) and (3.24), the conclusion follows.

    The following inference can be naturally drawn from Theorem 7:

    Corollary 5. Let A = ({{a}_{ij}})\in {{C}^{n\times n}} be an S -SOB matrix, n\ge 2 and A be a matrix satisfying {{a}_{ij}} = 0, {{a}_{ii}} > r_{i}(A) and {{a}_{ji}} = 0, {{a}_{jj}} > r_{j}(A) for i\in S, j\in \bar{S}. Denote A/\alpha = (a^{'}_{j_{t}j_{s}}) . If \alpha\subset \bar{S} , then,

    ||A^{-1}||_{\infty}\leq\zeta(\alpha)\left[1+\max\limits_{i\in\alpha}\frac{R_{i}[A(\alpha, \bar{\alpha})]}{|a_{ii}|-r_{i}[A(\alpha)]}\right]\theta_{2}(\alpha),

    where \theta_{2}(\alpha) = \max\{\max\limits_{i\in\alpha}\frac{1}{|a_{ii}|-r_{i}(A(\alpha))}, \; \eta_{2}(\alpha)\},

    \begin{eqnarray*} &&\eta_{2}(\alpha) = \nonumber\\ &&\max\{\max\limits_{i\in S, \atop j\in(\bar{S}\setminus\alpha)}\frac{|{{a}_{jj}}|-r_{j}^{(\bar{S}\setminus\alpha)}(A)+ r_{i}^{(\bar{S}\setminus\alpha)}(A)+\max\limits_{v\in \alpha}\frac{r_{v}^{(\bar{S}\setminus\alpha)}(A)}{|a_{vv}|- r_{v}^{\alpha}(A)}[r_{i}^{\alpha}(A)+r_{j}^{\alpha}(A)]} {z_{i, j}}, \nonumber\\ &&\max\limits_{i\in S, \atop j\in(\bar{S}\setminus\alpha)}\frac{|{{a}_{ii}}|-r_{i}^{S}(A)+ r_{j}^{S}(A)+\max\limits_{v\in \alpha}\frac{r_{v}^{S}(A)}{|a_{vv}|- r_{v}^{\alpha}(A)}[r_{i}^{\alpha}(A)+r_{j}^{\alpha}(A)]} {z_{i, j}} \}. \end{eqnarray*}
    \begin{eqnarray*} &&z_{i, j} = \left[|{{a}_{ii}}|-r_{i}^{S}(A)-|v_{i}|[\mu(A(\alpha))]^{-1}\sum\limits_{k\in S}|w_{k}|\right]\nonumber\\ &&\times \left[|{{a}_{jj}}|-r_{j}^{(\bar{S}\setminus\alpha)}(A)-|v_{j}|[\mu(A(\alpha))]^{-1}\sum\limits_{k\in(\bar{S}\setminus\alpha)}|w_{k}|\right]\nonumber\\ &&-\left[r_{i}^{(\bar{S}\setminus\alpha)}(A)|v_{i}|[\mu(A(\alpha))]^{-1}\sum\limits_{k\in (\bar{S}\setminus\alpha)}|w_{k}|\right] \times\left[r_{j}^{\bar{\alpha}}(A)+|v_{j}|[\mu(A(\alpha))]^{-1} \sum\limits_{k\in S}|w_{k}|\right]. \end{eqnarray*}

    Theorem 8. Let A = ({{a}_{ij}})\in {{C}^{n\times n}} be an S -SOB matrix, n\ge 2 and A be a matrix satisfying {{a}_{ij}} = 0, {{a}_{ii}} > r_{i}(A) and {{a}_{ji}} = 0, {{a}_{jj}} > r_{j}(A) for i\in S, j\in \bar{S}. Denote A/\alpha = (a^{'}_{j_{t}j_{s}}) . If \alpha is contained neither in S nor in \bar{S} , then,

    ||A^{-1}||_{\infty}\leq\zeta(\alpha)\left[1+\lambda(\alpha)\right]\theta_{3}(\alpha),

    where \theta_{3}(\alpha) = \max\{\delta_{1}(\alpha), \; \eta_{3}(\alpha)\},

    \begin{eqnarray*} \delta_{1}(\alpha) = \max\{\max\limits_{i\in (S\cap\alpha) , \atop j\in(\bar{S}\cap\alpha)}\frac{|{{a}_{jj}}|+r_{i}^{(\bar{S}\cap\alpha)}(A(\alpha))}{[|{{a}_{ii}}|-r_{i}^{(S\cap\alpha)}(A(\alpha))] |{{a}_{jj}}|-r_{i}^{(\bar{S}\cap\alpha)}(A(\alpha)) r_{j}(A(\alpha))}, &\nonumber\\ \max\limits_{i\in (S\cap\alpha), \atop j\in(\bar{S}\cap\alpha)}\frac{|{{a}_{ii}}|+r_{j}^{(S\cap\alpha)}[(A(\alpha))]}{[|{{a}_{jj}}| -r_{j}^{(\bar{S}\cap\alpha)}(A(\alpha))]|{{a}_{ii}}|-r_{j}^{(S\cap\alpha)}(A(\alpha))r_{i}(A(\alpha))} \}. \end{eqnarray*}
    \begin{eqnarray*} &&\eta_{3}(\alpha) = \max\{\max\limits_{i\in (S\setminus\alpha), \atop j\in(\bar{S}\setminus\alpha)}\frac{|{{a}_{jj}}|-r_{j}^{(\bar{S}\setminus\alpha)}(A)+ r_{i}^{\alpha}(A)+[r_{i}^{\alpha}(A)+r_{j}^{\alpha}(A)]\pi_{\mathbf{y_{1}}}(\alpha)} {f_{i, j}}, \nonumber\\ &&\max\limits_{i\in(S\setminus\alpha) , \atop j\in(\bar{S}\setminus\alpha)}\frac{|{{a}_{ii}}|-r_{i}^{(S\setminus\alpha)}(A)+ r_{j}^{(S\setminus\alpha)}(A)+[r_{i}^{\alpha}(A)+r_{j}^{\alpha}(A)]\pi_{\mathbf{y_{2}}}(\alpha)} {f_{i, j}} \}. \end{eqnarray*}
    \begin{eqnarray*} f_{i, j}& = &\left[|{{a}_{ii}}|-r_{i}^{(S\setminus\alpha)}(A)-|v_{i}|[\mu(A(\alpha))]^{-1}\sum\limits_{k\in(S\setminus\alpha)} |w_{k}|\right]\nonumber\\ &\times&\left[|{{a}_{jj}}|-r_{j}^{(\bar{S}\setminus\alpha)}(A)-|v_{j}|[\mu(A(\alpha))]^{-1}\sum\limits_{k\in(\bar{S}\setminus\alpha)} |w_{k}|\right]\nonumber\\ &-&\left[r_{i}^{(\bar{S}\setminus\alpha)}(A)+|v_{i}|[\mu(A(\alpha))]^{-1}\sum\limits_{k\in (\bar{S}\setminus\alpha)}|w_{k}|\right]\nonumber\\ &\times&\left[r_{j}^{(S\setminus\alpha)}(A)+|v_{j}|[\mu(A(\alpha))]^{-1} \sum\limits_{k\in(S\setminus\alpha)}|w_{k}|\right]. \end{eqnarray*}

    Proof. By Lemma 3, we know A(\alpha) is an (S\cap\alpha) -SOB matrix. Applying the bound of Theorem 2 to A(\alpha) , we get

    \begin{eqnarray} \|A(\alpha)^{-1}\|_{\infty}\leq\max\{\max\limits_{i\in (S\cap\alpha), \atop j\in(\bar{S}\cap\alpha)}\frac{|{{a}_{jj}}|+r_{i}^{(\bar{S}\cap\alpha)}(A(\alpha))}{[|{{a}_{ii}}|-r_{i}^{(S\cap\alpha)}(A(\alpha))] |{{a}_{jj}}|-r_{i}^{(\bar{S}\cap\alpha)}(A(\alpha)) r_{j}(A(\alpha))}, &\\ \max\limits_{i\in (S\cap\alpha), \atop j\in(\bar{S}\cap\alpha)}\frac{|{{a}_{ii}}|+r_{j}^{(S\cap\alpha)}[(A(\alpha))]}{[|{{a}_{jj}}| -r_{j}^{(\bar{S}\cap\alpha)}(A(\alpha))]|{{a}_{ii}}|-r_{j}^{(S\cap\alpha)}(A(\alpha))r_{i}(A(\alpha))} \} = \delta_{1}(\alpha). \end{eqnarray} (3.25)

    By Corollary 4, we have

    \begin{eqnarray} ||F||_{\infty}\leq1+\lambda(\alpha). \end{eqnarray} (3.26)

    By Corollary 2, we know A/\alpha\in\{ GDSDD _{n-k}^{(S\setminus\alpha), (\bar{S}\setminus\alpha)}\} . Therefore,

    \begin{eqnarray} &&||(A/\alpha)^{-1}||_{\infty}\leq\\ &&\max\{\max\limits_{j_{t}\in (S\setminus\alpha) , \atop j_{s}\in(\bar{S}\setminus\alpha)}\frac{|{{a}^{'}_{j_{s}j_{s}}}|-r_{j_{s}}^{(\bar{S}\setminus\alpha)}(A/\alpha)+r_{j_{t}}^{(\bar{S}\setminus\alpha)}(A/\alpha)} {[|{{a}^{'}_{j_{t}j_{t}}}|-r_{j_{t}}^{(S\setminus\alpha)}(A/\alpha)][|{{a}^{'}_{j_{s}j_{s}}}|-r_{j_{s}}^{(\bar{S}\setminus\alpha)}(A/\alpha)] -r_{j_{t}}^{(\bar{S}\setminus\alpha)}(A/\alpha)r_{j_{s}}^{(S\setminus\alpha)}(A/\alpha)}, \\ &&\max\limits_{j_{t}\in (S\setminus\alpha) , \atop j_{s}\in(\bar{S}\setminus\alpha)}\frac{|{{a}^{'}_{j_{t}j_{t}}}|-r_{j_{t}}^{(S\setminus\alpha)}(A/\alpha)+r_{j_{s}}^{(S\setminus\alpha)}(A/\alpha)}{[|{{a}^{'}_{j_{t}j_{t}}}|-r_{j_{t}}^{(S\setminus\alpha)}(A/\alpha)] [|{{a}^{'}_{j_{s}j_{s}}}|-r_{j_{s}}^{(\bar{S}\setminus\alpha)}(A/\alpha)] -r_{j_{t}}^{(\bar{S}\setminus\alpha)}(A/\alpha)r_{j_{s}}^{(S\setminus\alpha)}(A/\alpha)}\}. \end{eqnarray} (3.27)

    And then,

    \begin{eqnarray*} &&[|{{a}^{'}_{j_{t}j_{t}}}|-r_{j_{t}}^{(S\setminus\alpha)}(A/\alpha)][|{{a}^{'}_{j_{s}j_{s}}}|-r_{j_{s}}^{(\bar{S}\setminus\alpha)}(A/\alpha)] -r_{j_{t}}^{(\bar{S}\setminus\alpha)}(A/\alpha)r_{j_{s}}^{(S\setminus\alpha)}(A/\alpha)\nonumber\\ &&\geq\left[|{{a}_{j_{t}j_{t}}}|-r_{j_{t}}^{(S\setminus\alpha)}(A)-|v_{j_{t}}|[\mu(A(\alpha))]^{-1}\sum\limits_{j_{k}\in(S\setminus\alpha)} |w_{j_{k}}|\right]\nonumber\\ &&\times\left[|{{a}_{j_{s}j_{s}}}|-r_{j_{s}}^{(\bar{S}\setminus\alpha)}(A)-|v_{j_{s}}|[\mu(A(\alpha))]^{-1}\sum\limits_{j_{k}\in(\bar{S}\setminus\alpha)} |w_{j_{k}}|\right]\nonumber\\ &&-\left[r_{j_{t}}^{(\bar{S}\setminus\alpha)}(A)+|v_{j_{t}}|[\mu(A(\alpha))]^{-1}\sum\limits_{j_{k}\in (\bar{S}\setminus\alpha)}|w_{j_{k}}|\right]\nonumber\\ && \times\left[r_{j_{s}}^{(S\setminus\alpha)}(A)+|v_{j_{s}}|[\mu(A(\alpha))]^{-1} \sum\limits_{j_{k}\in(S\setminus\alpha)}|w_{j_{k}}|\right] > 0. \end{eqnarray*}
    \begin{eqnarray*} &&|{{a}^{'}_{j_{s}j_{s}}}|-r_{j_{s}}^{(\bar{S}\setminus\alpha)}(A/\alpha)+r_{j_{t}}^{(\bar{S}\setminus\alpha)}(A/\alpha)\leq|{{a}_{j_{s}j_{s}}}|-r_{j_{s}}^{(\bar{S}\setminus\alpha)}(A)+ r_{j_{t}}^{(\bar{S}\setminus\alpha)}(A)\nonumber\\ &&+|v_{j_{s}}|[\mu(A(\alpha))]^{-1}\sum\limits_{j_{k}\in(\bar{S}\setminus\alpha)} |w_{j_{k}}| +|v_{j_{t}}|[\mu(A(\alpha))]^{-1}\sum\limits_{j_{k}\in (\bar{S}\setminus\alpha)}|w_{j_{k}}|\nonumber\\ && = |{{a}_{j_{s}j_{s}}}|-r_{j_{s}}^{(\bar{S}\setminus\alpha)}(A)+ r_{j_{t}}^{(\bar{S}\setminus\alpha)}(A)+(|v_{j_{s}}|+|v_{j_{t}}|)[\mu(A(\alpha))]^{-1}\sum\limits_{j_{k}\in(\bar{S}\setminus\alpha)}|w_{j_{k}}|. \end{eqnarray*}

    Let y^{T} = \mathbf{y_{1}} = \sum\limits_{j_{k}\in (\bar{S}\setminus\alpha)}|w_{j_{k}}| , y^{T} from Lemma 7, we get

    \begin{eqnarray} &&|{{a}^{'}_{j_{s}j_{s}}}|-r_{j_{s}}^{(\bar{S}\setminus\alpha)}(A/\alpha)+r_{j_{t}}^{(\bar{S}\setminus\alpha)}(A/\alpha)\\ &&\leq|{{a}_{j_{s}j_{s}}}|-r_{j_{s}}^{(\bar{S}\setminus\alpha)}(A)+ r_{j_{t}}^{(\bar{S}\setminus\alpha)}(A)+(|v_{j_{s}}|+|v_{j_{t}}|)\pi(\alpha)I\\ && = |{{a}_{j_{s}j_{s}}}|-r_{j_{s}}^{(\bar{S}\setminus\alpha)}(A)+ r_{j_{t}}^{(\bar{S}\setminus\alpha)}(A)+[r_{j_{t}}^{\alpha}(A)+r_{j_{s}}^{\alpha}(A)]\pi_{\mathbf{y_{1}}}(\alpha). \end{eqnarray} (3.28)

    In like manner, let y^{T} = \mathbf{y_{2}} = \sum\limits_{j_{k}\in (S\setminus\alpha)}|w_{j_{k}}| , y^{T} from Lemma 7, we get

    \begin{eqnarray} &&|{{a}^{'}_{j_{t}j_{t}}}|-r_{j_{t}}^{(S\setminus\alpha)}(A/\alpha)+r_{j_{s}}^{(S\setminus\alpha)}(A/\alpha)\leq|{{a}_{j_{t}j_{t}}}|-r_{j_{t}}^{(S\setminus\alpha)}(A)+ r_{j_{s}}^{(S\setminus\alpha)}(A)\\ &&+[r_{j_{t}}^{\alpha}(A)+r_{j_{s}}^{\alpha}(A)]\pi_{\mathbf{y_{2}}}(\alpha). \end{eqnarray} (3.29)

    Let

    \begin{eqnarray} f_{j_{t}, j_{s}}& = &\left[|{{a}_{j_{t}j_{t}}}|-r_{j_{t}}^{(S\setminus\alpha)}(A)-|v_{j_{t}}|[\mu(A(\alpha))]^{-1}\sum\limits_{j_{k}\in(S\setminus\alpha)} |w_{j_{k}}|\right]\\ &\times&\left[|{{a}_{j_{s}j_{s}}}|-r_{j_{s}}^{(\bar{S}\setminus\alpha)}(A)-|v_{j_{s}}|[\mu(A(\alpha))]^{-1}\sum\limits_{j_{k}\in(\bar{S}\setminus\alpha)} |w_{j_{k}}|\right]\\ &-&\left[r_{j_{t}}^{(\bar{S}\setminus\alpha)}(A)+|v_{j_{t}}|[\mu(A(\alpha))]^{-1}\sum\limits_{j_{k}\in (\bar{S}\setminus\alpha)}|w_{j_{k}}|\right]\\ &\times&\left[r_{j_{s}}^{(S\setminus\alpha)}(A)+|v_{j_{s}}|[\mu(A(\alpha))]^{-1} \sum\limits_{j_{k}\in(S\setminus\alpha)}|w_{j_{k}}|\right]. \end{eqnarray} (3.30)

    Furthermore, by Eqs (3.28)–(3.30), we have

    \begin{eqnarray} &&||(A/\alpha)^{-1}||_{\infty}\leq\\ &&\max\{\max\limits_{j_{t}\in (S\setminus\alpha), \atop j_{s}\in(\bar{S}\setminus\alpha)}\frac{|{{a}_{j_{s}j_{s}}}|-r_{j_{s}}^{(\bar{S}\setminus\alpha)}(A)+ r_{j_{t}}^{\bar{S}\setminus\alpha}(A)+[r_{j_{t}}^{\alpha}(A)+r_{j_{s}}^{\alpha}(A)]\pi_{\mathbf{y_{1}}}(\alpha)} {f_{j_{t}, j_{s}}}, \\ &&\max\limits_{j_{t}\in(S\setminus\alpha) , \atop j_{s}\in(\bar{S}\setminus\alpha)}\frac{|{{a}_{j_{t}j_{t}}}|-r_{j_{t}}^{(S\setminus\alpha)}(A)+ r_{j_{s}}^{(S\setminus\alpha)}(A)+[r_{j_{t}}^{\alpha}(A)+r_{j_{s}}^{\alpha}(A)]\pi_{\mathbf{y_{2}}}(\alpha)} {f_{j_{t}, j_{s}}} \}\\ && = \max\{\max\limits_{i\in (S\setminus\alpha), \atop j\in(\bar{S}\setminus\alpha)}\frac{|{{a}_{jj}}|-r_{j}^{(\bar{S}\setminus\alpha)}(A)+ r_{i}^{(\bar{S}\setminus\alpha)}(A)+[r_{i}^{\alpha}(A)+r_{j}^{\alpha}(A)]\pi_{\mathbf{y_{1}}}(\alpha)} {f_{i, j}}, \\ &&\max\limits_{i\in(S\setminus\alpha) , \atop j\in(\bar{S}\setminus\alpha)}\frac{|{{a}_{ii}}|-r_{i}^{(S\setminus\alpha)}(A)+ r_{j}^{(S\setminus\alpha)}(A)+[r_{i}^{\alpha}(A)+r_{j}^{\alpha}(A)]\pi_{\mathbf{y_{2}}}(\alpha)} {f_{i, j}} \}. \end{eqnarray} (3.31)

    Finally, by Eqs (3.2), (3.3), (3.25), (3.26) and (3.31), the conclusion follows.

    Theorem 9. Let A = \left[{{a}_{ij}} \right]\in {{{C}}^{n\times n}} be an S -SOB matrix, \phi\neq\alpha = S . If Eq (3.7) holds, then,

    ||A^{-1}||_{\infty}\leq\zeta(\alpha)\left[1+\max\limits_{i\in\alpha}\frac{R_{i}[A(\alpha, \bar{\alpha})]}{|a_{ii}|-r_{i}[A(\alpha)]}\right]\theta_{4}(\alpha),

    where \theta_{4}(\alpha) = \max\{\max\limits_{i\in\alpha}\frac{1}{|a_{ii}|-r_{i}(A(\alpha))}, \; \eta_{4}(\alpha)\},

    \begin{eqnarray*} &&\eta_{4}(\alpha) = \max\limits_{j\in \bar{S}}\frac{1}{|{{a}_{jj}}|-r_{j}^{\bar{S}}(A)-|v_{j}|[\mu(A(\alpha))]^{-1}\sum\limits_{k\in \bar{S}}|w_{k}|}. \end{eqnarray*}

    Expressly, when \phi\neq\alpha = S = \{i\} ,

    ||A^{-1}||_{\infty}\leq\left[1+\max\limits_{j\in \bar{S}}\frac{|a_{ji}|}{|a_{ii}|}\right]\left[1+\max\limits_{j\in \bar{S}}\frac{|a_{ji}|}{|a_{ii}|}\right]\theta_{4}'(\alpha).

    \theta_{4}'(\alpha) = \max\{\frac{1}{|a_{ii}|}, \; \eta_{4}'(\alpha)\},

    \begin{eqnarray*} &&\eta_{4}'(\alpha) = \max\limits_{j\in \bar{S}}\frac{1}{|{{a}_{jj}}|-r_{j}^{\bar{S}}(A)-\frac{|a_{ji}|r_{i}^{\bar{S}}(A)}{|a_{ii}|}}. \end{eqnarray*}

    Proof. By Lemma 2, we know A(\alpha) is an SDD matrix. ||A(\alpha)^{-1}||_{\infty} is the same as Eq (3.19), and ||F||_{\infty} is the same as Eq (3.20). By Theorem 5, knowing that A/\alpha is an SDD matrix. Therefore,

    \begin{eqnarray} &&||(A/\alpha)^{-1}||_{\infty}\leq \max\limits_{j_{t}\in \bar{\alpha}}\frac{1}{|{{a}^{'}_{j_{t}j_{t}}}|-r_{j_{t}}(A/\alpha)}\\ &&\leq\max\limits_{j_{t}\in \bar{\alpha}}\frac{1}{|{{a}_{j_{t}j_{t}}}|-r_{j_{t}}^{\bar{\alpha}}(A)-|v_{j_{t}}|[\mu(A(\alpha))]^{-1}\sum\limits_{j_{k}\in \bar{S}}|w_{j_{k}}|}\\ && = \max\limits_{j_{t}\in \bar{S}}\frac{1}{|{{a}_{j_{t}j_{t}}}|-r_{j_{t}}^{\bar{S}}(A)-|v_{j_{t}}|[\mu(A(\alpha))]^{-1}\sum\limits_{j_{k}\in \bar{S}}|w_{j_{k}}|}\\ && = \max\limits_{j\in \bar{S}}\frac{1}{|{{a}_{jj}}|-r_{j}^{\bar{S}}(A)-|v_{j}|[\mu(A(\alpha))]^{-1}\sum\limits_{k\in \bar{S}}|w_{k}|} = \eta_{4}. \end{eqnarray} (3.32)

    Finally, by Eqs (3.2), (3.3), (3.19), (3.20) and (3.32), the conclusion follows.

    A proof similar to Theorem 9 leads to the results.

    Corollary 6. Let A = \left[{{a}_{ij}} \right]\in {{{C}}^{n\times n}} be an S -SOB matrix, where \phi\neq\alpha = \bar{S} . If Eq (3.7) holds, then,

    ||A^{-1}||_{\infty}\leq\zeta(\alpha)\left[1+\max\limits_{i\in\alpha}\frac{r_{i}[A(\alpha, \bar{\alpha})]}{|a_{ii}|-r_{i}[A(\alpha)]}\right]\theta_{5}(\alpha),

    where \theta_{5}(\alpha) = \max\{\max\limits_{i\in\alpha}\frac{1}{|a_{ii}|-r_{i}(A(\alpha))}, \; \eta_{5}(\alpha)\},

    \begin{eqnarray*} &&\eta_{5}(\alpha) = \max\limits_{i\in S}\frac{1}{|{{a}_{ii}}|-r_{i}^{S}(A)-|v_{i}|[\mu(A(\alpha))]^{-1}\sum\limits_{k\in S}|w_{k}|}. \end{eqnarray*}

    Distinguishingly, when \phi\neq\alpha = \bar{S} = \{i\} ,

    ||A^{-1}||_{\infty}\leq\left[1+\max\limits_{j\in S}\frac{|a_{ji}|}{|a_{ii}|}\right]\left[1+\max\limits_{j\in S}\frac{|a_{ji}|}{|a_{ii}|}\right]\theta_{5}'(\alpha).

    \theta_{5}'(\alpha) = \max\{\frac{1}{|a_{ii}|}, \; \eta_{5}'(\alpha)\},

    \begin{eqnarray*} &&\eta_{5}'(\alpha) = \max\limits_{j\in S}\frac{1}{|{{a}_{jj}}|-r_{j}^{S}(A)-\frac{|a_{ji}|r_{i}^{S}(A)}{|a_{ii}|}}. \end{eqnarray*}

    Theorem 10. Let A = \left[{{a}_{ij}} \right]\in {{{C}}^{n\times n}} be an S -SOB matrix, where S\subset\alpha . If Eq (3.7) holds, then,

    ||A^{-1}||_{\infty}\leq\zeta(\alpha)[1+\beta(\alpha)]\theta_{6}(\alpha),

    where \theta_{6}(\alpha) = \max\{\delta_{2}(\alpha), \; \eta_{6}(\alpha)\},

    \begin{eqnarray*} \delta_{2}(\alpha) = \max\{\max\limits_{i\in S, j\in(\bar{S}\cap\alpha), \atop :a_{ij}\neq0}\frac{|{{a}_{jj}}|+r_{i}^{(\bar{S}\cap\alpha)}(A(\alpha))}{[|{{a}_{ii}}|-r_{i}^{S}(A(\alpha))] |{{a}_{jj}}|-r_{i}^{(\bar{S}\cap\alpha)}(A(\alpha)) r_{j}(A(\alpha))}, &\nonumber\\ \max\limits_{i\in S, j\in(\bar{S}\cap\alpha), \atop :a_{ji}\neq0}\frac{|{{a}_{ii}}|+r_{j}^{(S\cap\alpha)}[(A(\alpha))]}{[|{{a}_{jj}}| -r_{j}^{(\bar{S}\cap\alpha)}(A(\alpha))]|{{a}_{ii}}|-r_{j}^{S}(A(\alpha))r_{i}(A(\alpha))}, &\nonumber\\ \max\limits_{i\in S, j\in(\bar{S}\cap\alpha)\atop r_{i}^{(\bar{S}\cap\alpha)}(A(\alpha)) = 0}\frac{1}{|{{a}_{ii}}|-r_{i}^{S}(A(\alpha))}, \max\limits_{i\in S, j\in(\bar{S}\cap\alpha)\atop:r_{j}^{S}(A(\alpha)) = 0 }\frac{1}{|{{a}_{jj}}| -r_{j}^{(\bar{S}\cap\alpha)}(A(\alpha)) } \}. \end{eqnarray*}
    \begin{eqnarray*} &&\eta_{6}(\alpha) = \max\limits_{{i\in(\bar{S}\setminus\alpha) }}\frac{1} {|{{a}_{ii}}|-r_{i}^{(\bar{S}\setminus\alpha)}(A) -|v_{i}|[\mu(A(\alpha))]^{-1}\sum\limits_{k\in (\bar{S}\setminus\alpha)}|w_{k}|}. \end{eqnarray*}

    Proof. A(\alpha) is an S -SOB matrix (by Lemma 3). Thus,

    \begin{eqnarray} \|A(\alpha)^{-1}\|_{\infty}\leq\max\{\max\limits_{i\in S, j\in(\bar{S}\cap\alpha), \atop :a_{ij}\neq0}\frac{|{{a}_{jj}}|+r_{i}^{(\bar{S}\cap\alpha)}(A(\alpha))}{[|{{a}_{ii}}|-r_{i}^{S}(A(\alpha))] |{{a}_{jj}}|-r_{i}^{(\bar{S}\cap\alpha)}(A(\alpha)) r_{j}(A(\alpha))}, &\\ \max\limits_{i\in S, j\in(\bar{S}\cap\alpha), \atop :a_{ji}\neq0}\frac{|{{a}_{ii}}|+r_{j}^{(S\cap\alpha)}[(A(\alpha))]}{[|{{a}_{jj}}| -r_{j}^{(\bar{S}\cap\alpha)}(A(\alpha))]|{{a}_{ii}}|-r_{j}^{S}(A(\alpha))r_{i}(A(\alpha))}, &\\ \max\limits_{i\in S , j\in(\bar{S}\cap\alpha)\atop r_{i}^{(\bar{S}\cap\alpha)}(A(\alpha)) = 0}\frac{1}{|{{a}_{ii}}|-r_{i}^{S}(A(\alpha))}, \max\limits_{i\in S, j\in(\bar{S}\cap\alpha)\atop:r_{j}^{S}(A(\alpha)) = 0 }\frac{1}{|{{a}_{jj}}| -r_{j}^{(\bar{S}\cap\alpha)}(A(\alpha)) } \} = \delta_{2}(\alpha). \end{eqnarray} (3.33)

    From Corollary 4, we know

    \begin{eqnarray} ||F||_{\infty}\leq1+\beta(\alpha). \end{eqnarray} (3.34)

    By Corollary 3, we obtain A/\alpha is an SDD matrix. Therefore,

    \begin{eqnarray} &&||(A/\alpha)^{-1}||_{\infty}\leq \max\limits_{j_{t}\in (\bar{S}\setminus\alpha)}\frac{1} {|{{a}_{j_{t}j_{t}}}|-r_{j_{t}}^{(\bar{S}\setminus\alpha)}(A) -|v_{j_{t}}|[\mu(A(\alpha))]^{-1}\sum\limits_{j_{k}\in (\bar{S}\setminus\alpha)}|w_{j_{k}}|}\\ && = \max\limits_{{i\in(\bar{S}\setminus\alpha) }}\frac{1} {|{{a}_{ii}}|-r_{i}^{(\bar{S}\setminus\alpha)}(A) -|v_{i}|[\mu(A(\alpha))]^{-1}\sum\limits_{k\in (\bar{S}\setminus\alpha)}|w_{k}|}. \end{eqnarray} (3.35)

    Finally, by Eqs (3.2), (3.3), (3.33), (3.34) and (3.35), the conclusion follows.

    According to Theorem 10, the following result will come out naturally.

    Corollary 7. Let A = \left[{{a}_{ij}} \right]\in {{{C}}^{n\times n}} be an S -SOB matrix, \bar{S}\subset\alpha . If Eq (3.7) holds, then

    ||A^{-1}||_{\infty}\leq\zeta(\alpha)[1+\gamma(\alpha)]\theta_{7}(\alpha),

    where \theta_{7}(\alpha) = \max\{\delta_{3}(\alpha), \; \eta_{7}(\alpha)\},

    \begin{eqnarray*} \delta_{3}(\alpha) = \max\{\max\limits_{i\in (S\cap\alpha) , \atop j\in\bar{S}}\frac{|{{a}_{jj}}|+r_{i}^{\bar{S}}(A(\alpha))}{[|{{a}_{ii}}|-r_{i}^{(S\cap\alpha)}(A(\alpha))] |{{a}_{jj}}|-r_{i}^{\bar{S}}(A(\alpha)) r_{j}(A(\alpha))}, &\nonumber\\ \max\limits_{i\in (S\cap\alpha), \atop j\in\bar{S}}\frac{|{{a}_{ii}}|+r_{j}^{(S\cap\alpha)}[(A(\alpha))]}{[|{{a}_{jj}}| -r_{j}^{\bar{S}}(A(\alpha))]|{{a}_{ii}}|-r_{j}^{(S\cap\alpha)}(A(\alpha))r_{i}(A(\alpha))}, &\nonumber\\ \max\limits_{i\in (S\cap\alpha) , \atop j\in\bar{S}}\frac{1}{|{{a}_{ii}}|-r_{i}^{(S\cap\alpha)}(A(\alpha))}, \max\limits_{i\in (S\cap\alpha) , \atop j\in\bar{S}}\frac{1}{|{{a}_{jj}}| -r_{j}^{\bar{S}}(A(\alpha)) } \}. \end{eqnarray*}

    \eta_{7}(\alpha) = \max\limits_{{i\in(S\setminus\alpha) }}\frac{1} {|{{a}_{ii}}|-r_{i}^{(S\setminus\alpha)}(A) -|v_{i}|[\mu(A(\alpha))]^{-1}\sum\limits_{k\in (S\setminus\alpha)}|w_{k}|}.

    Theorem 11. Let A = ({{a}_{ij}})\in {{C}^{n\times n}} be an S -SOB matrix, n\ge 3 and let A satisfy that when {{a}_{ij}} = 0, {{a}_{ii}} > r_{i}(A) and {{a}_{ji}} = 0, {{a}_{jj}} > r_{j}(A) for i\in S, j\in \bar{S}. Denote A/\alpha = (a^{'}_{j_{t}j_{s}}) , then,

    ||A^{-1}||_{\infty}\leq\Gamma(A) = \min\limits_{i\in N}\Gamma_{i}(A).

    where \Gamma_{i}(A) = (1+\frac{\max\limits_{j\in N, \atop j\neq i}|a_{ji}|}{|a_{ii}|})(1+\frac{\max\limits_{j\in N, \atop j\neq i}|a_{ij}|}{|a_{ii}|})\tilde{\Gamma}_{i}(A),

    \begin{eqnarray*} &&\tilde{\Gamma}_{i}(A) = \max\{\frac{1}{|a_{ii}|}, \Gamma^{'}(A)\}. \end{eqnarray*}
    \begin{eqnarray*} &&\Gamma^{'}(A) = \max\{\max\limits_{j\in (S\setminus \{i\}), \atop k\in(\bar{S}\setminus \{i\})}\frac{|{{c}_{kk}}|-\sum\limits_{p\in\bar{S}, \atop p\neq k, i}|c_{kp}|+\sum\limits_{p\in\bar{S}, \atop p\neq i}|c_{jp}|} {(|{{c}_{jj}}|-\sum\limits_{p\in S, \atop p\neq j, i}|c_{jp}|)(|{{c}_{kk}}|-\sum\limits_{p\in\bar{S}, \atop p\neq k, i}|c_{kp}|)-\sum\limits_{p\in S, \atop p\neq i}|c_{kp}|\sum\limits_{p\in\bar{S}, \atop p\neq i}|c_{jp}|}, \nonumber\\ &&\max\limits_{j\in(S\setminus \{i\}), \atop k\in(\bar{S}\setminus \{i\})}\frac{|{{c}_{jj}}|-\sum\limits_{p\in S, \atop p\neq j, i}|c_{jp}|+\sum\limits_{p\in S, \atop p\neq i}|c_{kp}|} {(|{{c}_{jj}}|-\sum\limits_{p\in S, \atop p\neq j, i}|c_{jp}|)(|{{c}_{kk}}|-\sum\limits_{p\in\bar{S}, \atop p\neq k, i}|c_{kp}|)-\sum\limits_{p\in S, \atop p\neq i}|c_{kp}|\sum\limits_{p\in\bar{S}, \atop p\neq i}|c_{jp}|} \}, \end{eqnarray*}

    and c_{jk} = a_{jk}-\frac{a_{ji}a_{ik}}{a_{ii}}.

    Proof. Since A is an S -SOB matrix, by Lemma 2 and Theorem 5, we know A(\alpha) and A/\alpha are nonsingular. Therefore, taking \alpha = \{i\} , then A(\alpha) = a_{ii} , \bar{\alpha} = N-\{i\} , and

    \begin{eqnarray} \|A(\alpha)^{-1}\|_{\infty}\leq\frac{1}{|a_{ii}|}. \end{eqnarray} (3.36)
    \begin{eqnarray} \|E\|_{\infty} = 1+\frac{\max\limits_{j_{s}\in \bar{\alpha}}|a_{j_{s}i}|}{|a_{ii}|} = 1+\frac{\max\limits_{j\in N, \atop j\neq i}|a_{ji}|}{|a_{ii}|}. \end{eqnarray} (3.37)
    \begin{eqnarray} \|F\|_{\infty} = 1+\frac{\max\limits_{j_{s}\in \bar{\alpha}}|a_{i j_{s}}|}{|a_{ii}|} = 1+\frac{\max\limits_{j\in N, \atop j\neq i}|a_{ij}|}{|a_{ii}|}. \end{eqnarray} (3.38)

    Because A/\alpha = (a^{'}_{j_{t}j_{s}}) , let |a^{'}_{j_{t}j_{s}}| = |a_{j_{t}j_{s}}-\frac{a_{j_{t}i}a_{ij_{s}}}{a_{ii}}| = |c_{j_{t}j_{s}}|(j_{t}, j_{s}\in (N\setminus \{i\})) . By calculation, we obtain for j_{t}\in (S\setminus \{i\}), j_{s}\in (\bar{S}\setminus \{i\}) ,

    r_{j_{t}}^{(S\setminus\{i\})}(A/\alpha) = \sum\limits_{j_{p}\in (S\setminus \{i\}), \atop j_{p}\neq j_{t}}|c_{j_{t}j_{p}}| = \sum\limits_{j_{p}\in S, \atop j_{p}\neq j_{t}, i}|c_{j_{t}j_{p}}|,
    r_{j_{t}}^{(\bar{S}\setminus\{i\})}(A/\alpha) = \sum\limits_{j_{p}\in (\bar{S}\setminus \{i\})}|c_{j_{t}j_{p}}| = \sum\limits_{j_{p}\in \bar{S}, \atop j_{p}\neq i}|c_{j_{t}j_{p}}|,
    r_{j_{s}}^{(\bar{S}\setminus\{i\})}(A/\alpha) = \sum\limits_{j_{p}\in (\bar{S}\setminus \{i\}), \atop j_{p}\neq j_{s}}|c_{j_{s}j_{p}}| = \sum\limits_{j_{p}\in \bar{S}, \atop j_{p}\neq i}|c_{j_{s}j_{p}}|,
    r_{j_{s}}^{(S\setminus\{i\})}(A/\alpha) = \sum\limits_{j_{p}\in (S\setminus \{i\})}|c_{j_{s}j_{p}}| = \sum\limits_{j_{p}\in S, \atop j_{p}\neq i}|c_{j_{s}j_{p}}|.

    By Eq (3.27), we have

    \begin{eqnarray} &&||(A/\alpha)^{-1}||_{\infty}\leq \max\{\max\limits_{j\in (S\setminus \{i\}), \atop k\in(\bar{S}\setminus \{i\})}\frac{|{{c}_{kk}}|-\sum\limits_{p\in\bar{S}, \atop p\neq k, i}|c_{kp}|+\sum\limits_{p\in\bar{S}, \atop p\neq i}|c_{jp}|} {(|{{c}_{jj}}|-\sum\limits_{p\in S, \atop p\neq j, i}|c_{jp}|)(|{{c}_{kk}}|-\sum\limits_{p\in\bar{S}, \atop p\neq k, i}|c_{kp}|)-\sum\limits_{p\in S, \atop p\neq i}|c_{kp}|\sum\limits_{p\in\bar{S}, \atop p\neq i}|c_{jp}|}, \\ &&\max\limits_{j\in(S\setminus \{i\}) , \atop k\in(\bar{S}\setminus \{i\})}\frac{|{{c}_{jj}}|-\sum\limits_{p\in S, \atop p\neq j, i}|c_{jp}|+\sum\limits_{p\in S, \atop p\neq i}|c_{kp}|} {(|{{c}_{jj}}|-\sum\limits_{p\in S, \atop p\neq j, i}|c_{jp}|)(|{{c}_{kk}}|-\sum\limits_{p\in\bar{S}, \atop p\neq k, i}|c_{kp}|)-\sum\limits_{p\in S, \atop p\neq i}|c_{kp}|\sum\limits_{p\in\bar{S}, \atop p\neq i}|c_{jp}|} \}. \end{eqnarray} (3.39)

    Finally, by Eqs (3.36), (3.37), (3.38) and (3.39) the conclusion follows.

    We illustrate our results by the following examples:

    Example 1. Consider matrix A as a tri-diagonal n\times n matrix

    A = \left[ \begin{matrix} &n+|sin(1)| &bcos(2) &\cdots &bcos(n-1) &bcos(n) \\ &sin(2) &n+|sin(2)| &\cdots &bcos(n-1) &bcos(n) \\ &\vdots &\ddots &\ddots &\ddots &\vdots \\ & sin(n-1) &\cdots &sin(n-1) &n+|sin(n-1)| &bcos(n) \\ &sin(n) &\cdots &sin(n) &sin(n) &n+|sin(n)| \\ \end{matrix} \right]_{n\times n}.

    Let b = 1.5, \; n = 10000 . We get that matrix A is an SDD matrix. It is easy to verify matrix A is an SDD matrix, so it is also a S -SOB, DSDD , GDSDD and DZ matrix. Therefore, from Theorem 1, we put the result in Table 1.

    Table 1.  Upper bounds of matrix A in Example 1.
    b=1.5 n=10000
    \text {Bound in Theorem 1} 0.2786
    \text {Bound in Theorem 2} 0.2685
    \text {Bound in Theorem 3} 0.2485
    \text {Bound in [20, Theorem 3]} 0.3954
    \text {Bound in [31, Corollary 1]} 0.2786
    \text {Bound in [21, Theorem 1.2]} 0.2731
    \text {Bound in [21, Corollary 2.6]} 0.1937
    \text {Bound in Theorem 11} 0.1904

     | Show Table
    DownLoad: CSV

    Actually, \|A^{-1}\|_{\infty} = 0.0002 . This example shows that the boundary in Theorem 11 is superior to other theorems in some cases.

    Example 2. Consider matrix

    A = \left[ \begin{matrix} 16.81 &0.15 &0.65 &0.7 &0.43 &0.27 &0.75 &0.84 &0.35 &0.07 \\ 1.9 &8 &0.03 &0.03 &3.38 &0.67 &0.25 &2.25 &0.83 &1.05 \\ 0.12 &0.95 &11.84 &0.27 &0.76 &0.65 &0.5 &0.81 &0.58 &0.53 \\ 0.91 &0.48 &0.93 &12.04 &0.79 &0.16 &0.69 &0.24 &0.54 &0.77\\ 0.63 &0.8 &0.67 &0.09 &9.18 &1.11 &0.89 &6.92 &0.91 &0.93\\ 0.09 &0.14 &0.75 &0.82 &0.48 &15.49 &0.95 &0.35 &0.28 &0.12\\ 0.27 &0.42 &0.74 &0.69 &0.44 &0.95 &12.54 &0.19 &0.75 &0.56\\ 0.54 &0.91 &0.39 &0.31 &0.64 &0.34 &0.13 &11.25 &0.75 &0.46\\ 0.95 &0.79 &0.65 &0.95 &0.70 &0.58 &0.14 &0.61 &10.38 &0.01\\ 0.96 &0.95 &0.17 &0.03 &0.75 &0.22 &0.25 &0.47 &0.56 &17.33\\ \end{matrix} \right].

    By computation, the matrix A is an S -SOB matrix and S = \{2, 3, 5\} . According to Theorem 2, we obtain

    ||{{A}^{-1}}|{{|}_{\infty }}\le 1.7202.

    According to Theorem 11, it is easy to get

    ||{{A}^{-1}}|{{|}_{\infty }}\le 0.5061.

    In practice, ||{{A}^{-1}}|{{|}_{\infty }} = 0.2155 . Obviously, the boundary in Theorem 11 is superior to Theorem 2 in some cases.

    Example 3. Consider matrix

    A = \left[ \begin{matrix} 38 &1 &3 &3 &-4 &2 &5 &-1 \\ 1 &40 &5 &4 &1 &3 &1 &-2 \\ 2 &1 &36 &1 &2 &1 &-4 &-3 \\ 1 &3 &2 &28 &3 &5 &1 &2\\ 4 &1.5 &-1 &2 &31 &-1 &-4 &4\\ -8 &6 &3 &5 &2 &49 &2 &7\\ 7 &9 &1 &-1 &-1 &7 &50 &5\\ 1 &13 &2 &3 &6 &1 &1 &44\\ \end{matrix} \right].

    Obviously, the matrix A is an SDD matrix, and it's also an S -SOB matrix and S = \{2, 3, 4, 5, 8\} . According to Theorem 1, we can obtain

    ||{{A}^{-1}}|{{|}_{\infty }}\le 0.0909.

    According to Theorem 2, we can obtain

    ||{{A}^{-1}}|{{|}_{\infty }}\le 0.0860.

    According to Theorem 11, we can obtain

    ||{{A}^{-1}}|{{|}_{\infty }}\le 0.0842.

    In fact, ||{{A}^{-1}}|{{|}_{\infty }} = 0.0497. This example shows that the boundary in Theorem 11 is superior to Theorems 1 and 2 in some cases.

    In this section, we will apply the result in Section 3 to the linear complementarity problems (LCPs), to obtain two kinds of error bounds for LCPs of S -SOB matrices. We first need to give some lemmas that would be used in the following theorems:

    Lemma 8. [29] Let \gamma > 0 and \eta\geq 0 , for any x\in [0, 1] ,

    \frac{1}{1-x+\gamma x}\leq\frac{1}{min\{\gamma, 1\}}, \; \frac{\eta x}{1-x+\gamma x}\leq\frac{\eta}{\gamma}.

    Lemma 9. Suppose that M = (m_{ij})\in \mathbb{R}^{n\times n} is an S-SOB matrix with positive diagonal entries, let

    \begin{eqnarray} \tilde{M} = I-D+DM = (\tilde{m}_{ij}), \end{eqnarray} (4.1)

    then, \tilde{M} is also a real S-SOB matrix with positive diagonal entries, where D = diag(d_{1}, \cdots, d_{n}) , d_{i}\in[0, 1] .

    Proof. Note that

    \tilde{m}_{ij} = \left\{\begin{array}{cc} 1-d_{i}+d_{i}m_{ij}, & i = j, \\\\ d_{i}m_{ij}, &i\neq j. \end{array} \right.

    Hence, for each i\in S , j\in \bar{S} ,

    |\tilde{m}_{ii}| = 1-d_{i}+d_{i}m_{ii}\geq d_{i}m_{ii} > d_{i}r_{i}^{S}(M) = r_{i}^{S}(\tilde{M}),
    |\tilde{m}_{jj}| = 1-d_{j}+d_{j}m_{jj}\geq d_{i}m_{ii} > d_{i}r_{i}^{\bar{S}}(M) = r_{j}^{\bar{S}}(\tilde{M}).

    Then, for any i\in S , j\in\bar{S} , d_{i}\in(0, 1) , we have

    \begin{eqnarray} (|\tilde{m}_{ii}|-r_{i}^{S}(\tilde{M}))|\tilde{m}_{jj}|& = & (d_{i}|m_{ii}|-d_{i}r_{i}^{S}(M))d_{j}|m_{jj}| \\ & = & d_{i}d_{j}(|m_{ii}|-r_{i}^{S}(M))|m_{jj}|\\ & > & d_{i}d_{j}r_{i}^{\bar{S}}(M)r_{j}(M) = r_{i}^{\bar{S}}(\tilde{M})r_{j}(\tilde{M}). \end{eqnarray}

    For any i\in S , j\in\bar{S} , we get

    \begin{eqnarray} (|\tilde{m}_{jj}|-r_{j}^{\bar{S}}(\tilde{M}))|\tilde{m}_{ii}| & = & (d_{j}|m_{jj}|-d_{j}r_{j}^{\bar{S}}(M)) d_{i}|m_{ii}|\\ & = &d_{i}d_{j}(|m_{jj}|-r_{j}^{\bar{S}}(M))|m_{ii}|\\ & > & d_{i}d_{j}r_{j}^{S}(M)r_{i}(M) = r_{j}^{S}(\tilde{M})r_{i}(\tilde{M}). \end{eqnarray}

    When d_{i} = 0 , \tilde{m}_{ii} = 1-d_{i}+d_{i}m_{ii} = 1 , we obtain

    (|\tilde{m}_{ii}|-r_{i}^{S}(\tilde{M})))|\tilde{m}_{jj}| = 1 > 0 = r_{j}^{\bar{S}}(\tilde{M})r_{i}(\tilde{M}),
    (|\tilde{m}_{jj}|-r_{j}^{\bar{S}}(\tilde{M}))|\tilde{m}_{ii}| = 1 > 0 = r_{i}^{S}(\tilde{M})r_{j}(\tilde{M}).

    When d_{i} = 1 , \tilde{m}_{ij} = 1-d_{i}+d_{i}m_{ij} = m_{ij} , then

    (|\tilde{m}_{ii}|-r_{i}^{S}(\tilde{M}))|\tilde{m}_{jj}| = (|m_{ii}|-r_{i}^{S}(M))|m_{jj}| > r_{j}^{\bar{S}}(M)r_{i}(M) = r_{j}^{\bar{S}}(\tilde{M})r_{i}(\tilde{M}),
    (|\tilde{m}_{jj}|-r_{j}^{\bar{S}}(\tilde{M}))|\tilde{m}_{ii}| = (|m_{jj}|-r_{j}^{\bar{S}}(M))|m_{ii}| > r_{i}^{S}(M)r_{j}(M) = r_{i}^{S}(\tilde{M})r_{j}(\tilde{M}).

    As d_{i}\in[0, 1] , conditions (i)–(iv) in Definition 1 are fulfilled for all i\in S and j\in \bar{S} . So the conclusion follows.

    Lemma 9 indicates that \tilde{M} is an S -SOB matrix when M is an S -SOB matrix. We will present an error bound for the linear complementarity problem of S -SOB matrices. The following theorem is one of our main results, which gives an upper bound on the condition constant \max_{d\in[0, 1]^{n}}\|(I-D+DA)^{-1}\|_{\infty} when A is an S -SOB matrix.

    Theorem 12. Let A = (a_{ij})\in\mathbb{R}^{n\times n} be an S-SOB matrix with positive diagonal entries, and \tilde{A} = [\tilde{a_{ij}}] = I-D+DA , where D = diag(d_{i}) with 0\leq d_{i}\leq 1 . Then

    \begin{eqnarray*} \max\limits_{d\in [0, 1]^{n}}\|(I-D+DA)^{-1}\|_{\infty}\leq \min\limits_{i\in N}{(1+\max\limits_{j\in N, \atop j\neq i}\{\frac{|d_{j}a_{ji}|}{a_{ii}}, d_{j}a_{ji})(1+\max\limits_{j\in N, \atop j\neq i}\{\frac{d_{i}a_{ij}}{a_{ii}}, d_{i}a_{ij}\})}\max\{\frac{1}{a_{ii}}, 1, \Delta(A), \Delta^{'}(A)\} \end{eqnarray*}

    where

    \begin{eqnarray*} & &\frac{1+\frac{a_{ki}a_{ij}}{a_{ii}a_{kk}}+\sum _{p\in\bar{S}, \atop p\neq i} \frac{a_{jp}}{a_{jj}}+\frac{a_{jp}a_{ji}}{a_{ii}a_{jj}}}{\varsigma_{j}^{S}(A)\varsigma_{j}^{\bar{S}}(A)-(\sum\frac{a_{kp}}{a_{kk}}+\sum\frac{a_{ki}a_{ip}}{a_{ii}a_{kk}})(\frac{a_{jp}}{a_{jj}}+ \sum\frac{a_{ji}a_{ip}}{a_{ii}a_{jj}})}\nonumber\\& = &\Delta(A), \end{eqnarray*}
    \begin{eqnarray*} & &\frac{1+\frac{a_{ji}a_{ik}}{a_{ii}a_{jj}}+\sum \frac{a_{kp}}{a_{kk}}+\frac{a_{kp}a_{ki}}{a_{ii}a_{kk}}}{\varsigma_{k}^{S}(A)\varsigma_{k}^{\bar{S}}(A)-(\sum\frac{a_{kp}}{a_{kk}}+\sum\frac{a_{ki}a_{ip}}{a_{ii}a_{kk}})(\frac{a_{jp}}{a_{jj}}+ \sum\frac{a_{ji}a_{ip}}{a_{ii}a_{jj}})}\nonumber\\ & = &\Delta^{'}(A), \end{eqnarray*}

    and \varsigma_{j}^{S}(A) = \frac{1-d_{j}+d_{j}a_{jj}}{1-d_{t}+d_{t}a_{tt}}-\frac{a_{ji}a_{ij}}{a_{ii}a_{jj}}-\sum\limits_{p\in S, \atop p\neq j, i} \frac{a_{jk}}{a_{jj}}-\sum\limits_{p\in S, \atop p\neq j, i}\frac{a_{ji}a_{ik}}{a_{ii}a_{jj}} .

    Proof. Because \tilde{A} = (\tilde{a_{ij}}) = (I-D+DA) , we know \tilde{A} is an S - SOB matrix with positive diagonal entries from Lemma 9. By Theorem 11, the following inequality holds

    \|\tilde{A}\|_{\infty}\leq\max\Gamma(\tilde{A}) = \min\limits_{i\in N}\Gamma_{i}(\tilde{A}),

    where \Gamma_{i}(\tilde{A}) = (1+\frac{\max\limits_{j\in N, \atop j\neq i}|\tilde{a_{ji}}|}{|\tilde{a_{ii}}|})(1+\frac{\max\limits_{j\in N, \atop j\neq i}|\tilde{a_{ij}}|}{|\tilde{a_{ii}}|})\tilde{\Gamma}_{i}(\tilde{A}),

    \begin{eqnarray*} &&\tilde{\Gamma}_{i}(\tilde{A}) = \max\{\frac{1}{|\tilde{a_{ii}}|}, \Gamma^{'}(\tilde{A})\}. \end{eqnarray*}
    \begin{eqnarray*} &&\Gamma^{'}(\tilde{A}) = \max\{\max\limits_{j\in (S\setminus \{i\}), \atop k\in(\bar{S}\setminus \{i\})}\frac{|{\tilde{{c}_{kk}}}|-\sum\limits_{p\in\bar{S}, \atop p\neq k, i}|\tilde{c_{kp}}|+\sum\limits_{p\in\bar{S}, \atop p\neq i}|\tilde{c_{jp}}|} {(|{\tilde{{c}_{jj}}}|-\sum\limits_{p\in S, \atop p\neq j, i}|\tilde{c_{jp}}|)(|{\tilde{{c}_{kk}}}|-\sum\limits_{p\in\bar{S}, \atop p\neq k, i}|\tilde{c_{kp}}|)-\sum\limits_{p\in S, \atop p\neq i}|\tilde{c_{kp}}|\sum\limits_{p\in\bar{S}, \atop p\neq i}|\tilde{c_{jp}}|}, \nonumber\\ &&\max\limits_{j\in(S\setminus \{i\}) , \atop k\in(\bar{S}\setminus \{i\})}\frac{|{\tilde{{c}_{jj}}}|-\sum\limits_{p\in S, \atop p\neq j, i}|\tilde{c_{jp}}|+\sum\limits_{p\in S, \atop p\neq i}|c_{kp}|} {(|{\tilde{{c}_{jj}}}|-\sum\limits_{p\in S, \atop p\neq j, i}|\tilde{c_{jp}}|)(|{\tilde{{c}_{kk}}}|-\sum\limits_{p\in\bar{S}, \atop p\neq k, i}|\tilde{c_{kp}}|)-\sum\limits_{p\in S, \atop p\neq i}|\tilde{c_{kp}}|\sum\limits_{p\in\bar{S}, \atop p\neq i}|\tilde{c_{jp}}|} \}, \end{eqnarray*}

    and \tilde{c_{jk}} = \tilde{a_{jk}}-\frac{\tilde{a_{ji}}\tilde{a_{ik}}}{\tilde{a_{ii}}}.

    Since \tilde{A} is a S -SOB matrix, we have \tilde{a_{ii}} = 1-d_{i}+d_{i}a_{ii} and \tilde{a_{ij}} = d_{i}a_{ij} for all i, j\in N .

    \begin{eqnarray} & &1+\frac{\max\limits_{j\in N, \atop j\neq i}|\tilde{a_{ji}}|}{|\tilde{a_{ii}}|} = 1+\frac{\max\limits_{j\in N, \atop j\neq i}|d_{j}a_{ji}|}{1-d_{i}+d_{i}a_{ii}} \leq 1+\frac{\max\limits_{j\in N, \atop j\neq i}|d_{j}a_{ji}|}{\min\{a_{ii}, 1\}}\; \; (By\; \; Lemma\; \; 8)\\ & = & 1+\max\limits_{j\in N, \atop j\neq i}\{\frac{|d_{j}a_{ji}|}{a_{ii}}, d_{j}a_{ji}\}. \end{eqnarray} (4.2)

    Similarly, we have

    \begin{eqnarray} 1+\frac{\max\limits_{j\in N, \atop j\neq i}|\tilde{a_{ij}}|}{|\tilde{a_{ii}}|}\leq 1+\max\{\frac{d_{i}a_{ij}}{a_{ii}}, d_{i}a_{ij}\}. \end{eqnarray} (4.3)

    By Lemma 8, it is easy to get

    \begin{eqnarray} \frac{1}{\tilde{a_{ii}}} = \frac{1}{1-d_{i}+d_{i}a_{ii}}\leq \max\{\frac{1}{a_{ii}}, 1\}. \end{eqnarray} (4.4)

    Denote 1-d_{t}+d_{t}a_{tt} = \max_{i\in N}\{1-d_{i}+d_{i}a_{ii}\} . From Lemmas 8 and 9, we get

    \begin{eqnarray} & &\frac{|{\tilde{{c}_{kk}}}|-\sum\limits_{p\in\bar{S}, \atop p\neq k, i}|\tilde{c_{kp}}|+\sum\limits_{p\in\bar{S}, \atop p\neq i}|\tilde{c_{jp}}|} {(|{\tilde{{c}_{jj}}}|-\sum\limits_{p\in S, \atop p\neq j, i}|\tilde{c_{jp}}|)(|{\tilde{{c}_{kk}}}|-\sum\limits_{p\in\bar{S}, \atop p\neq k, i}|\tilde{c_{kp}}|)-\sum\limits_{p\in S, \atop p\neq i}|\tilde{c_{kp}}|\sum\limits_{p\in\bar{S}, \atop p\neq i}|\tilde{c_{jp}}|}\\ &\leq &\frac{1+\frac{a_{ki}a_{ij}}{a_{ii}a_{kk}}+\sum\limits_{p\in\bar{S}, \atop p\neq i} \frac{a_{jp}}{a_{jj}}+\sum\limits_{p\in\bar{S}, \atop p\neq i}\frac{a_{jp}a_{ji}}{a_{ii}a_{jj}}}{\varsigma_{j}^{S}(A)\varsigma_{j}^{\bar{S}}-(\sum\limits_{p\in S, \atop p\neq i}\frac{a_{kp}}{a_{kk}}+\sum\limits_{p\in S, \atop p\neq i}\frac{a_{ki}a_{ip}}{a_{ii}a_{kk}})(\sum\limits_{p\in\bar{S}, \atop p\neq i}\frac{a_{jp}}{a_{jj}}+ \sum\limits_{p\in\bar{S}, \atop p\neq i}\frac{a_{ji}a_{ip}}{a_{ii}a_{jj}})}\\& = &\Delta(A), \end{eqnarray} (4.5)

    where \varsigma_{j}^{S}(A) = \frac{1-d_{j}+d_{j}a_{jj}}{1-d_{t}+d_{t}a_{tt}}-\frac{a_{ji}a_{ij}}{a_{ii}a_{jj}}-\sum\limits_{p\in S, \atop p\neq j, i} \frac{a_{jk}}{a_{jj}}-\sum\limits_{p\in S, \atop p\neq j, i}\frac{a_{ji}a_{ik}}{a_{ii}a_{jj}} . In similar way, we know

    \begin{eqnarray} & &\frac{|{\tilde{{c}_{jj}}}|-\sum\limits_{p\in\bar{S}, \atop p\neq k, i}|\tilde{c_{jp}}|+\sum\limits_{p\in\bar{S}, \atop p\neq i}|\tilde{c_{kp}}|} {(|{\tilde{{c}_{jj}}}|-\sum\limits_{p\in S, \atop p\neq j, i}|\tilde{c_{jp}}|)(|{\tilde{{c}_{kk}}}|-\sum\limits_{p\in\bar{S}, \atop p\neq k, i}|\tilde{c_{kp}}|)-\sum\limits_{p\in S, \atop p\neq i}|\tilde{c_{kp}}|\sum\limits_{p\in\bar{S}, \atop p\neq i}|\tilde{c_{jp}}|}\\ &\leq &\frac{1+\frac{a_{ji}a_{ik}}{a_{ii}a_{jj}}+\sum\limits_{p\in\bar{S}, \atop p\neq k, i} \sum\limits_{p\in\bar{S}, \atop p\neq k, i} \frac{a_{kp}}{a_{kk}}+\frac{a_{kp}a_{ki}}{a_{ii}a_{kk}}}{\varsigma_{k}^{S}\varsigma_{k}^{\bar{S}}-(\sum\limits_{p\in S, \atop p\neq i}\frac{a_{kp}}{a_{kk}}+\sum\limits_{p\in S, \atop p\neq i}\frac{a_{ki}a_{ip}}{a_{ii}a_{kk}})(\sum\limits_{p\in\bar{S}, \atop p\neq i}\frac{a_{jp}}{a_{jj}}+ \sum\limits_{p\in\bar{S}, \atop p\neq i}\frac{a_{ji}a_{ip}}{a_{ii}a_{jj}})}\\ & = &\Delta^{'}(A). \end{eqnarray} (4.6)

    So, from Eqs (4.2)–(4.6) the conclusion follows. This proof is completed.

    Based on the fact that the Schur complement of the S -SOB matrix is a GDSDD matrix, we give an infinity norm bound for the inverse of the S -SOB matrix based on the Schur complement. By using the infinity norm bound for the inverse of the S -SOB matrix, an error bound is given for the linear complementarity problem of the S -SOB matrix.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    This work was supported by the Natural Science Research Project of Department of Education of Guizhou Province (Grant No. QJJ2022015) and the Natural Science Research Project of Department of Education of Guizhou Province (Grant No. QJJ2022047). The Natural Science Research Project of Department of Education of Guizhou Province (Grant Nos. QJJ2023012, QJJ2023061, QJJ2023062).

    The authors declare no conflict of interest.



    [1] H. R. Ghehsareh, A. Zaghian, S. M. Zabetzadeh, The use of local radial point interpolation method for solving two-dimensional linear fractional cable equation, Neural Comput. Appl., 29 (2018), 745–754. doi: 10.1007/s00521-016-2595-y. doi: 10.1007/s00521-016-2595-y
    [2] Y. L. Zhao, T. Z. Huang, X. M. Gu, W. H. Luo, A fast second-order implicit difference method for time-space fractional advection-diffusion equation, Numer. Func. Anal. Opt., 41 (2020), 257–293. doi: 10.1080/01630563.2019.1627369. doi: 10.1080/01630563.2019.1627369
    [3] M. Hussain, S. Haq, Weighted meshless spectral method for the solutions of multi-term time fractional advection-diffusion problems arising in heat and mass transfer, Int. J. Heat Mass Tran., 129 (2019), 1305–1316. doi: 10.1016/j.ijheatmasstransfer.2018.10.039. doi: 10.1016/j.ijheatmasstransfer.2018.10.039
    [4] M. Abbaszadeh, A. Mohebbi, A fourth-order compact solution of the two dimensional modified anomalous fractional sub-diffusion equation with a nonlinear source term, Comput. Math. Appl., 66 (2013), 1345–1359. doi: 10.1016/j.camwa.2013.08.010. doi: 10.1016/j.camwa.2013.08.010
    [5] G. M. Zaslavsky, Chaos, fractional kinetics, and anomalous transport, Phys. Rep., 371 (2002), 461–580. doi: 10.1016/S0370-1573(02)00331-9. doi: 10.1016/S0370-1573(02)00331-9
    [6] S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional integrals and derivatives: Theory and applications, Yverdon: Gordon and Breach, 1993.
    [7] I. Podlubny, Fractional differential equations, mathematics in science and engineering, New York: Academic Press, 1999.
    [8] B. Guo, X. Pu, F. Huang, Fractional partial differential equations and their numerical solutions, Singapore: World Scientific, 2015.
    [9] A. Kochubei, Y. Luchko, V. E. Tarasov, I. Petra, Handbook of fractional calculus with applications, Berlin: De Gruyter Grand Forks, 2019.
    [10] J. Y. Shen, Z. Z. Sun, R. Du, Fast finite difference schemes for time fractional diffusion equations with a weak singularity at initial time, E. Asian J. Appl. Math., 8 (2018), 834–858. doi: 10.4208/eajam.010418.020718. doi: 10.4208/eajam.010418.020718
    [11] A. Chen, C. Li, A novel compact adi scheme for the time-fractional subdiffusion equation in two space dimensions, Int. J. Comput. Math., 93 (2016), 889–914. doi: 10.1080/00207160.2015.1009905. doi: 10.1080/00207160.2015.1009905
    [12] G. H. Gao, Z. Z. Sun, Y. N. Zhang, A finite difference scheme for fractional sub-diffusion equations on an unbounded domain using artificial boundary conditions, J. Comput. Phys., 231 (2012), 2865–2879. doi: 10.1016/j.jcp.2011.12.028. doi: 10.1016/j.jcp.2011.12.028
    [13] M. Tamsir, N. Dhiman, D. Nigam, A. Chauhan, Approximation of Caputo time-fractional diffusion equation using redefined cubic exponential B-spline collocation technique, AIMS Mathematics, 6 (2021), 3805–3820. doi: 10.3934/math.2021226. doi: 10.3934/math.2021226
    [14] J. Shen, X. M. Gu, Two finite difference methods based on an H2N2 interpolation for two-dimensional time fractional mixed diffusion and diffusion-wave equations, Discrete Cont. Dyn. B, 2021. doi: 10.3934/dcdsb.2021086.
    [15] X. M. Gu, Y. L. Zhao, X. L. Zhao, B. Carpentieri, Y. Y. Huang, A note on parallel preconditioning for the all-at-once solution of Riesz fractional diffusion equations, Numer. Math. Theor. Meth. Appl., 14 (2021), 893–919. doi: 10.4208/nmtma.OA-2020-0020. doi: 10.4208/nmtma.OA-2020-0020
    [16] X. M. Gu, H. W. Sun, Y. L. Zhao, X. Zheng, An implicit difference scheme for time-fractional diffusion equations with a time-invariant type variable order, Appl. Math. Lett., 120 (2021), 107270. doi: 10.1016/j.aml.2021.107270. doi: 10.1016/j.aml.2021.107270
    [17] Y. Xu, Y. Zhang, J. Zhao, Backward difference formulae and spectral galerkin methods for the riesz space fractional diffusion equation, Math. Comput. Simulat., 166 (2019), 494–507. doi: 10.1016/j.matcom.2019.07.007. doi: 10.1016/j.matcom.2019.07.007
    [18] X. Gao, B. Yin, H. Li, Y. Liu, Tt-m FE method for a 2D nonlinear time distributed-order and space fractional diffusion equation, Math. Comput. Simulat., 181 (2021), 117–137. doi: 10.1016/j.matcom.2020.09.021. doi: 10.1016/j.matcom.2020.09.021
    [19] X. Zheng, H. Wang, An error estimate of a numerical approximation to a hidden-memory variable-order space-time fractional diffusion equation, SIAM J. Numer. Anal., 58 (2020), 2492–2514. doi: 10.1137/20M132420X. doi: 10.1137/20M132420X
    [20] X. Zheng, H. Wang, A Hidden-memory variable-order time-fractional optimal control model: Analysis and approximation, SIAM J. Control Optim., 59 (2021), 1851–1880. doi: 10.1137/20M1344962. doi: 10.1137/20M1344962
    [21] X. Zheng, H. Wang, Optimal-order error estimates of finite element approximations to variable-order time-fractional diffusion equations without regularity assumptions of the true solutions, IMA J. Numer. Anal., 41 (2021), 1522–1545. doi: 10.1093/imanum/draa013. doi: 10.1093/imanum/draa013
    [22] H. Wang, X. Zheng, Wellposedness and regularity of the variable-order time-fractional diffusion equations, J. Math. Anal. Appl., 475 (2019), 1778–1802. doi: 10.1016/j.jmaa.2019.03.052. doi: 10.1016/j.jmaa.2019.03.052
    [23] Y. Luchko, Initial-boundary-value problems for the one-dimensional time-fractional diffusion equation, Fract. Calc. Appl. Anal., 15 (2012), 141–160. doi: 10.2478/s13540-012-0010-7. doi: 10.2478/s13540-012-0010-7
    [24] B. Jin, B. Li, Z. Zhou, Numerical analysis of nonlinear subdiffusion equations, SIAM J. Numer. Anal., 56 (2018), 1–23. doi: 10.1137/16M1089320. doi: 10.1137/16M1089320
    [25] X. Zheng, H. Wang, Wellposedness and regularity of a variable-order space-time fractional diffusion equation, Anal. Appl., 18 (2020), 615–638. doi: 10.1142/S0219530520500013. doi: 10.1142/S0219530520500013
    [26] H. Fu, M. K. Ng, H. Wang, A divide-and-conquer fast finite difference method for space-time fractional partial differential equation, Comput. Math. Appl., 73 (2017), 1233–1242. doi: 10.1016/j.camwa.2016.11.023. doi: 10.1016/j.camwa.2016.11.023
    [27] F. M. Salama, N. H. M. Ali, Fast O(N) hybrid method for the solution of two dimensional time fractional cable equation, Compusoft, 8 (2019), 3453–3461.
    [28] F. M. Salama, N. H. M. Ali, Computationally efficient hybrid method for the numerical solution of the 2D time fractional advection-diffusion equation, Int. J. Math. Eng. Manag., 5 (2020), 432–446. doi: 10.33889/IJMEMS.2020.5.3.036. doi: 10.33889/IJMEMS.2020.5.3.036
    [29] X. M. Gu, S. L. Wu, A parallel-in-time iterative algorithm for Volterra partial integro-differential problems with weakly singular kernel, J. Comput. Phys., 417 (2020), 109576. doi: 10.1016/j.jcp.2020.109576. doi: 10.1016/j.jcp.2020.109576
    [30] X. L. Lin, M. K. Ng, H. W. Sun, A multigrid method for linear systems arising from time-dependent two-dimensional space-fractional diffusion equations, J. Comput. Phys., 336 (2017), 69–86. doi: 10.1016/j.jcp.2017.02.008. doi: 10.1016/j.jcp.2017.02.008
    [31] J. Ren, Z. Z. Sun, W. Dai, New approximations for solving the caputo-type fractional partial differential equations, Appl. Math. Model., 40 (2016), 2625–2636. doi: 10.1016/j.apm.2015.10.011. doi: 10.1016/j.apm.2015.10.011
    [32] N. A. Khan, S. Ahmed, Finite difference method with metaheuristic orientation for exploration of time fractional partial differential equations, Int. J. Appl. Comput. Math., 7 (2021), 1–22. doi: 10.1007/s40819-021-01061-y. doi: 10.1007/s40819-021-01061-y
    [33] A. Ahmadian, S. Salahshour, M. Ali-Akbari, F. Ismail, D. Baleanu, A novel approach to approximate fractional derivative with uncertain conditions, Chaos Soliton. Fract., 104 (2017), 68–76. doi: 10.1016/j.chaos.2017.07.026. doi: 10.1016/j.chaos.2017.07.026
    [34] F. M. Salama, N. H. M. Ali, N. N. Abd Hamid, Fast O(N) hybrid Laplace transform-finite difference method in solving 2D time fractional diffusion equation, J. Math. Comput. Sci., 23 (2021), 110–123. doi: 10.22436/jmcs.023.02.04. doi: 10.22436/jmcs.023.02.04
    [35] N. H. M. Ali, L. M. Kew, New explicit group iterative methods in the solution of two dimensional hyperbolic equations, J. Comput. Phys., 231 (2012), 6953–6968. doi: 10.1016/j.jcp.2012.06.025. doi: 10.1016/j.jcp.2012.06.025
    [36] N. H. Mohd Ali, A. Mohammed Saeed, Convergence analysis of the preconditioned group splitting methods in boundary value problems, Abstr. Appl. Anal., 2012 (2012), 867598. doi: 10.1155/2012/867598. doi: 10.1155/2012/867598
    [37] L. M. Kew, N. H. M. Ali, New explicit group iterative methods in the solution of three dimensional hyperbolic telegraph equations, J. Comput. Phys., 294 (2015), 382–404. doi: 10.1016/j.jcp.2015.03.052. doi: 10.1016/j.jcp.2015.03.052
    [38] A. Saudi, J. Sulaiman, Robot path planning using four point-explicit group via nine-point laplacian (4EG9L) iterative method, Procedia Engineering, 41 (2012), 182–188. doi: 10.1016/j.proeng.2012.07.160. doi: 10.1016/j.proeng.2012.07.160
    [39] N. H. M. Ali, A. M. Saeed, Preconditioned modified explicit decoupled group for the solution of steady state navier-stokes equation, Appl. Math. Inform. Sci., 7 (2013), 1837–1844. doi: 10.12785/amis/070522. doi: 10.12785/amis/070522
    [40] M. A. Khan, N. H. M. Ali, N. N. Abd Hamid, A new fourth-order explicit 270 group method in the solution of two-dimensional fractional rayleigh–stokes problem for a heated generalized second-grade fluid, Adv. Diff. Equ., 2020 (2020), 598. doi: 10.1186/s13662-020-03061-6. doi: 10.1186/s13662-020-03061-6
    [41] N. Abdi, H. Aminikhah, A. H. Sheikhani, J. Alavi, M. Taghipour, An efficient explicit decoupled group method for solving two–dimensional fractional Burgers' equation and its convergence analysis, Adv. Math. Phys., 2021 (2021), 6669287. doi: 10.1155/2021/6669287. doi: 10.1155/2021/6669287
    [42] N. Abdi, H. Aminikhah, A. R. Sheikhani, High-order rotated grid point iterative method for solving 2D time fractional telegraph equation and its convergence analysis, Comp. Appl. Math., 40 (2021), 54. doi: 10.1007/s40314-021-01451-4. doi: 10.1007/s40314-021-01451-4
    [43] F. M. Salama, N. H. M. Ali, N. N. Abd Hamid, Efficient hybrid group iterative methods in the solution of two-dimensional time fractional cable equation, Adv. Differ. Equ., 2020 (2020), 257. doi: 10.1186/s13662-020-02717-7. doi: 10.1186/s13662-020-02717-7
    [44] N. Moraca, Bounds for norms of the matrix inverse and the smallest singular value, Linear Algebra Appl., 429 (2008), 2589–2601. doi: 10.1016/j.laa.2007.12.026. doi: 10.1016/j.laa.2007.12.026
    [45] A. Ali, N. H. M. Ali, On skewed grid point iterative method for solving 2d hyperbolic telegraph fractional differential equation, Adv. Differ. Equ., 2019 (2019), 303. doi: 10.1186/s13662-019-2238-6. doi: 10.1186/s13662-019-2238-6
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2658) PDF downloads(100) Cited by(17)

Figures and Tables

Figures(10)  /  Tables(4)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog