Processing math: 70%
Research article

Partially balanced network designs and graph codes generation

  • Received: 23 June 2021 Accepted: 28 October 2021 Published: 12 November 2021
  • MSC : 05B30, 0570, 94A60, 94A62

  • Partial balanced incomplete block designs have a wide range of applications in many areas. Such designs provide advantages over fully balanced incomplete block designs as they allow for designs with a low number of blocks and different associations. This paper introduces a class of partially balanced incomplete designs. We call it partially balanced network designs (PBNDs). The fundamentals and properties of PBNDs are studied. We are concerned with modeling PBNDs as graph designs. Some direct constructions of small PBNDs and generalized PBNDs are introduced. Besides that, we show that our modeling yields an effective utilization of PNBDs in constructing graph codes. Here, we are interested in constructing graph codes from bipartite graphs. We have proved that these codes have good characteristics for error detection and correction. In the end, the paper introduces a novel technique for generating new codes from already constructed codes. This technique results in increasing the ability to correct errors.

    Citation: A. El-Mesady, Y. S. Hamed, M. S. Mohamed, H. Shabana. Partially balanced network designs and graph codes generation[J]. AIMS Mathematics, 2022, 7(2): 2393-2412. doi: 10.3934/math.2022135

    Related Papers:

    [1] Amjad Ali, Muhammad Arshad, Awais Asif, Ekrem Savas, Choonkil Park, Dong Yun Shin . On multivalued maps for φ-contractions involving orbits with application. AIMS Mathematics, 2021, 6(7): 7532-7554. doi: 10.3934/math.2021440
    [2] Muhammad Nazam, Hijaz Ahmad, Muhammad Waheed, Sameh Askar . On the Perov's type (β,F)-contraction principle and an application to delay integro-differential problem. AIMS Mathematics, 2023, 8(10): 23871-23888. doi: 10.3934/math.20231217
    [3] Gunaseelan Mani, Arul Joseph Gnanaprakasam, Choonkil Park, Sungsik Yun . Orthogonal F-contractions on O-complete b-metric space. AIMS Mathematics, 2021, 6(8): 8315-8330. doi: 10.3934/math.2021481
    [4] Pragati Gautam, Vishnu Narayan Mishra, Rifaqat Ali, Swapnil Verma . Interpolative Chatterjea and cyclic Chatterjea contraction on quasi-partial b-metric space. AIMS Mathematics, 2021, 6(2): 1727-1742. doi: 10.3934/math.2021103
    [5] Abdullah Shoaib, Tahair Rasham, Giuseppe Marino, Jung Rye Lee, Choonkil Park . Fixed point results for dominated mappings in rectangular b-metric spaces with applications. AIMS Mathematics, 2020, 5(5): 5221-5229. doi: 10.3934/math.2020335
    [6] Budi Nurwahyu, Naimah Aris, Firman . Some results in function weighted b-metric spaces. AIMS Mathematics, 2023, 8(4): 8274-8293. doi: 10.3934/math.2023417
    [7] Shaoyuan Xu, Yan Han, Suzana Aleksić, Stojan Radenović . Fixed point results for nonlinear contractions of Perov type in abstract metric spaces with applications. AIMS Mathematics, 2022, 7(8): 14895-14921. doi: 10.3934/math.2022817
    [8] Hongyan Guan, Jinze Gou, Yan Hao . On some weak contractive mappings of integral type and fixed point results in b-metric spaces. AIMS Mathematics, 2024, 9(2): 4729-4748. doi: 10.3934/math.2024228
    [9] Yunpeng Zhao, Fei He, Shumin Lu . Several fixed-point theorems for generalized Ćirić-type contraction in Gb-metric spaces. AIMS Mathematics, 2024, 9(8): 22393-22413. doi: 10.3934/math.20241089
    [10] Yan Han, Shaoyuan Xu, Jin Chen, Huijuan Yang . Fixed point theorems for b-generalized contractive mappings with weak continuity conditions. AIMS Mathematics, 2024, 9(6): 15024-15039. doi: 10.3934/math.2024728
  • Partial balanced incomplete block designs have a wide range of applications in many areas. Such designs provide advantages over fully balanced incomplete block designs as they allow for designs with a low number of blocks and different associations. This paper introduces a class of partially balanced incomplete designs. We call it partially balanced network designs (PBNDs). The fundamentals and properties of PBNDs are studied. We are concerned with modeling PBNDs as graph designs. Some direct constructions of small PBNDs and generalized PBNDs are introduced. Besides that, we show that our modeling yields an effective utilization of PNBDs in constructing graph codes. Here, we are interested in constructing graph codes from bipartite graphs. We have proved that these codes have good characteristics for error detection and correction. In the end, the paper introduces a novel technique for generating new codes from already constructed codes. This technique results in increasing the ability to correct errors.



    Schur complement of a matrix is widely used and has attracted the attention of many scholars. In 1979, the Schur complement question of a strictly diagonally dominant (SDD) matrix was studied by Carlson and Markham [1]. They certified the Schur complement of SDD matrix is also an SDD matrix. Before long, some renowned matrices such as doubly diagonally dominant matrices and Dashnic-Zusmanovich (DZ) matrices were researched, and the results were analogous [2,3,4,5]. In 2020, Li et al. proved that the Schur complements and the diagonal-Schur complements of Dashnic-Zusmanovich type (DZ-type) matrices are DZ-type matrices under certain conditions in [6]. In 2023, Song and Gao [7] proved that the Schur complements and the diagonal-Schur complements of CKV-type matrices are CKV-B-type matrices under certain conditions. Furthermore, there are many conclusions on Schur complements and diagonal-Schur complements for other classes of matrices, see [8,9,10,11,12,13,14,15].

    The upper bound of the inverse infinite norm of the non-singular matrix is widely used in mathematics, such as the convergence analysis of matrix splitting and matrix multiple splitting iterative method for solving linear equations. A traditional way to find the upper bound of an infinite norm for the inverse of a nonsingular matrix is to use the definition and properties of a given matrix class, see [16,17,18,19] for details. The first work was by Varah [19], who in 1975 gave the upper bound of the infinite norm of the inverse of the SDD matrix. However, in some cases, the bounds of Varah may yield larger values. In 2020, Li [20] obtained two upper bounds of the infinite norm of the inverse of the SDD matrix based on Schur complement, and in 2021, Sang [21] obtained two upper bounds for the infinity norm of DSDD matrices. In 2022, based on the Schur complement, Li and Wang obtained some upper bounds for the infinity norm of the inverse of GDSDD matrices [22].

    In this paper, n is a positive integer and N={1,2,...,n}. Let S be any nonempty subset of N, SN, ¯S:=NS for the complement of S. Cn×n denotes the set of complex matrices of all n×n. Rn×n denotes the set of all n×n real matrices. IRn×n is an identity matrix, A=[aij]Cn×n, |A|=[|aij|]Rn×n and

    ri(A)=ki,kN|aik|,rSi(A)=ki,kS|aik|,iN.

    The matrix A is known as the strictly diagonal dominance SDD matrix, abbreviated as A SDD, if

    |aii|>ri(A),iN.

    Definition 1. [23] Let S be an arbitrary nonempty proper subset of the index set. A=[aij]Cn×n,n2, is called an S-SOB (S-Sparse Ostrowski-Brauer) matrix if

    (i) |aii|>rSi(A) for all iS;

    (ii) |ajj|>r¯Sj(A) for all jS;

    (iii) For all iS and all jˉS such that aij0,

    [|aii|rSi(A)]|ajj|>r¯Si(A)rj(A); (1.1)

    (iv) For all iS and all jˉS such that aji0,

    [|ajj|r¯Sj(A)]|aii|>rSj(A)ri(A). (1.2)

    Definition 2. [24] A matrix A is called GDSDD matrix if J and there exists proper subsets N1,N2 of N such that N1N2=,N1N2=N and for any iN1 and jN2,

    [|aii|rN1i(A)][|ajj|rN2j(A)]>rN2i(A)rN1j(A),

    where J:={iN:|aii|>ri(A)}.

    Definition 3. [25] A matrix A is called an H-matrix, if its comparison matrix μ(A)=[μij] defined by

    μii=|aii|,μij=|aij|,i,jN,ij

    is an M-matrix, i.e., [μ(A)]10.

    It is shown in [1] that if A is an H-matrix, then,

    [μ(A)]1|A1|. (1.3)

    Let A be an M-matrix, then det(A)>0.

    In addition, it was shown that S-SOB, SDD and GDSDD matrices are nonsingular H-matrix in [23,26]. Varah [19] gave the following upper bound for the infinity norm of the inverse of SDD matrices:

    Theorem 1. [19] Let A=[aij] be an SDD matrix. Then,

    A1maxiN1|aii|ri(A). (1.4)

    Theorem 2. [27] Let A=[aij]Cn×n,n2, be an S-SOB matrix, where SN, 1|S|n1. Then,

    A1{maxiS:rˉSi(A)=01|aii|rSi(A),maxjˉS:rSj(A)=01|ajj|rˉSj(A),maxiS,jˉS:aij0fij(A,S),maxiS,jˉS:aji0fji(A,ˉS)}, (1.5)

    where

    fij(A,S)=|ajj|+rˉSi(A)[|aii|rSi(A)]|ajj|rˉSi(A)rj(A),iS,jˉS.

    Theorem 3. [28] Let A=[aij]Cn×n, n2, be an GDSDD matrix, where SN, 1|S|n1. Then,

    A1max{maxiN1,jN2|ajj|rN2j(A)+rN2i(A)[|aii|rN1i(A)][|ajj|rN2j(A)]rN2i(A)rN1j(A),maxiN1,jN2|aii|rN1i(A)+rN1j(A)[|aii|rN1i(A)][|ajj|rN2j(A)]>rN2i(A)rN1j(A)}. (1.6)

    In this paper, based on the Schur complement, we present some upper bounds for the infinity norm of the inverse of S-SOB matrices, and numerical examples are given to show the effectiveness of the obtained results. In addition, applying these new bounds, a lower bound for the smallest singular value of S-SOB matrices is obtained.

    Given a matrix A=(aij)Cn×n that is nonsingular, α={i1,i2,...,ik} is any nonempty proper subset of N, |α| is the cardinality of α (the number of elements in α, i.e., |α|=k), ˉα=Nα={j1,,jl} is the complement of α with respect to N, A(α,ˉα) is the submatrix of A lying in the rows indexed by α and the columns indexed by ˉα, A(α) is the leading submatrix of A whose row and column are both indexed by α, and the elements of α and of ˉα are both conventionally arranged in increasing order. If A(α) is not singular, the matrix A/α is called the Schur complement of A with respect to A(α). At this point

    A/α=A(ˉα)A(ˉα,α)[A(α)]1A(α,ˉα).

    Lemma 1. (Quotient formula [28,29]) Let A be a square matrix. Let B is a nonsingular principal submatrix of A and C is a nonsingular principal submatrix of B. Then, B/C is a nonsingular principal submatrix of A/C and A/B=(A/C)/(B/C), where B/C is the Schur complement of C in matrix B.

    Lemma 2. Let A=(aij)Cn×n be an S-SOB matrix, n2 and where αS or αˉS. Then, A(α) is an SDD matrix.

    Proof. When αS, since A is an S-SOB matrix and |aii|>rSi(A)rαi(A)=ki,kα|aik| for all iα, we have ri[A(α)]=ki,kα|aik|=rαi(A) and |aii|>ri[A(α)]. It is easy to obtain that A(α) is an SDD matrix. Homoplastically, so is αˉS.

    Lemma 3. Let A=(aij)Cn×n be an S-SOB matrix, n2 and α be a subset of N. Then, A(α) is an S-SOB matrix.

    Proof. If Sα, since A is an S-SOB matrix, then,

    (i) For all iS, |aii|>rSi(A)=rSi(A(α)),

    (ii) For all jˉSα, |ajj|>rˉSj(A)>rˉSαj(A)=rˉSαj(A(α)),

    (iii) For all iS,jˉSα such that aij0,

    [|aii|rSi(A(α))]|ajj|=[|aii|rSi(A)]|ajj|>rˉSi(A)rj(A)>rˉSi(A)rS(ˉSα)j(A)=rˉSi(A(α))rS(ˉSα)j(A(α)),

    (iv) For all iS,jˉSα such that aji0,

    [|ajj|rˉSαj(A(α))]|aii|=[|ajj|rˉSαj(A)]|aii|>rSj(A)ri(A)>rSj(A)rS(ˉSα)i(A)=rSj(A(α))rS(ˉSα)i(A(α)).

    Thus, A(α) is an S-SOB matrix and A(α)\{S-SOB}.

    In a similar way, if ˉSα, A(α) is an ˉS-SOB matrix. Meanwhile, when α is contained neither in S nor in ˉS, A(α) is an (Sα)-SOB matrix. Finally, A(α){S-SOB}.

    Lemma 4. Let A=(aij)Cn×n be an S-SOB matrix, n2 and let A be a matrix satisfying aij=0,aii>ri(A) and aji=0,ajj>rj(A) for iS,jˉS. If α={i1}S, denote

    B=(bij)=(|ai1i1|rSαi1(A)rˉSi1(A)|ajti1||ajtjt|rSαjt(A)rˉSjt(A)|ajsi1|rSαjs(A)|ajsjs|rˉSjs(A)), (2.1)

    where jt(Sα),jsˉS, then B{SGDD3}.

    Proof. Since A is an S-SOB matrix, if SB={1,2}, for all iSB, then,

    [|b11|rSB1(B)][|b33|rˉSB3(B)]=[|ai1i1|rSαi1(A)][|ajsjs|rˉSjs(A)]=[|ai1i1|rSi1(A)][|ajsjs|rˉSjs(A)].
    [|b22|rSB2(B)][|b33|rˉSB3(B)]=[|ajtjt|rSαjt(A)||ajti1|][|ajsjs|rˉSjs(A)]=[|ajtjt|rSjt(A)][|ajsjs|rˉSjs(A)].

    There exist four different cases.

    Case 1. When |ajsi1|0, |ai1js|0.

    (i) If |ajsjs|<rjs(A), from Definition 1, we have |ai1i1|ri1(A),

    [|b11|rSB1(B)][|b33|rˉSB3(B)]=[|ajsjs|rˉSjs(A)]|ai1i1|[|ajsjs|rˉSjs(A)]rSi1(A)>rSjs(A)ri1(A)rSjs(A)rSi1(A)=rSjs(A)rˉSi1(A)>rSαjs(A)rˉSi1(A)=rˉSB1(B)rSB3(B).

    (ii) If |ajsjs|>rjs(A), |ai1i1|ri1(A), we get

    [|b11|rSB1(B)][|b33|rˉSB3(B)]=[|ai1i1|rSi1(A)][|ajsjs|rˉSjs(A)]>rSjs(A)rˉSi1(A)>rSαjs(A)rˉSi1(A)=rˉSB1(B)rSB3(B).

    (iii) If |ajsjs|>rjs(A), |ai1i1|ri1(A), we obtain

    [|b11|rSB1(B)][|b33|rˉSB3(B)]=[|ai1i1|rSi1(A)]|ajsjs|[|ai1i1|rSi1(A)]rˉSjs(A)>rˉSi1(A)rjs(A)rˉSi1(A)rˉSjs(A)=rˉSi1(A)rSjs(A)>rSαjs(A)rˉSi1(A)=rˉSB1(B)rSB3(B).

    Case 2. When |ajsi1|0, |ai1js|=0, |ai1i1|ri1(A) the proof is analogous to (i) and (ii) in Case 1. We obtain

    [|b11|rSB1(B)][|b33|rˉSB3(B)]>rˉSB1(B)rSB3(B).

    Case 3. If |ajsi1|=0, |ai1js|0, then, |ajsjs|>rjs(A). By the same proof method as (ii) and (iii) in Case 1, we have

    [|b11|rSB1(B)][|b33|rˉSB3(B)]>rˉSB1(B)rSB3(B).

    Case 4. If |ajsi1|=0, |ai1js|=0, then, |ai1i1|>ri1(A), |ajsjs|>rjs(A), and

    [|b11|rSB1(B)][|b33|rˉSB3(B)]>rˉSB1(B)rSB3(B).

    To sum up, the inequality [|b11|rSB1(B)][|b33|rˉSB3(B)]>rˉSB1(B)rSB3(B) is held. In the same way, the inequality [|b22|rSB2(B)][|b33|rˉSB3(B)]>rˉSB2(B)rSB3(B) also holds. At last, we obtain B{GDSDD3} and B=μ(B) is an M-matrix. By Definition 3, we know that detB>0. The proof is completed.

    Theorem 4. Let A=(aij)Cn×n be an S-SOB matrix, n2 and let A be a matrix satisfying aij=0,aii>ri(A) and aji=0,ajj>rj(A) for iS,jˉS. Denote A/α=(ajtjs). If αS, then, A/α{ GDSDD(Sα),ˉSnk}.

    Proof. Note that α contains only one element. If α=i1S, for all jtSα, jsˉS, then we have

    [|ajtjt|rSαjt(A/α)][|ajsjs|rˉSjs(A/α)]rˉSjt(A/α)rSαjs(A/α)=[|ajtjt|jwSα,wt|ajtjw|][|ajsjs|jwˉS,ws|ajsjw|]jwˉS|ajtjw|jwSα|ajsjw|=[|ajtjtajti1ai1jtai1i1|jwSα,wt|ajtjwajti1ai1jwai1i1|]×[|ajsjsajsi1ai1jsai1i1|jwˉS,wt|ajsjwajsi1ai1jwai1i1|]jwˉS|ajtjwajti1ai1jwai1i1|jwSα|ajsjwajsi1ai1jwai1i1|[|ajtjt|rSαjt(A)|ajti1|rSαi1(A)|ai1i1|]×[|ajsjs|rˉSjs(A)|ajsi1|rˉSi1(A)|ai1i1|][rˉSjt(A)+|ajti1|rˉSi1(A)|ai1i1|]×[rSαjs(A)+|ajsi1|rSαi1(A)|ai1i1|]=det[B/{1}]=1|ai1i1|detB>0.

    We have A/{i1}{ GDSDD(S{i1}),ˉSn1} for any i1S. Consider that α contains more than one element. If i1α, by the quotient formula (in [9] Theorem 2 (ii)), we have A/α=(A/{i1})/((A(α)/i1){GDSDD(Sα),ˉSnk}. The proof is completed.

    Corollary 1. Let A=(aij)Cn×n be an S-SOB matrix, n2 and let A be a matrix satisfying aij=0,aii>ri(A) and aji=0,ajj>rj(A) for iS,jˉS. Denote A/α=(ajtjs). If αˉS, jtS,jsˉSα, then, A/α{GDSDDS,(ˉSα)nk}.

    Proof. The conclusion can be drawn by using the same proof method as Theorem 4.

    Corollary 2. Let A=(aij)Cn×n be an S-SOB matrix, n2 and let A be a matrix satisfying aij=0,aii>ri(A) and aji=0,ajj>rj(A) for iS,jˉS. Denote A/α=(ajtjs). If α is contained neither in S nor in ˉS, jtSα,jsˉSα, then A/α{GDSDD(Sα),(ˉSα)nk}.

    Proof. The proof is similar to ([9], Theorem 2 (iii)), so we get A/α=(A/(Sα))/((A(α)/(Sα)){GDSDD(Sα),(ˉSα)nk}.

    Theorem 5. Let A=(aij)Cn×n be an S-SOB matrix, n2 and denote A/α=(ajtjs). If α=S or α=ˉS, then A/α is an SDD matrix.

    Proof. If {i1}=α=S, for all jtˉα, then we have

    |ajtjt|rjt(A/α)=|ajtjt|jwˉα,wt|ajtjw|=|ajtjtajti1ai1jtai1i1|jwˉα,wt|ajtjwajti1ai1jwai1i1||ajtjt|rˉαjt(A)jwˉα|ajti1ai1jw||ai1i1|=|ajtjt|rˉαjt(A)|ajti1|rˉαi1(A)|ai1i1|=|ajtjt|rˉSjt(A)|ajti1|rˉSi1(A)|ai1i1|.

    If ajti1=0, then we get

    |ajtjt|rjt(A/α)|ajtjt|rˉSjt(A)0>0.

    If ajti10, then we obtain

    |ajtjt|rjt(A/α)rSjt(A)ri1(A)|ai1i1||ajti1|rˉSi1(A)|ai1i1|>0.

    Hence, for any {i1}=α=S, A/{i1} is an SDD matrix. Taking i1α=S and using the fact that A is SDD, we know its Schur complement is as well. At last, we have A/α=(A/{i1})/(A(α)/{i1}){SDD}. By the same argument, so is α=ˉS.

    Corollary 3. Let A=(aij)Cn×n be an S-SOB matrix, n2 and denote A/α=(ajtjs). If Sα or ˉSα, then A/α is an SDD matrix.

    Proof. From Theorem 5, A/S is an SDD matrix, consequently, A/α=[A/S]/[(A(α)/S]{SDD}. Similarly, if ˉSα, we have A/α=[A/ˉS]/[(A(α)/ˉS]{SDD}.

    Finally, making a summary of part of the content: if αS or αˉS, then A(α){SDD}, A/α{ GDSDD}; if Sα or ˉSα, then A(α){S-SOB}, A/α{SDD}; if S=α or ˉS=α, then A(α){SDD}, A/α{SDD}; if α is contained neither in S nor in ˉS, then A(α){S-SOB}, A/α{GDSDD}.

    In order to obtain the upper bound of the infinite norm of the inverse of the S-SOB matrix, we need to give the definition of a permutation matrix in which every row and every column of it has only one element of 1 and all the other elements are 0. It is easy to see from the definition that permutation matrices are also elementary matrices, so multiplication of any matrix only changes the position of the matrix elements, but does not change the size of the matrix elements.

    For a given nonempty proper subset α, there is a permutation matrix P such that

    PTAP=(A(α)A(α,ˉα)A(ˉα,α)A(ˉα)).

    We might as well assume that A(α) is nonsingular, let

    E(PTAP)F=(A(α)00A(ˉα)A(ˉα,α)A(α)1A(α,ˉα)), (3.1)

    under the circumstances

    E=(I10A(ˉα,α)A(α)1I2)

    and

    F=(I1A(α)1A(α,ˉα)0I2),

    where I1 (resp.I2) is the identity matrix of order l (resp.m). We know that if P is a permutation matrix, then PT is also a permutation matrix, and ||P||=1. From the above we can obtain

    ||A1||=||PF(EPTAPF)1EPT||,
    ||A1||||F||||(EPTAPF)1||||E||. (3.2)

    Therefore, if the upper bounds of ||F||, ||(EPTAPF)1||, and ||E|| can be obtained, the upper bounds of ||A1|| can also be obtained, that is, the product of the above three norm bounds needs to be calculated. It's not hard to figure out

    ||E||=1+||A(ˉα,α)A(α)1||, (3.3)
    ||F||=1+||A(α)1A(α,ˉα)||, (3.4)

    and

    ||(EPTAPF)1||=max{||A(α)1||,||(A/α)1||}. (3.5)

    In [20], Li gives an upper bound for ||E|| as follows:

    Lemma 5. [20] Let A=[aij]Cn×n be nonsingular with aii0, for iN, and αN. If A(α) is nonsingular and

    1>maxiαmaxjα,ji|aji||aii|(k1), (3.6)

    then,

    ||E||ζ(α)=1+kmaxiαmaxjˉα|aji||aii|(1maxiαmaxjα,ji|aji||aii|(k1))1. (3.7)

    Theorem 6. Let A=[aij]Cn×n be an S-SOB matrix and D=[dij]Cn×m. Then,

    A1Dmax{maxiS,jˉS:aij0|ajj|Ri(D)+rˉSi(A)Rj(D)[|aii|rSi(A)]|ajj|rˉSi(A)rj(A),maxiS,jˉS:aji0|aii|Rj(D)+rSj(A)Ri(D)[|ajj|rˉSj(A)]|aii|rSj(A)ri(A),maxiS:rˉSi(A)=0Ri(D)|aii|rSi(A),maxjˉS:rSj(A)=0Rj(D)|ajj|rˉSj(A)}, (3.8)

    where Ri(D)=kM|dik|.

    Proof. Since A=[aij]Cn×n is an S-SOB matrix, we know from [1] that A is an H-matrix, [μ(A)]1|A1|. Let

    φφ=|A1D|e=(φ1,φ2,...,φn)T,
    ψψ=(μ(A))1|D|e=(ψ1,ψ2,...,ψn)T,

    and e=(1,...,1)T be an m-dimensional vector, consequently,

    ψψ=μ(A)1|D|e|A1||D|e|A1D|e=φφ,andμ(A)ψψ=|D|e.

    Because of SN, ψp=maxkS{ψk},ψq=maxkˉS{ψk}, it implies that

    |aii|ψikN,ki|aik|ψk=kM|dik|,iN.

    If ψpψq, then,

    kM|dpk|=|app|ψpkN,kp|apk|ψk=|app|ψpkS,kp|apk|ψkkˉS,kp|apk|ψk|app|ψpkS,kp|apk|ψpkˉS,kp|apk|ψq=[|app|rSp(A)]ψprˉSp(A)ψq.

    That is to say, if ψpψq, rˉSp(A)=0, then,

    kM|dpk|[|app|rSp(A)]ψp,

    and

    ||A1D||=maxiNψiψpkM|dpk||app|rSp(A)maxiS:rˉSi(A)=0kM|dik||aii|rSi(A). (3.9)

    If ψpψq, rˉSp(A)0, then,

    kM|dpk|[|app|rSp(A)]ψprˉSp(A)ψq, (3.10)

    and

    kM|dqk|=|aqq|ψqkN,kq|aqk|ψk|aqq|ψqrq(A)ψp. (3.11)

    By Eq (3.10) ×|aqq| + Eq (3.11)×rˉSp(A), we have

    |aqq|kM|dpk|+rˉSp(A)kM|dqk|{|aqq|[|app|rSp(A)]rˉSp(A)rq(A)}ψp.

    Thus,

    ||A1D||=maxiNψiψp|aqq|kM|dpk|+rˉSp(A)kM|dqk||aqq|[|app|rSp(A)]rˉSp(A)rq(A)maxiS,jˉS:aij0|ajj|kM|dik|+rˉSi(A)kM|djk||ajj|[|aii|rSi(A)]rˉSi(A)rj(A). (3.12)

    If ψqψp, equally,

    kM|dqk|=|aqq|ψqkN,kq|aqk|ψk|aqq|ψqkˉS,kq|aqk|ψqkS,kq|aqk|ψp=[|aqq|rˉSq(A)]ψqrSq(A)ψp.

    When rSq(A)=0, kM|dqk|[|aqq|rˉSq(A)]ψq.

    ||A1D||=maxiNψiψqkM|dqk||aqq|rˉSq(A)maxiS:rSq(A)=0kM|djk||ajj|rˉSj(A). (3.13)

    When rSq(A)0, then

    kM|dpk||app|ψprp(A)ψq, (3.14)
    kM|dqk|[|aqq|rˉSq(A)]ψqrSq(A)ψp. (3.15)

    Eq (3.14) ×rSq(A) + Eq (3.15)×|app|, we have

    rSq(A)kM|dpk|+|app|kM|dqk|{|app|[|aqq|rˉSq(A)]rSq(A)rq(A)}ψq.

    Consequently,

    ||A1D||=maxiNψiψqrSq(A)kM|dpk|+|app|kM|dqk||app|[|aqq|rˉSq(A)]rSq(A)rq(A)maxiS,jˉS:aji0|aii|kM|djk|+rSj(A)kM|dik||aii|[|ajj|rˉSj(A)]rSj(A)ri(A). (3.16)

    The conclusion follows from inequalities Eqs (3.9), (3.12), (3.13) and (3.16).

    Replacing A and D in Theorem 6 with A(α) and A(α,ˉα), respectively, yields Corollary 4.

    Corollary 4. Let A=[aij]Cn×n be an S-SOB matrix and αN, then, ||F||1+max{maxiαRi[A(α,ˉα)]|aii|ri[A(α)],β(α),γ(α),λ(α)}, where

    β(α)=max{maxiS,j(ˉSα):aij0|ajj|Ri[A(α,ˉα)]+r(ˉSα)i[A(α)]Rj[A(α,ˉα)][|aii|rSi[A(α)]]|ajj|r(ˉSα)i[A(α)]rj[A(α)],maxiS,j(ˉSα):aji0|aii|Rj[A(α,ˉα)]+rSj[A(α)]Ri[A(α,ˉα)][|ajj|r(ˉSα)j[A(α)]]|aii|rSj[A(α)]ri[A(α)],maxiS:r(ˉSα)i[A(α)]=0Ri[A(α,ˉα)]|aii|rSi[A(α)],maxjˉSα:rSj[A(α)]=0Rj[A(α,ˉα)]|ajj|r(ˉSα)j[A(α)]},
    γ(α)=max{maxiˉS,j(Sα):aij0|ajj|Ri[A(α,ˉα)]+r(Sα)i[A(α)]Rj[A(α,ˉα)][|aii|rˉSi[A(α)]]|ajj|r(Sα)i[A(α)]rj[A(α)],maxiˉS,j(Sα):aji0|aii|Rj[A(α,ˉα)]+rˉSj[A(α)]Ri[A(α,ˉα)][|ajj|r(Sα)j[A(α)]]|aii|rˉSj[A(α)]ri[A(α)],maxiˉS:r(Sα)i[A(α)]=0Ri[A(α,ˉα)]|aii|rˉSi[A(α)],maxjS:rSj[A(α)]=0Rj[A(α,ˉα)]|ajj|r(Sα)j[A(α)]},
    λ(α)=max{maxi(Sα),j(ˉSα):aij0|ajj|Ri[A(α,ˉα)]+r(ˉSα)i[A(α)]Rj[A(α,ˉα)][|aii|r(Sα)i[A(α)]]|ajj|r(ˉSα)i[A(α)]rj[A(α)],maxi(Sα),j(ˉSα):aji0|aii|Rj[A(α,ˉα)]+r(Sα)j[A(α)]Ri[A(α,ˉα)][|ajj|r(ˉSα)j[A(α)]]|aii|r(Sα)j[A(α)]ri[A(α)],maxi(Sα):r(ˉSα)i[A(α)]=0Ri[A(α,ˉα)]|aii|r(Sα)i[A(α)],maxjˉSα:r(Sα)j[A(α)]=0Rj[A(α,ˉα)]|ajj|r(ˉSα)j[A(α)]}.

    Proof. Let αS or αˉS, A(α) be an SDD matrix (from Lemma 2). Thus,

    ||F||=1+||A(α)1A(α,ˉα)||1+maxiαRi[A(α,ˉα)]|aii|ri[A(α)].

    From Lemma 3, we have

    (1) if Sα, A(α) is an S-SOB matrix, then

    ||F||=1+||A(α)1A(α,ˉα)||1+max{maxiS,j(ˉSα):aij0|ajj|Ri[A(α,ˉα)]+r(ˉSα)i[A(α)]Rj[A(α,ˉα)][|aii|rSi[A(α)]]|ajj|r(ˉSα)i[A(α)]rj[A(α)],maxiS,j(ˉSα):aji0|aii|Rj[A(α,ˉα)]+rSj[A(α)]Ri[A(α,ˉα)][|ajj|r(ˉSα)j[A(α)]]|aii|rSj[A(α)]ri[A(α)],maxiS:r(ˉSα)i[A(α)]=0Ri[A(α,ˉα)]|aii|rSi[A(α)],maxjˉS:rSj[A(α)]=0Rj[A(α,ˉα)]|ajj|r(ˉSα)j[A(α)]}.

    Hence, ||F||1+β(α).

    (2) If ˉSα, A(α) is an ˉS-SOB matrix, then

    ||F||=1+||A(α)1A(α,ˉα)||1+max{maxiˉS,j(Sα):aij0|ajj|Ri[A(α,ˉα)]+r(Sα)i[A(α)]Rj[A(α,ˉα)][|aii|rˉSi[A(α)]]|ajj|r(Sα)i[A(α)]rj[A(α)],maxiˉS,j(Sα):aji0|aii|Rj[A(α,ˉα)]+rˉSj[A(α)]Ri[A(α,ˉα)][|ajj|r(Sα)j[A(α)]]|aii|rˉSj[A(α)]ri[A(α)],maxiˉS:r(Sα)i[A(α)]=0Ri[A(α,ˉα)]|aii|rˉSi[A(α)],maxjS:rSj[A(α)]=0Rj[A(α,ˉα)]|ajj|r(Sα)j[A(α)]}.

    Accordingly, ||F||1+γ(α).

    (3) If α is contained neither in S nor in ˉS, A(α) is an (Sα)-SOB matrix, then we have

    ||F||=1+||A(α)1A(α,ˉα)||1+max{maxi(Sα),j(ˉSα):aij0|ajj|Ri[A(α,ˉα)]+r(ˉSα)i[A(α)]Rj[A(α,ˉα)][|aii|r(Sα)i[A(α)]]|ajj|r(ˉSα)i[A(α)]rj[A(α)],maxi(Sα),j(ˉSα):aji0|aii|Rj[A(α,ˉα)]+r(Sα)j[A(α)]Ri[A(α,ˉα)][|ajj|r(ˉSα)j[A(α)]]|aii|r(Sα)j[A(α)]ri[A(α)],maxi(Sα):r(ˉSα)i[A(α)]=0Ri[A(α,ˉα)]|aii|r(Sα)i[A(α)],maxjˉSα:r(Sα)j[A(α)]=0Rj[A(α,ˉα)]|ajj|r(ˉSα)j[A(α)]}=λ(α).

    Hence, ||F||1+λ(α). The proof is completed.

    Lemma 6. Let A=[aij]Cn×n be an S-SOB matrix and x=[μ(A(α))]1yT, where αS, or αˉS. Let x=(x1,x2,,xk), y=(y1,y2,,yk), yk>0, xg=maxikαxk, then

    0xkmaxivαyv|aiviv|rαiv(A),ikα. (3.17)

    Proof. Note that x=[μ(A(α))]1yT, so [μ(A(α))]x=yT. For all αS, or αˉS, from Lemma 2, μ(A(α)) is an H-matrix, so [μ(A(α))]10 by Eq (1.3). Then

    yg=|aigig|xgivα|aigiv|xv|aigig|xgivα|aigiv|xg,

    which gives xgyg|aigig|ivα|aigiv|=yg|aigig|rαig(A). Consequently, 0xkmaxivαyv|aiviv|rαiv(A),ikα.

    Lemma 7. Let A=[aij]Cn×n be an S-SOB matrix, x,yT from Lemma 6, if α is contained neither in S nor in ˉS, xg=maxikαxk, then

    0xkπyT(α),ikα, (3.18)

    where

    πyT(α)=max{maxi(Sα),j(ˉSα)|ajj|yi+r(ˉSα)i[A(α)]yj[|aii|r(Sα)i[A(α)]]|ajj|r(ˉSα)i[A(α)]rj[A(α)],maxi(Sα),j(ˉSα)|aii|yj+r(Sα)j[A(α)]yi[|ajj|r(ˉSα)j[A(α)]]|aii|r(Sα)j[A(α)]ri[A(α)]}.

    Proof. When α is contained neither in S nor in ˉS, A(α) is an (Sα)-SOB matrix, so is μ(A(α)). Thus,

    ||[μ(A(α))]1yT||=||x||=maxikαxk.

    Replacing A and D in Theorem 6 with [μ(A(α))]1 and yT, respectively, yields

    ||[μ(A(α))]1yT||max{maxi(Sα),j(ˉSα)|ajj|yi+r(ˉSα)i[A(α)]yj[|aii|r(Sα)i[A(α)]]|ajj|r(ˉSα)i[A(α)]rj[A(α)],maxi(Sα),j(ˉSα)|aii|yj+r(Sα)j[A(α)]yi[|ajj|r(ˉSα)j[A(α)]]|aii|rSj[A(α)]ri[A(α)]}=max{maxi(Sα),j(ˉSα)|ajj|yi+r(ˉSα)i(A)yj[|aii|r(Sα)i(A)]|ajj|r(ˉSα)i(A)rαj(A),maxi(Sα),j(ˉSα)|aii|yj+r(Sα)j(A)yi[|ajj|r(ˉSα)j(A)]|aii|r(Sα)j(A)rαi(A)}=πyT(α).

    Which implies that: 0xkπyT(α)),ikα.

    For the sake of convenience, assume that the symbol of A/α in this part is the same as in the second part and denote:

    vjt=(ajti1,ajti2,,ajtik),wjs=(ai1js,ai2js,,aikjs)T,
    |vjt|=(|ajti1|,|ajti2|,,|ajtik|),|wjs|=(|ai1js|,|ai2js|,,|aikjs|)T.

    I=(1,1,,1)T is an k order column vector.

    Theorem 7. Let A=(aij)Cn×n be an S-SOB matrix, n2 and A is a matrix satisfying aij=0,aii>ri(A) and aji=0,ajj>rj(A) for iS,jˉS. Denote A/α=(ajtjs). If αS, then,

    ||A1||ζ(α)[1+maxiαRi[A(α,ˉα)]|aii|ri[A(α)]]θ1(α),

    where θ1(α)=max{maxiα1|aii|ri(A(α)),η1(α)},

    η1(α)=max{maxi(Sα),jˉS|ajj|rˉSj(A)+rˉSi(A)+maxvαrˉSv(A)|avv|rαv(A)[rαi(A)+rαj(A)]hi,j,maxi(Sα),jˉS|aii|r(Sα)i(A)+r(Sα)j(A)+maxvαr(Sα)v|avv|rαv(A)[rαi(A)+rαj(A)]hi,j}.
    hi,j=[|aii|r(Sα)i(A)|vi|[μ(A(α))]1k(Sα)|wk|]×[|ajj|rˉSj(A)|vj|[μ(A(α))]1kˉS|wk|][rˉSi(A)|vi|[μ(A(α))]1kˉS|wk|]×[rˉαj(A)+|vj|[μ(A(α))]1k(Sα)|wk|].

    Proof. By Lemma 2, we know A(α) is an SDD matrix. Applying Varah's bound to A(α), we get

    ||A(α)1||maxiα1|aii|ri(A(α)). (3.19)

    By Corollary 4, we have

    ||F||1+maxiαRi[A(α,ˉα)]|aii|ri[A(α)]. (3.20)

    By Theorem 4, it is easy to know A/α{ GDSDD(Sα),ˉSnk}. Therefore, from Theorem 3,

    ||(A/α)1||max{maxjt(Sα),jsˉS|ajsjs|rˉSjs(A/α)+rˉSjt(A/α)[|ajtjt|r(Sα)jt(A/α)][|ajsjs|rˉSjs(A/α)]rˉSjt(A/α)r(Sα)js(A/α),maxjt(Sα),jsˉS|ajtjt|r(Sα)jt(A/α)+r(Sα)js(A/α)[|ajtjt|r(Sα)jt(A/α)][|ajsjs|rˉSjs(A/α)]rˉSjt(A/α)r(Sα)js(A/α)}.

    And then

    [|ajtjt|r(Sα)jt(A/α)][|ajsjs|rˉSjs(A/α)]rˉSjt(A/α)r(Sα)js(A/α)[|ajtjt|r(Sα)jt(A)|vjt|[μ(A(α))]1jk(Sα)|wjk|]×[|ajsjs|rˉSjs(A)|vjs|[μ(A(α))]1jkˉS|wjk|][rˉSjt(A)+|vjt|[μ(A(α))]1jkˉS|wjk|]×[r(Sα)js(A)+|vjs|[μ(A(α))]1jk(Sα)|wjk|]>0.
    |ajsjs|rˉSjs(A/α)+rˉSjt(A/α)|ajsjs|rˉSjs(A)+rˉSjt(A)+|vjs|[μ(A(α))]1jkˉS|wjk|+|vjt|[μ(A(α))]1jkˉS|wjk|=|ajsjs|rˉSjs(A)+rˉSjt(A)+(|vjs|+|vjt|)[μ(A(α))]1jkˉS|wjk||ajsjs|rˉSjs(A)+rˉSjt(A)+(|vjs|+|vjt|)maxivαyv|aiviv|rαiv(A)I(by(3.17))=|ajsjs|rˉSjs(A)+rˉSjt(A)+maxivαrˉSiv(A)|aiviv|rαiv(A)[rαjt(A)+rαjs(A)]. (3.21)

    Similarly,

    |ajtjt|r(Sα)jt(A/α)+r(Sα)js(A/α)|ajtjt|r(Sα)jt(A)+r(Sα)js(A)+maxivαr(Sα)iv(A)|aiviv|rαiv(A)[rαjt(A)+rαjs(A)]. (3.22)

    Let

    hjt,js=[|ajtjt|r(Sα)jt(A)|vjt|[μ(A(α))]1jk(Sα)|wjk|]×[|ajsjs|rˉSjs(A)|vjs|[μ(A(α))]1jkˉS|wjk|][|vjt|[μ(A(α))]1jkˉS|wjk|]×[r(Sα)js(A)+|vjs|[μ(A(α))]1jk(Sα)|wjk|]>0. (3.23)

    Furthermore, by Eqs (3.21)–(3.23), we have

    ||(A/α)1||max{maxjt(Sα),jsˉS|ajsjs|rˉSjs(A)+rˉSjt(A)+maxivαrˉSiv(A)|aiviv|rαiv(A)[rαjt(A)+rαjs(A)]hjt,js,maxjt(Sα),jsˉS|ajtjt|r(Sα)jt(A)+r(Sα)js(A)+maxivαr(Sα)iv(A)|aiviv|rαiv(A)[rαjt(A)+rαjs(A)]hjt,js}=max{maxi(Sα),jˉS|ajj|rˉSj(A)+rˉSi(A)+maxvαrˉSv(A)|avv|rαv(A)[rαi(A)+rαj(A)]hi,j,maxi(Sα),jˉS|aii|r(Sα)i(A)+r(Sα)j(A)+maxvαr(Sα)v|avv|rαv(A)[rαi(A)+rαj(A)]hi,j}. (3.24)

    Finally, by Eqs (3.2), (3.3), (3.19), (3.20) and (3.24), the conclusion follows.

    The following inference can be naturally drawn from Theorem 7:

    Corollary 5. Let A=(aij)Cn×n be an S-SOB matrix, n2 and A be a matrix satisfying aij=0,aii>ri(A) and aji=0,ajj>rj(A) for iS,jˉS. Denote A/α=(ajtjs). If αˉS, then,

    ||A1||ζ(α)[1+maxiαRi[A(α,ˉα)]|aii|ri[A(α)]]θ2(α),

    where θ2(α)=max{maxiα1|aii|ri(A(α)),η2(α)},

    η2(α)=max{maxiS,j(ˉSα)|ajj|r(ˉSα)j(A)+r(ˉSα)i(A)+maxvαr(ˉSα)v(A)|avv|rαv(A)[rαi(A)+rαj(A)]zi,j,maxiS,j(ˉSα)|aii|rSi(A)+rSj(A)+maxvαrSv(A)|avv|rαv(A)[rαi(A)+rαj(A)]zi,j}.
    zi,j=[|aii|rSi(A)|vi|[μ(A(α))]1kS|wk|]×[|ajj|r(ˉSα)j(A)|vj|[μ(A(α))]1k(ˉSα)|wk|][r(ˉSα)i(A)|vi|[μ(A(α))]1k(ˉSα)|wk|]×[rˉαj(A)+|vj|[μ(A(α))]1kS|wk|].

    Theorem 8. Let A=(aij)Cn×n be an S-SOB matrix, n2 and A be a matrix satisfying aij=0,aii>ri(A) and aji=0,ajj>rj(A) for iS,jˉS. Denote A/α=(ajtjs). If α is contained neither in S nor in ˉS, then,

    ||A1||ζ(α)[1+λ(α)]θ3(α),

    where θ3(α)=max{δ1(α),η3(α)},

    δ1(α)=max{maxi(Sα),j(ˉSα)|ajj|+r(ˉSα)i(A(α))[|aii|r(Sα)i(A(α))]|ajj|r(ˉSα)i(A(α))rj(A(α)),maxi(Sα),j(ˉSα)|aii|+r(Sα)j[(A(α))][|ajj|r(ˉSα)j(A(α))]|aii|r(Sα)j(A(α))ri(A(α))}.
    η3(α)=max{maxi(Sα),j(ˉSα)|ajj|r(ˉSα)j(A)+rαi(A)+[rαi(A)+rαj(A)]πy1(α)fi,j,maxi(Sα),j(ˉSα)|aii|r(Sα)i(A)+r(Sα)j(A)+[rαi(A)+rαj(A)]πy2(α)fi,j}.
    fi,j=[|aii|r(Sα)i(A)|vi|[μ(A(α))]1k(Sα)|wk|]×[|ajj|r(ˉSα)j(A)|vj|[μ(A(α))]1k(ˉSα)|wk|][r(ˉSα)i(A)+|vi|[μ(A(α))]1k(ˉSα)|wk|]×[r(Sα)j(A)+|vj|[μ(A(α))]1k(Sα)|wk|].

    Proof. By Lemma 3, we know A(α) is an (Sα)-SOB matrix. Applying the bound of Theorem 2 to A(α), we get

    A(α)1max{maxi(Sα),j(ˉSα)|ajj|+r(ˉSα)i(A(α))[|aii|r(Sα)i(A(α))]|ajj|r(ˉSα)i(A(α))rj(A(α)),maxi(Sα),j(ˉSα)|aii|+r(Sα)j[(A(α))][|ajj|r(ˉSα)j(A(α))]|aii|r(Sα)j(A(α))ri(A(α))}=δ1(α). (3.25)

    By Corollary 4, we have

    ||F||1+λ(α). (3.26)

    By Corollary 2, we know A/α{ GDSDD(Sα),(ˉSα)nk}. Therefore,

    \begin{eqnarray} &&||(A/\alpha)^{-1}||_{\infty}\leq\\ &&\max\{\max\limits_{j_{t}\in (S\setminus\alpha) , \atop j_{s}\in(\bar{S}\setminus\alpha)}\frac{|{{a}^{'}_{j_{s}j_{s}}}|-r_{j_{s}}^{(\bar{S}\setminus\alpha)}(A/\alpha)+r_{j_{t}}^{(\bar{S}\setminus\alpha)}(A/\alpha)} {[|{{a}^{'}_{j_{t}j_{t}}}|-r_{j_{t}}^{(S\setminus\alpha)}(A/\alpha)][|{{a}^{'}_{j_{s}j_{s}}}|-r_{j_{s}}^{(\bar{S}\setminus\alpha)}(A/\alpha)] -r_{j_{t}}^{(\bar{S}\setminus\alpha)}(A/\alpha)r_{j_{s}}^{(S\setminus\alpha)}(A/\alpha)}, \\ &&\max\limits_{j_{t}\in (S\setminus\alpha) , \atop j_{s}\in(\bar{S}\setminus\alpha)}\frac{|{{a}^{'}_{j_{t}j_{t}}}|-r_{j_{t}}^{(S\setminus\alpha)}(A/\alpha)+r_{j_{s}}^{(S\setminus\alpha)}(A/\alpha)}{[|{{a}^{'}_{j_{t}j_{t}}}|-r_{j_{t}}^{(S\setminus\alpha)}(A/\alpha)] [|{{a}^{'}_{j_{s}j_{s}}}|-r_{j_{s}}^{(\bar{S}\setminus\alpha)}(A/\alpha)] -r_{j_{t}}^{(\bar{S}\setminus\alpha)}(A/\alpha)r_{j_{s}}^{(S\setminus\alpha)}(A/\alpha)}\}. \end{eqnarray} (3.27)

    And then,

    \begin{eqnarray*} &&[|{{a}^{'}_{j_{t}j_{t}}}|-r_{j_{t}}^{(S\setminus\alpha)}(A/\alpha)][|{{a}^{'}_{j_{s}j_{s}}}|-r_{j_{s}}^{(\bar{S}\setminus\alpha)}(A/\alpha)] -r_{j_{t}}^{(\bar{S}\setminus\alpha)}(A/\alpha)r_{j_{s}}^{(S\setminus\alpha)}(A/\alpha)\nonumber\\ &&\geq\left[|{{a}_{j_{t}j_{t}}}|-r_{j_{t}}^{(S\setminus\alpha)}(A)-|v_{j_{t}}|[\mu(A(\alpha))]^{-1}\sum\limits_{j_{k}\in(S\setminus\alpha)} |w_{j_{k}}|\right]\nonumber\\ &&\times\left[|{{a}_{j_{s}j_{s}}}|-r_{j_{s}}^{(\bar{S}\setminus\alpha)}(A)-|v_{j_{s}}|[\mu(A(\alpha))]^{-1}\sum\limits_{j_{k}\in(\bar{S}\setminus\alpha)} |w_{j_{k}}|\right]\nonumber\\ &&-\left[r_{j_{t}}^{(\bar{S}\setminus\alpha)}(A)+|v_{j_{t}}|[\mu(A(\alpha))]^{-1}\sum\limits_{j_{k}\in (\bar{S}\setminus\alpha)}|w_{j_{k}}|\right]\nonumber\\ && \times\left[r_{j_{s}}^{(S\setminus\alpha)}(A)+|v_{j_{s}}|[\mu(A(\alpha))]^{-1} \sum\limits_{j_{k}\in(S\setminus\alpha)}|w_{j_{k}}|\right] > 0. \end{eqnarray*}
    \begin{eqnarray*} &&|{{a}^{'}_{j_{s}j_{s}}}|-r_{j_{s}}^{(\bar{S}\setminus\alpha)}(A/\alpha)+r_{j_{t}}^{(\bar{S}\setminus\alpha)}(A/\alpha)\leq|{{a}_{j_{s}j_{s}}}|-r_{j_{s}}^{(\bar{S}\setminus\alpha)}(A)+ r_{j_{t}}^{(\bar{S}\setminus\alpha)}(A)\nonumber\\ &&+|v_{j_{s}}|[\mu(A(\alpha))]^{-1}\sum\limits_{j_{k}\in(\bar{S}\setminus\alpha)} |w_{j_{k}}| +|v_{j_{t}}|[\mu(A(\alpha))]^{-1}\sum\limits_{j_{k}\in (\bar{S}\setminus\alpha)}|w_{j_{k}}|\nonumber\\ && = |{{a}_{j_{s}j_{s}}}|-r_{j_{s}}^{(\bar{S}\setminus\alpha)}(A)+ r_{j_{t}}^{(\bar{S}\setminus\alpha)}(A)+(|v_{j_{s}}|+|v_{j_{t}}|)[\mu(A(\alpha))]^{-1}\sum\limits_{j_{k}\in(\bar{S}\setminus\alpha)}|w_{j_{k}}|. \end{eqnarray*}

    Let y^{T} = \mathbf{y_{1}} = \sum\limits_{j_{k}\in (\bar{S}\setminus\alpha)}|w_{j_{k}}| , y^{T} from Lemma 7, we get

    \begin{eqnarray} &&|{{a}^{'}_{j_{s}j_{s}}}|-r_{j_{s}}^{(\bar{S}\setminus\alpha)}(A/\alpha)+r_{j_{t}}^{(\bar{S}\setminus\alpha)}(A/\alpha)\\ &&\leq|{{a}_{j_{s}j_{s}}}|-r_{j_{s}}^{(\bar{S}\setminus\alpha)}(A)+ r_{j_{t}}^{(\bar{S}\setminus\alpha)}(A)+(|v_{j_{s}}|+|v_{j_{t}}|)\pi(\alpha)I\\ && = |{{a}_{j_{s}j_{s}}}|-r_{j_{s}}^{(\bar{S}\setminus\alpha)}(A)+ r_{j_{t}}^{(\bar{S}\setminus\alpha)}(A)+[r_{j_{t}}^{\alpha}(A)+r_{j_{s}}^{\alpha}(A)]\pi_{\mathbf{y_{1}}}(\alpha). \end{eqnarray} (3.28)

    In like manner, let y^{T} = \mathbf{y_{2}} = \sum\limits_{j_{k}\in (S\setminus\alpha)}|w_{j_{k}}| , y^{T} from Lemma 7, we get

    \begin{eqnarray} &&|{{a}^{'}_{j_{t}j_{t}}}|-r_{j_{t}}^{(S\setminus\alpha)}(A/\alpha)+r_{j_{s}}^{(S\setminus\alpha)}(A/\alpha)\leq|{{a}_{j_{t}j_{t}}}|-r_{j_{t}}^{(S\setminus\alpha)}(A)+ r_{j_{s}}^{(S\setminus\alpha)}(A)\\ &&+[r_{j_{t}}^{\alpha}(A)+r_{j_{s}}^{\alpha}(A)]\pi_{\mathbf{y_{2}}}(\alpha). \end{eqnarray} (3.29)

    Let

    \begin{eqnarray} f_{j_{t}, j_{s}}& = &\left[|{{a}_{j_{t}j_{t}}}|-r_{j_{t}}^{(S\setminus\alpha)}(A)-|v_{j_{t}}|[\mu(A(\alpha))]^{-1}\sum\limits_{j_{k}\in(S\setminus\alpha)} |w_{j_{k}}|\right]\\ &\times&\left[|{{a}_{j_{s}j_{s}}}|-r_{j_{s}}^{(\bar{S}\setminus\alpha)}(A)-|v_{j_{s}}|[\mu(A(\alpha))]^{-1}\sum\limits_{j_{k}\in(\bar{S}\setminus\alpha)} |w_{j_{k}}|\right]\\ &-&\left[r_{j_{t}}^{(\bar{S}\setminus\alpha)}(A)+|v_{j_{t}}|[\mu(A(\alpha))]^{-1}\sum\limits_{j_{k}\in (\bar{S}\setminus\alpha)}|w_{j_{k}}|\right]\\ &\times&\left[r_{j_{s}}^{(S\setminus\alpha)}(A)+|v_{j_{s}}|[\mu(A(\alpha))]^{-1} \sum\limits_{j_{k}\in(S\setminus\alpha)}|w_{j_{k}}|\right]. \end{eqnarray} (3.30)

    Furthermore, by Eqs (3.28)–(3.30), we have

    \begin{eqnarray} &&||(A/\alpha)^{-1}||_{\infty}\leq\\ &&\max\{\max\limits_{j_{t}\in (S\setminus\alpha), \atop j_{s}\in(\bar{S}\setminus\alpha)}\frac{|{{a}_{j_{s}j_{s}}}|-r_{j_{s}}^{(\bar{S}\setminus\alpha)}(A)+ r_{j_{t}}^{\bar{S}\setminus\alpha}(A)+[r_{j_{t}}^{\alpha}(A)+r_{j_{s}}^{\alpha}(A)]\pi_{\mathbf{y_{1}}}(\alpha)} {f_{j_{t}, j_{s}}}, \\ &&\max\limits_{j_{t}\in(S\setminus\alpha) , \atop j_{s}\in(\bar{S}\setminus\alpha)}\frac{|{{a}_{j_{t}j_{t}}}|-r_{j_{t}}^{(S\setminus\alpha)}(A)+ r_{j_{s}}^{(S\setminus\alpha)}(A)+[r_{j_{t}}^{\alpha}(A)+r_{j_{s}}^{\alpha}(A)]\pi_{\mathbf{y_{2}}}(\alpha)} {f_{j_{t}, j_{s}}} \}\\ && = \max\{\max\limits_{i\in (S\setminus\alpha), \atop j\in(\bar{S}\setminus\alpha)}\frac{|{{a}_{jj}}|-r_{j}^{(\bar{S}\setminus\alpha)}(A)+ r_{i}^{(\bar{S}\setminus\alpha)}(A)+[r_{i}^{\alpha}(A)+r_{j}^{\alpha}(A)]\pi_{\mathbf{y_{1}}}(\alpha)} {f_{i, j}}, \\ &&\max\limits_{i\in(S\setminus\alpha) , \atop j\in(\bar{S}\setminus\alpha)}\frac{|{{a}_{ii}}|-r_{i}^{(S\setminus\alpha)}(A)+ r_{j}^{(S\setminus\alpha)}(A)+[r_{i}^{\alpha}(A)+r_{j}^{\alpha}(A)]\pi_{\mathbf{y_{2}}}(\alpha)} {f_{i, j}} \}. \end{eqnarray} (3.31)

    Finally, by Eqs (3.2), (3.3), (3.25), (3.26) and (3.31), the conclusion follows.

    Theorem 9. Let A = \left[{{a}_{ij}} \right]\in {{{C}}^{n\times n}} be an S -SOB matrix, \phi\neq\alpha = S . If Eq (3.7) holds, then,

    ||A^{-1}||_{\infty}\leq\zeta(\alpha)\left[1+\max\limits_{i\in\alpha}\frac{R_{i}[A(\alpha, \bar{\alpha})]}{|a_{ii}|-r_{i}[A(\alpha)]}\right]\theta_{4}(\alpha),

    where \theta_{4}(\alpha) = \max\{\max\limits_{i\in\alpha}\frac{1}{|a_{ii}|-r_{i}(A(\alpha))}, \; \eta_{4}(\alpha)\},

    \begin{eqnarray*} &&\eta_{4}(\alpha) = \max\limits_{j\in \bar{S}}\frac{1}{|{{a}_{jj}}|-r_{j}^{\bar{S}}(A)-|v_{j}|[\mu(A(\alpha))]^{-1}\sum\limits_{k\in \bar{S}}|w_{k}|}. \end{eqnarray*}

    Expressly, when \phi\neq\alpha = S = \{i\} ,

    ||A^{-1}||_{\infty}\leq\left[1+\max\limits_{j\in \bar{S}}\frac{|a_{ji}|}{|a_{ii}|}\right]\left[1+\max\limits_{j\in \bar{S}}\frac{|a_{ji}|}{|a_{ii}|}\right]\theta_{4}'(\alpha).

    \theta_{4}'(\alpha) = \max\{\frac{1}{|a_{ii}|}, \; \eta_{4}'(\alpha)\},

    \begin{eqnarray*} &&\eta_{4}'(\alpha) = \max\limits_{j\in \bar{S}}\frac{1}{|{{a}_{jj}}|-r_{j}^{\bar{S}}(A)-\frac{|a_{ji}|r_{i}^{\bar{S}}(A)}{|a_{ii}|}}. \end{eqnarray*}

    Proof. By Lemma 2, we know A(\alpha) is an SDD matrix. ||A(\alpha)^{-1}||_{\infty} is the same as Eq (3.19), and ||F||_{\infty} is the same as Eq (3.20). By Theorem 5, knowing that A/\alpha is an SDD matrix. Therefore,

    \begin{eqnarray} &&||(A/\alpha)^{-1}||_{\infty}\leq \max\limits_{j_{t}\in \bar{\alpha}}\frac{1}{|{{a}^{'}_{j_{t}j_{t}}}|-r_{j_{t}}(A/\alpha)}\\ &&\leq\max\limits_{j_{t}\in \bar{\alpha}}\frac{1}{|{{a}_{j_{t}j_{t}}}|-r_{j_{t}}^{\bar{\alpha}}(A)-|v_{j_{t}}|[\mu(A(\alpha))]^{-1}\sum\limits_{j_{k}\in \bar{S}}|w_{j_{k}}|}\\ && = \max\limits_{j_{t}\in \bar{S}}\frac{1}{|{{a}_{j_{t}j_{t}}}|-r_{j_{t}}^{\bar{S}}(A)-|v_{j_{t}}|[\mu(A(\alpha))]^{-1}\sum\limits_{j_{k}\in \bar{S}}|w_{j_{k}}|}\\ && = \max\limits_{j\in \bar{S}}\frac{1}{|{{a}_{jj}}|-r_{j}^{\bar{S}}(A)-|v_{j}|[\mu(A(\alpha))]^{-1}\sum\limits_{k\in \bar{S}}|w_{k}|} = \eta_{4}. \end{eqnarray} (3.32)

    Finally, by Eqs (3.2), (3.3), (3.19), (3.20) and (3.32), the conclusion follows.

    A proof similar to Theorem 9 leads to the results.

    Corollary 6. Let A = \left[{{a}_{ij}} \right]\in {{{C}}^{n\times n}} be an S -SOB matrix, where \phi\neq\alpha = \bar{S} . If Eq (3.7) holds, then,

    ||A^{-1}||_{\infty}\leq\zeta(\alpha)\left[1+\max\limits_{i\in\alpha}\frac{r_{i}[A(\alpha, \bar{\alpha})]}{|a_{ii}|-r_{i}[A(\alpha)]}\right]\theta_{5}(\alpha),

    where \theta_{5}(\alpha) = \max\{\max\limits_{i\in\alpha}\frac{1}{|a_{ii}|-r_{i}(A(\alpha))}, \; \eta_{5}(\alpha)\},

    \begin{eqnarray*} &&\eta_{5}(\alpha) = \max\limits_{i\in S}\frac{1}{|{{a}_{ii}}|-r_{i}^{S}(A)-|v_{i}|[\mu(A(\alpha))]^{-1}\sum\limits_{k\in S}|w_{k}|}. \end{eqnarray*}

    Distinguishingly, when \phi\neq\alpha = \bar{S} = \{i\} ,

    ||A^{-1}||_{\infty}\leq\left[1+\max\limits_{j\in S}\frac{|a_{ji}|}{|a_{ii}|}\right]\left[1+\max\limits_{j\in S}\frac{|a_{ji}|}{|a_{ii}|}\right]\theta_{5}'(\alpha).

    \theta_{5}'(\alpha) = \max\{\frac{1}{|a_{ii}|}, \; \eta_{5}'(\alpha)\},

    \begin{eqnarray*} &&\eta_{5}'(\alpha) = \max\limits_{j\in S}\frac{1}{|{{a}_{jj}}|-r_{j}^{S}(A)-\frac{|a_{ji}|r_{i}^{S}(A)}{|a_{ii}|}}. \end{eqnarray*}

    Theorem 10. Let A = \left[{{a}_{ij}} \right]\in {{{C}}^{n\times n}} be an S -SOB matrix, where S\subset\alpha . If Eq (3.7) holds, then,

    ||A^{-1}||_{\infty}\leq\zeta(\alpha)[1+\beta(\alpha)]\theta_{6}(\alpha),

    where \theta_{6}(\alpha) = \max\{\delta_{2}(\alpha), \; \eta_{6}(\alpha)\},

    \begin{eqnarray*} \delta_{2}(\alpha) = \max\{\max\limits_{i\in S, j\in(\bar{S}\cap\alpha), \atop :a_{ij}\neq0}\frac{|{{a}_{jj}}|+r_{i}^{(\bar{S}\cap\alpha)}(A(\alpha))}{[|{{a}_{ii}}|-r_{i}^{S}(A(\alpha))] |{{a}_{jj}}|-r_{i}^{(\bar{S}\cap\alpha)}(A(\alpha)) r_{j}(A(\alpha))}, &\nonumber\\ \max\limits_{i\in S, j\in(\bar{S}\cap\alpha), \atop :a_{ji}\neq0}\frac{|{{a}_{ii}}|+r_{j}^{(S\cap\alpha)}[(A(\alpha))]}{[|{{a}_{jj}}| -r_{j}^{(\bar{S}\cap\alpha)}(A(\alpha))]|{{a}_{ii}}|-r_{j}^{S}(A(\alpha))r_{i}(A(\alpha))}, &\nonumber\\ \max\limits_{i\in S, j\in(\bar{S}\cap\alpha)\atop r_{i}^{(\bar{S}\cap\alpha)}(A(\alpha)) = 0}\frac{1}{|{{a}_{ii}}|-r_{i}^{S}(A(\alpha))}, \max\limits_{i\in S, j\in(\bar{S}\cap\alpha)\atop:r_{j}^{S}(A(\alpha)) = 0 }\frac{1}{|{{a}_{jj}}| -r_{j}^{(\bar{S}\cap\alpha)}(A(\alpha)) } \}. \end{eqnarray*}
    \begin{eqnarray*} &&\eta_{6}(\alpha) = \max\limits_{{i\in(\bar{S}\setminus\alpha) }}\frac{1} {|{{a}_{ii}}|-r_{i}^{(\bar{S}\setminus\alpha)}(A) -|v_{i}|[\mu(A(\alpha))]^{-1}\sum\limits_{k\in (\bar{S}\setminus\alpha)}|w_{k}|}. \end{eqnarray*}

    Proof. A(\alpha) is an S -SOB matrix (by Lemma 3). Thus,

    \begin{eqnarray} \|A(\alpha)^{-1}\|_{\infty}\leq\max\{\max\limits_{i\in S, j\in(\bar{S}\cap\alpha), \atop :a_{ij}\neq0}\frac{|{{a}_{jj}}|+r_{i}^{(\bar{S}\cap\alpha)}(A(\alpha))}{[|{{a}_{ii}}|-r_{i}^{S}(A(\alpha))] |{{a}_{jj}}|-r_{i}^{(\bar{S}\cap\alpha)}(A(\alpha)) r_{j}(A(\alpha))}, &\\ \max\limits_{i\in S, j\in(\bar{S}\cap\alpha), \atop :a_{ji}\neq0}\frac{|{{a}_{ii}}|+r_{j}^{(S\cap\alpha)}[(A(\alpha))]}{[|{{a}_{jj}}| -r_{j}^{(\bar{S}\cap\alpha)}(A(\alpha))]|{{a}_{ii}}|-r_{j}^{S}(A(\alpha))r_{i}(A(\alpha))}, &\\ \max\limits_{i\in S , j\in(\bar{S}\cap\alpha)\atop r_{i}^{(\bar{S}\cap\alpha)}(A(\alpha)) = 0}\frac{1}{|{{a}_{ii}}|-r_{i}^{S}(A(\alpha))}, \max\limits_{i\in S, j\in(\bar{S}\cap\alpha)\atop:r_{j}^{S}(A(\alpha)) = 0 }\frac{1}{|{{a}_{jj}}| -r_{j}^{(\bar{S}\cap\alpha)}(A(\alpha)) } \} = \delta_{2}(\alpha). \end{eqnarray} (3.33)

    From Corollary 4, we know

    \begin{eqnarray} ||F||_{\infty}\leq1+\beta(\alpha). \end{eqnarray} (3.34)

    By Corollary 3, we obtain A/\alpha is an SDD matrix. Therefore,

    \begin{eqnarray} &&||(A/\alpha)^{-1}||_{\infty}\leq \max\limits_{j_{t}\in (\bar{S}\setminus\alpha)}\frac{1} {|{{a}_{j_{t}j_{t}}}|-r_{j_{t}}^{(\bar{S}\setminus\alpha)}(A) -|v_{j_{t}}|[\mu(A(\alpha))]^{-1}\sum\limits_{j_{k}\in (\bar{S}\setminus\alpha)}|w_{j_{k}}|}\\ && = \max\limits_{{i\in(\bar{S}\setminus\alpha) }}\frac{1} {|{{a}_{ii}}|-r_{i}^{(\bar{S}\setminus\alpha)}(A) -|v_{i}|[\mu(A(\alpha))]^{-1}\sum\limits_{k\in (\bar{S}\setminus\alpha)}|w_{k}|}. \end{eqnarray} (3.35)

    Finally, by Eqs (3.2), (3.3), (3.33), (3.34) and (3.35), the conclusion follows.

    According to Theorem 10, the following result will come out naturally.

    Corollary 7. Let A = \left[{{a}_{ij}} \right]\in {{{C}}^{n\times n}} be an S -SOB matrix, \bar{S}\subset\alpha . If Eq (3.7) holds, then

    ||A^{-1}||_{\infty}\leq\zeta(\alpha)[1+\gamma(\alpha)]\theta_{7}(\alpha),

    where \theta_{7}(\alpha) = \max\{\delta_{3}(\alpha), \; \eta_{7}(\alpha)\},

    \begin{eqnarray*} \delta_{3}(\alpha) = \max\{\max\limits_{i\in (S\cap\alpha) , \atop j\in\bar{S}}\frac{|{{a}_{jj}}|+r_{i}^{\bar{S}}(A(\alpha))}{[|{{a}_{ii}}|-r_{i}^{(S\cap\alpha)}(A(\alpha))] |{{a}_{jj}}|-r_{i}^{\bar{S}}(A(\alpha)) r_{j}(A(\alpha))}, &\nonumber\\ \max\limits_{i\in (S\cap\alpha), \atop j\in\bar{S}}\frac{|{{a}_{ii}}|+r_{j}^{(S\cap\alpha)}[(A(\alpha))]}{[|{{a}_{jj}}| -r_{j}^{\bar{S}}(A(\alpha))]|{{a}_{ii}}|-r_{j}^{(S\cap\alpha)}(A(\alpha))r_{i}(A(\alpha))}, &\nonumber\\ \max\limits_{i\in (S\cap\alpha) , \atop j\in\bar{S}}\frac{1}{|{{a}_{ii}}|-r_{i}^{(S\cap\alpha)}(A(\alpha))}, \max\limits_{i\in (S\cap\alpha) , \atop j\in\bar{S}}\frac{1}{|{{a}_{jj}}| -r_{j}^{\bar{S}}(A(\alpha)) } \}. \end{eqnarray*}

    \eta_{7}(\alpha) = \max\limits_{{i\in(S\setminus\alpha) }}\frac{1} {|{{a}_{ii}}|-r_{i}^{(S\setminus\alpha)}(A) -|v_{i}|[\mu(A(\alpha))]^{-1}\sum\limits_{k\in (S\setminus\alpha)}|w_{k}|}.

    Theorem 11. Let A = ({{a}_{ij}})\in {{C}^{n\times n}} be an S -SOB matrix, n\ge 3 and let A satisfy that when {{a}_{ij}} = 0, {{a}_{ii}} > r_{i}(A) and {{a}_{ji}} = 0, {{a}_{jj}} > r_{j}(A) for i\in S, j\in \bar{S}. Denote A/\alpha = (a^{'}_{j_{t}j_{s}}) , then,

    ||A^{-1}||_{\infty}\leq\Gamma(A) = \min\limits_{i\in N}\Gamma_{i}(A).

    where \Gamma_{i}(A) = (1+\frac{\max\limits_{j\in N, \atop j\neq i}|a_{ji}|}{|a_{ii}|})(1+\frac{\max\limits_{j\in N, \atop j\neq i}|a_{ij}|}{|a_{ii}|})\tilde{\Gamma}_{i}(A),

    \begin{eqnarray*} &&\tilde{\Gamma}_{i}(A) = \max\{\frac{1}{|a_{ii}|}, \Gamma^{'}(A)\}. \end{eqnarray*}
    \begin{eqnarray*} &&\Gamma^{'}(A) = \max\{\max\limits_{j\in (S\setminus \{i\}), \atop k\in(\bar{S}\setminus \{i\})}\frac{|{{c}_{kk}}|-\sum\limits_{p\in\bar{S}, \atop p\neq k, i}|c_{kp}|+\sum\limits_{p\in\bar{S}, \atop p\neq i}|c_{jp}|} {(|{{c}_{jj}}|-\sum\limits_{p\in S, \atop p\neq j, i}|c_{jp}|)(|{{c}_{kk}}|-\sum\limits_{p\in\bar{S}, \atop p\neq k, i}|c_{kp}|)-\sum\limits_{p\in S, \atop p\neq i}|c_{kp}|\sum\limits_{p\in\bar{S}, \atop p\neq i}|c_{jp}|}, \nonumber\\ &&\max\limits_{j\in(S\setminus \{i\}), \atop k\in(\bar{S}\setminus \{i\})}\frac{|{{c}_{jj}}|-\sum\limits_{p\in S, \atop p\neq j, i}|c_{jp}|+\sum\limits_{p\in S, \atop p\neq i}|c_{kp}|} {(|{{c}_{jj}}|-\sum\limits_{p\in S, \atop p\neq j, i}|c_{jp}|)(|{{c}_{kk}}|-\sum\limits_{p\in\bar{S}, \atop p\neq k, i}|c_{kp}|)-\sum\limits_{p\in S, \atop p\neq i}|c_{kp}|\sum\limits_{p\in\bar{S}, \atop p\neq i}|c_{jp}|} \}, \end{eqnarray*}

    and c_{jk} = a_{jk}-\frac{a_{ji}a_{ik}}{a_{ii}}.

    Proof. Since A is an S -SOB matrix, by Lemma 2 and Theorem 5, we know A(\alpha) and A/\alpha are nonsingular. Therefore, taking \alpha = \{i\} , then A(\alpha) = a_{ii} , \bar{\alpha} = N-\{i\} , and

    \begin{eqnarray} \|A(\alpha)^{-1}\|_{\infty}\leq\frac{1}{|a_{ii}|}. \end{eqnarray} (3.36)
    \begin{eqnarray} \|E\|_{\infty} = 1+\frac{\max\limits_{j_{s}\in \bar{\alpha}}|a_{j_{s}i}|}{|a_{ii}|} = 1+\frac{\max\limits_{j\in N, \atop j\neq i}|a_{ji}|}{|a_{ii}|}. \end{eqnarray} (3.37)
    \begin{eqnarray} \|F\|_{\infty} = 1+\frac{\max\limits_{j_{s}\in \bar{\alpha}}|a_{i j_{s}}|}{|a_{ii}|} = 1+\frac{\max\limits_{j\in N, \atop j\neq i}|a_{ij}|}{|a_{ii}|}. \end{eqnarray} (3.38)

    Because A/\alpha = (a^{'}_{j_{t}j_{s}}) , let |a^{'}_{j_{t}j_{s}}| = |a_{j_{t}j_{s}}-\frac{a_{j_{t}i}a_{ij_{s}}}{a_{ii}}| = |c_{j_{t}j_{s}}|(j_{t}, j_{s}\in (N\setminus \{i\})) . By calculation, we obtain for j_{t}\in (S\setminus \{i\}), j_{s}\in (\bar{S}\setminus \{i\}) ,

    r_{j_{t}}^{(S\setminus\{i\})}(A/\alpha) = \sum\limits_{j_{p}\in (S\setminus \{i\}), \atop j_{p}\neq j_{t}}|c_{j_{t}j_{p}}| = \sum\limits_{j_{p}\in S, \atop j_{p}\neq j_{t}, i}|c_{j_{t}j_{p}}|,
    r_{j_{t}}^{(\bar{S}\setminus\{i\})}(A/\alpha) = \sum\limits_{j_{p}\in (\bar{S}\setminus \{i\})}|c_{j_{t}j_{p}}| = \sum\limits_{j_{p}\in \bar{S}, \atop j_{p}\neq i}|c_{j_{t}j_{p}}|,
    r_{j_{s}}^{(\bar{S}\setminus\{i\})}(A/\alpha) = \sum\limits_{j_{p}\in (\bar{S}\setminus \{i\}), \atop j_{p}\neq j_{s}}|c_{j_{s}j_{p}}| = \sum\limits_{j_{p}\in \bar{S}, \atop j_{p}\neq i}|c_{j_{s}j_{p}}|,
    r_{j_{s}}^{(S\setminus\{i\})}(A/\alpha) = \sum\limits_{j_{p}\in (S\setminus \{i\})}|c_{j_{s}j_{p}}| = \sum\limits_{j_{p}\in S, \atop j_{p}\neq i}|c_{j_{s}j_{p}}|.

    By Eq (3.27), we have

    \begin{eqnarray} &&||(A/\alpha)^{-1}||_{\infty}\leq \max\{\max\limits_{j\in (S\setminus \{i\}), \atop k\in(\bar{S}\setminus \{i\})}\frac{|{{c}_{kk}}|-\sum\limits_{p\in\bar{S}, \atop p\neq k, i}|c_{kp}|+\sum\limits_{p\in\bar{S}, \atop p\neq i}|c_{jp}|} {(|{{c}_{jj}}|-\sum\limits_{p\in S, \atop p\neq j, i}|c_{jp}|)(|{{c}_{kk}}|-\sum\limits_{p\in\bar{S}, \atop p\neq k, i}|c_{kp}|)-\sum\limits_{p\in S, \atop p\neq i}|c_{kp}|\sum\limits_{p\in\bar{S}, \atop p\neq i}|c_{jp}|}, \\ &&\max\limits_{j\in(S\setminus \{i\}) , \atop k\in(\bar{S}\setminus \{i\})}\frac{|{{c}_{jj}}|-\sum\limits_{p\in S, \atop p\neq j, i}|c_{jp}|+\sum\limits_{p\in S, \atop p\neq i}|c_{kp}|} {(|{{c}_{jj}}|-\sum\limits_{p\in S, \atop p\neq j, i}|c_{jp}|)(|{{c}_{kk}}|-\sum\limits_{p\in\bar{S}, \atop p\neq k, i}|c_{kp}|)-\sum\limits_{p\in S, \atop p\neq i}|c_{kp}|\sum\limits_{p\in\bar{S}, \atop p\neq i}|c_{jp}|} \}. \end{eqnarray} (3.39)

    Finally, by Eqs (3.36), (3.37), (3.38) and (3.39) the conclusion follows.

    We illustrate our results by the following examples:

    Example 1. Consider matrix A as a tri-diagonal n\times n matrix

    A = \left[ \begin{matrix} &n+|sin(1)| &bcos(2) &\cdots &bcos(n-1) &bcos(n) \\ &sin(2) &n+|sin(2)| &\cdots &bcos(n-1) &bcos(n) \\ &\vdots &\ddots &\ddots &\ddots &\vdots \\ & sin(n-1) &\cdots &sin(n-1) &n+|sin(n-1)| &bcos(n) \\ &sin(n) &\cdots &sin(n) &sin(n) &n+|sin(n)| \\ \end{matrix} \right]_{n\times n}.

    Let b = 1.5, \; n = 10000 . We get that matrix A is an SDD matrix. It is easy to verify matrix A is an SDD matrix, so it is also a S -SOB, DSDD , GDSDD and DZ matrix. Therefore, from Theorem 1, we put the result in Table 1.

    Table 1.  Upper bounds of matrix A in Example 1.
    b=1.5 n=10000
    \text {Bound in Theorem 1} 0.2786
    \text {Bound in Theorem 2} 0.2685
    \text {Bound in Theorem 3} 0.2485
    \text {Bound in [20, Theorem 3]} 0.3954
    \text {Bound in [31, Corollary 1]} 0.2786
    \text {Bound in [21, Theorem 1.2]} 0.2731
    \text {Bound in [21, Corollary 2.6]} 0.1937
    \text {Bound in Theorem 11} 0.1904

     | Show Table
    DownLoad: CSV

    Actually, \|A^{-1}\|_{\infty} = 0.0002 . This example shows that the boundary in Theorem 11 is superior to other theorems in some cases.

    Example 2. Consider matrix

    A = \left[ \begin{matrix} 16.81 &0.15 &0.65 &0.7 &0.43 &0.27 &0.75 &0.84 &0.35 &0.07 \\ 1.9 &8 &0.03 &0.03 &3.38 &0.67 &0.25 &2.25 &0.83 &1.05 \\ 0.12 &0.95 &11.84 &0.27 &0.76 &0.65 &0.5 &0.81 &0.58 &0.53 \\ 0.91 &0.48 &0.93 &12.04 &0.79 &0.16 &0.69 &0.24 &0.54 &0.77\\ 0.63 &0.8 &0.67 &0.09 &9.18 &1.11 &0.89 &6.92 &0.91 &0.93\\ 0.09 &0.14 &0.75 &0.82 &0.48 &15.49 &0.95 &0.35 &0.28 &0.12\\ 0.27 &0.42 &0.74 &0.69 &0.44 &0.95 &12.54 &0.19 &0.75 &0.56\\ 0.54 &0.91 &0.39 &0.31 &0.64 &0.34 &0.13 &11.25 &0.75 &0.46\\ 0.95 &0.79 &0.65 &0.95 &0.70 &0.58 &0.14 &0.61 &10.38 &0.01\\ 0.96 &0.95 &0.17 &0.03 &0.75 &0.22 &0.25 &0.47 &0.56 &17.33\\ \end{matrix} \right].

    By computation, the matrix A is an S -SOB matrix and S = \{2, 3, 5\} . According to Theorem 2, we obtain

    ||{{A}^{-1}}|{{|}_{\infty }}\le 1.7202.

    According to Theorem 11, it is easy to get

    ||{{A}^{-1}}|{{|}_{\infty }}\le 0.5061.

    In practice, ||{{A}^{-1}}|{{|}_{\infty }} = 0.2155 . Obviously, the boundary in Theorem 11 is superior to Theorem 2 in some cases.

    Example 3. Consider matrix

    A = \left[ \begin{matrix} 38 &1 &3 &3 &-4 &2 &5 &-1 \\ 1 &40 &5 &4 &1 &3 &1 &-2 \\ 2 &1 &36 &1 &2 &1 &-4 &-3 \\ 1 &3 &2 &28 &3 &5 &1 &2\\ 4 &1.5 &-1 &2 &31 &-1 &-4 &4\\ -8 &6 &3 &5 &2 &49 &2 &7\\ 7 &9 &1 &-1 &-1 &7 &50 &5\\ 1 &13 &2 &3 &6 &1 &1 &44\\ \end{matrix} \right].

    Obviously, the matrix A is an SDD matrix, and it's also an S -SOB matrix and S = \{2, 3, 4, 5, 8\} . According to Theorem 1, we can obtain

    ||{{A}^{-1}}|{{|}_{\infty }}\le 0.0909.

    According to Theorem 2, we can obtain

    ||{{A}^{-1}}|{{|}_{\infty }}\le 0.0860.

    According to Theorem 11, we can obtain

    ||{{A}^{-1}}|{{|}_{\infty }}\le 0.0842.

    In fact, ||{{A}^{-1}}|{{|}_{\infty }} = 0.0497. This example shows that the boundary in Theorem 11 is superior to Theorems 1 and 2 in some cases.

    In this section, we will apply the result in Section 3 to the linear complementarity problems (LCPs), to obtain two kinds of error bounds for LCPs of S -SOB matrices. We first need to give some lemmas that would be used in the following theorems:

    Lemma 8. [29] Let \gamma > 0 and \eta\geq 0 , for any x\in [0, 1] ,

    \frac{1}{1-x+\gamma x}\leq\frac{1}{min\{\gamma, 1\}}, \; \frac{\eta x}{1-x+\gamma x}\leq\frac{\eta}{\gamma}.

    Lemma 9. Suppose that M = (m_{ij})\in \mathbb{R}^{n\times n} is an S-SOB matrix with positive diagonal entries, let

    \begin{eqnarray} \tilde{M} = I-D+DM = (\tilde{m}_{ij}), \end{eqnarray} (4.1)

    then, \tilde{M} is also a real S-SOB matrix with positive diagonal entries, where D = diag(d_{1}, \cdots, d_{n}) , d_{i}\in[0, 1] .

    Proof. Note that

    \tilde{m}_{ij} = \left\{\begin{array}{cc} 1-d_{i}+d_{i}m_{ij}, & i = j, \\\\ d_{i}m_{ij}, &i\neq j. \end{array} \right.

    Hence, for each i\in S , j\in \bar{S} ,

    |\tilde{m}_{ii}| = 1-d_{i}+d_{i}m_{ii}\geq d_{i}m_{ii} > d_{i}r_{i}^{S}(M) = r_{i}^{S}(\tilde{M}),
    |\tilde{m}_{jj}| = 1-d_{j}+d_{j}m_{jj}\geq d_{i}m_{ii} > d_{i}r_{i}^{\bar{S}}(M) = r_{j}^{\bar{S}}(\tilde{M}).

    Then, for any i\in S , j\in\bar{S} , d_{i}\in(0, 1) , we have

    \begin{eqnarray} (|\tilde{m}_{ii}|-r_{i}^{S}(\tilde{M}))|\tilde{m}_{jj}|& = & (d_{i}|m_{ii}|-d_{i}r_{i}^{S}(M))d_{j}|m_{jj}| \\ & = & d_{i}d_{j}(|m_{ii}|-r_{i}^{S}(M))|m_{jj}|\\ & > & d_{i}d_{j}r_{i}^{\bar{S}}(M)r_{j}(M) = r_{i}^{\bar{S}}(\tilde{M})r_{j}(\tilde{M}). \end{eqnarray}

    For any i\in S , j\in\bar{S} , we get

    \begin{eqnarray} (|\tilde{m}_{jj}|-r_{j}^{\bar{S}}(\tilde{M}))|\tilde{m}_{ii}| & = & (d_{j}|m_{jj}|-d_{j}r_{j}^{\bar{S}}(M)) d_{i}|m_{ii}|\\ & = &d_{i}d_{j}(|m_{jj}|-r_{j}^{\bar{S}}(M))|m_{ii}|\\ & > & d_{i}d_{j}r_{j}^{S}(M)r_{i}(M) = r_{j}^{S}(\tilde{M})r_{i}(\tilde{M}). \end{eqnarray}

    When d_{i} = 0 , \tilde{m}_{ii} = 1-d_{i}+d_{i}m_{ii} = 1 , we obtain

    (|\tilde{m}_{ii}|-r_{i}^{S}(\tilde{M})))|\tilde{m}_{jj}| = 1 > 0 = r_{j}^{\bar{S}}(\tilde{M})r_{i}(\tilde{M}),
    (|\tilde{m}_{jj}|-r_{j}^{\bar{S}}(\tilde{M}))|\tilde{m}_{ii}| = 1 > 0 = r_{i}^{S}(\tilde{M})r_{j}(\tilde{M}).

    When d_{i} = 1 , \tilde{m}_{ij} = 1-d_{i}+d_{i}m_{ij} = m_{ij} , then

    (|\tilde{m}_{ii}|-r_{i}^{S}(\tilde{M}))|\tilde{m}_{jj}| = (|m_{ii}|-r_{i}^{S}(M))|m_{jj}| > r_{j}^{\bar{S}}(M)r_{i}(M) = r_{j}^{\bar{S}}(\tilde{M})r_{i}(\tilde{M}),
    (|\tilde{m}_{jj}|-r_{j}^{\bar{S}}(\tilde{M}))|\tilde{m}_{ii}| = (|m_{jj}|-r_{j}^{\bar{S}}(M))|m_{ii}| > r_{i}^{S}(M)r_{j}(M) = r_{i}^{S}(\tilde{M})r_{j}(\tilde{M}).

    As d_{i}\in[0, 1] , conditions (i)–(iv) in Definition 1 are fulfilled for all i\in S and j\in \bar{S} . So the conclusion follows.

    Lemma 9 indicates that \tilde{M} is an S -SOB matrix when M is an S -SOB matrix. We will present an error bound for the linear complementarity problem of S -SOB matrices. The following theorem is one of our main results, which gives an upper bound on the condition constant \max_{d\in[0, 1]^{n}}\|(I-D+DA)^{-1}\|_{\infty} when A is an S -SOB matrix.

    Theorem 12. Let A = (a_{ij})\in\mathbb{R}^{n\times n} be an S-SOB matrix with positive diagonal entries, and \tilde{A} = [\tilde{a_{ij}}] = I-D+DA , where D = diag(d_{i}) with 0\leq d_{i}\leq 1 . Then

    \begin{eqnarray*} \max\limits_{d\in [0, 1]^{n}}\|(I-D+DA)^{-1}\|_{\infty}\leq \min\limits_{i\in N}{(1+\max\limits_{j\in N, \atop j\neq i}\{\frac{|d_{j}a_{ji}|}{a_{ii}}, d_{j}a_{ji})(1+\max\limits_{j\in N, \atop j\neq i}\{\frac{d_{i}a_{ij}}{a_{ii}}, d_{i}a_{ij}\})}\max\{\frac{1}{a_{ii}}, 1, \Delta(A), \Delta^{'}(A)\} \end{eqnarray*}

    where

    \begin{eqnarray*} & &\frac{1+\frac{a_{ki}a_{ij}}{a_{ii}a_{kk}}+\sum _{p\in\bar{S}, \atop p\neq i} \frac{a_{jp}}{a_{jj}}+\frac{a_{jp}a_{ji}}{a_{ii}a_{jj}}}{\varsigma_{j}^{S}(A)\varsigma_{j}^{\bar{S}}(A)-(\sum\frac{a_{kp}}{a_{kk}}+\sum\frac{a_{ki}a_{ip}}{a_{ii}a_{kk}})(\frac{a_{jp}}{a_{jj}}+ \sum\frac{a_{ji}a_{ip}}{a_{ii}a_{jj}})}\nonumber\\& = &\Delta(A), \end{eqnarray*}
    \begin{eqnarray*} & &\frac{1+\frac{a_{ji}a_{ik}}{a_{ii}a_{jj}}+\sum \frac{a_{kp}}{a_{kk}}+\frac{a_{kp}a_{ki}}{a_{ii}a_{kk}}}{\varsigma_{k}^{S}(A)\varsigma_{k}^{\bar{S}}(A)-(\sum\frac{a_{kp}}{a_{kk}}+\sum\frac{a_{ki}a_{ip}}{a_{ii}a_{kk}})(\frac{a_{jp}}{a_{jj}}+ \sum\frac{a_{ji}a_{ip}}{a_{ii}a_{jj}})}\nonumber\\ & = &\Delta^{'}(A), \end{eqnarray*}

    and \varsigma_{j}^{S}(A) = \frac{1-d_{j}+d_{j}a_{jj}}{1-d_{t}+d_{t}a_{tt}}-\frac{a_{ji}a_{ij}}{a_{ii}a_{jj}}-\sum\limits_{p\in S, \atop p\neq j, i} \frac{a_{jk}}{a_{jj}}-\sum\limits_{p\in S, \atop p\neq j, i}\frac{a_{ji}a_{ik}}{a_{ii}a_{jj}} .

    Proof. Because \tilde{A} = (\tilde{a_{ij}}) = (I-D+DA) , we know \tilde{A} is an S - SOB matrix with positive diagonal entries from Lemma 9. By Theorem 11, the following inequality holds

    \|\tilde{A}\|_{\infty}\leq\max\Gamma(\tilde{A}) = \min\limits_{i\in N}\Gamma_{i}(\tilde{A}),

    where \Gamma_{i}(\tilde{A}) = (1+\frac{\max\limits_{j\in N, \atop j\neq i}|\tilde{a_{ji}}|}{|\tilde{a_{ii}}|})(1+\frac{\max\limits_{j\in N, \atop j\neq i}|\tilde{a_{ij}}|}{|\tilde{a_{ii}}|})\tilde{\Gamma}_{i}(\tilde{A}),

    \begin{eqnarray*} &&\tilde{\Gamma}_{i}(\tilde{A}) = \max\{\frac{1}{|\tilde{a_{ii}}|}, \Gamma^{'}(\tilde{A})\}. \end{eqnarray*}
    \begin{eqnarray*} &&\Gamma^{'}(\tilde{A}) = \max\{\max\limits_{j\in (S\setminus \{i\}), \atop k\in(\bar{S}\setminus \{i\})}\frac{|{\tilde{{c}_{kk}}}|-\sum\limits_{p\in\bar{S}, \atop p\neq k, i}|\tilde{c_{kp}}|+\sum\limits_{p\in\bar{S}, \atop p\neq i}|\tilde{c_{jp}}|} {(|{\tilde{{c}_{jj}}}|-\sum\limits_{p\in S, \atop p\neq j, i}|\tilde{c_{jp}}|)(|{\tilde{{c}_{kk}}}|-\sum\limits_{p\in\bar{S}, \atop p\neq k, i}|\tilde{c_{kp}}|)-\sum\limits_{p\in S, \atop p\neq i}|\tilde{c_{kp}}|\sum\limits_{p\in\bar{S}, \atop p\neq i}|\tilde{c_{jp}}|}, \nonumber\\ &&\max\limits_{j\in(S\setminus \{i\}) , \atop k\in(\bar{S}\setminus \{i\})}\frac{|{\tilde{{c}_{jj}}}|-\sum\limits_{p\in S, \atop p\neq j, i}|\tilde{c_{jp}}|+\sum\limits_{p\in S, \atop p\neq i}|c_{kp}|} {(|{\tilde{{c}_{jj}}}|-\sum\limits_{p\in S, \atop p\neq j, i}|\tilde{c_{jp}}|)(|{\tilde{{c}_{kk}}}|-\sum\limits_{p\in\bar{S}, \atop p\neq k, i}|\tilde{c_{kp}}|)-\sum\limits_{p\in S, \atop p\neq i}|\tilde{c_{kp}}|\sum\limits_{p\in\bar{S}, \atop p\neq i}|\tilde{c_{jp}}|} \}, \end{eqnarray*}

    and \tilde{c_{jk}} = \tilde{a_{jk}}-\frac{\tilde{a_{ji}}\tilde{a_{ik}}}{\tilde{a_{ii}}}.

    Since \tilde{A} is a S -SOB matrix, we have \tilde{a_{ii}} = 1-d_{i}+d_{i}a_{ii} and \tilde{a_{ij}} = d_{i}a_{ij} for all i, j\in N .

    \begin{eqnarray} & &1+\frac{\max\limits_{j\in N, \atop j\neq i}|\tilde{a_{ji}}|}{|\tilde{a_{ii}}|} = 1+\frac{\max\limits_{j\in N, \atop j\neq i}|d_{j}a_{ji}|}{1-d_{i}+d_{i}a_{ii}} \leq 1+\frac{\max\limits_{j\in N, \atop j\neq i}|d_{j}a_{ji}|}{\min\{a_{ii}, 1\}}\; \; (By\; \; Lemma\; \; 8)\\ & = & 1+\max\limits_{j\in N, \atop j\neq i}\{\frac{|d_{j}a_{ji}|}{a_{ii}}, d_{j}a_{ji}\}. \end{eqnarray} (4.2)

    Similarly, we have

    \begin{eqnarray} 1+\frac{\max\limits_{j\in N, \atop j\neq i}|\tilde{a_{ij}}|}{|\tilde{a_{ii}}|}\leq 1+\max\{\frac{d_{i}a_{ij}}{a_{ii}}, d_{i}a_{ij}\}. \end{eqnarray} (4.3)

    By Lemma 8, it is easy to get

    \begin{eqnarray} \frac{1}{\tilde{a_{ii}}} = \frac{1}{1-d_{i}+d_{i}a_{ii}}\leq \max\{\frac{1}{a_{ii}}, 1\}. \end{eqnarray} (4.4)

    Denote 1-d_{t}+d_{t}a_{tt} = \max_{i\in N}\{1-d_{i}+d_{i}a_{ii}\} . From Lemmas 8 and 9, we get

    \begin{eqnarray} & &\frac{|{\tilde{{c}_{kk}}}|-\sum\limits_{p\in\bar{S}, \atop p\neq k, i}|\tilde{c_{kp}}|+\sum\limits_{p\in\bar{S}, \atop p\neq i}|\tilde{c_{jp}}|} {(|{\tilde{{c}_{jj}}}|-\sum\limits_{p\in S, \atop p\neq j, i}|\tilde{c_{jp}}|)(|{\tilde{{c}_{kk}}}|-\sum\limits_{p\in\bar{S}, \atop p\neq k, i}|\tilde{c_{kp}}|)-\sum\limits_{p\in S, \atop p\neq i}|\tilde{c_{kp}}|\sum\limits_{p\in\bar{S}, \atop p\neq i}|\tilde{c_{jp}}|}\\ &\leq &\frac{1+\frac{a_{ki}a_{ij}}{a_{ii}a_{kk}}+\sum\limits_{p\in\bar{S}, \atop p\neq i} \frac{a_{jp}}{a_{jj}}+\sum\limits_{p\in\bar{S}, \atop p\neq i}\frac{a_{jp}a_{ji}}{a_{ii}a_{jj}}}{\varsigma_{j}^{S}(A)\varsigma_{j}^{\bar{S}}-(\sum\limits_{p\in S, \atop p\neq i}\frac{a_{kp}}{a_{kk}}+\sum\limits_{p\in S, \atop p\neq i}\frac{a_{ki}a_{ip}}{a_{ii}a_{kk}})(\sum\limits_{p\in\bar{S}, \atop p\neq i}\frac{a_{jp}}{a_{jj}}+ \sum\limits_{p\in\bar{S}, \atop p\neq i}\frac{a_{ji}a_{ip}}{a_{ii}a_{jj}})}\\& = &\Delta(A), \end{eqnarray} (4.5)

    where \varsigma_{j}^{S}(A) = \frac{1-d_{j}+d_{j}a_{jj}}{1-d_{t}+d_{t}a_{tt}}-\frac{a_{ji}a_{ij}}{a_{ii}a_{jj}}-\sum\limits_{p\in S, \atop p\neq j, i} \frac{a_{jk}}{a_{jj}}-\sum\limits_{p\in S, \atop p\neq j, i}\frac{a_{ji}a_{ik}}{a_{ii}a_{jj}} . In similar way, we know

    \begin{eqnarray} & &\frac{|{\tilde{{c}_{jj}}}|-\sum\limits_{p\in\bar{S}, \atop p\neq k, i}|\tilde{c_{jp}}|+\sum\limits_{p\in\bar{S}, \atop p\neq i}|\tilde{c_{kp}}|} {(|{\tilde{{c}_{jj}}}|-\sum\limits_{p\in S, \atop p\neq j, i}|\tilde{c_{jp}}|)(|{\tilde{{c}_{kk}}}|-\sum\limits_{p\in\bar{S}, \atop p\neq k, i}|\tilde{c_{kp}}|)-\sum\limits_{p\in S, \atop p\neq i}|\tilde{c_{kp}}|\sum\limits_{p\in\bar{S}, \atop p\neq i}|\tilde{c_{jp}}|}\\ &\leq &\frac{1+\frac{a_{ji}a_{ik}}{a_{ii}a_{jj}}+\sum\limits_{p\in\bar{S}, \atop p\neq k, i} \sum\limits_{p\in\bar{S}, \atop p\neq k, i} \frac{a_{kp}}{a_{kk}}+\frac{a_{kp}a_{ki}}{a_{ii}a_{kk}}}{\varsigma_{k}^{S}\varsigma_{k}^{\bar{S}}-(\sum\limits_{p\in S, \atop p\neq i}\frac{a_{kp}}{a_{kk}}+\sum\limits_{p\in S, \atop p\neq i}\frac{a_{ki}a_{ip}}{a_{ii}a_{kk}})(\sum\limits_{p\in\bar{S}, \atop p\neq i}\frac{a_{jp}}{a_{jj}}+ \sum\limits_{p\in\bar{S}, \atop p\neq i}\frac{a_{ji}a_{ip}}{a_{ii}a_{jj}})}\\ & = &\Delta^{'}(A). \end{eqnarray} (4.6)

    So, from Eqs (4.2)–(4.6) the conclusion follows. This proof is completed.

    Based on the fact that the Schur complement of the S -SOB matrix is a GDSDD matrix, we give an infinity norm bound for the inverse of the S -SOB matrix based on the Schur complement. By using the infinity norm bound for the inverse of the S -SOB matrix, an error bound is given for the linear complementarity problem of the S -SOB matrix.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    This work was supported by the Natural Science Research Project of Department of Education of Guizhou Province (Grant No. QJJ2022015) and the Natural Science Research Project of Department of Education of Guizhou Province (Grant No. QJJ2022047). The Natural Science Research Project of Department of Education of Guizhou Province (Grant Nos. QJJ2023012, QJJ2023061, QJJ2023062).

    The authors declare no conflict of interest.



    [1] J. A. Bondy, U. S. R. Murty, Graph theory with applications, Elsevier Science Publishing Co., Inc., New York, USA, 1976. doi: 10.1057/jors.1977.45.
    [2] J. A. Bondy, U. S. R. Murty, Graph theory, Springer, Berlin, 2008.
    [3] D. R. Stinson, Combinatorial designs: Constructions and analysis, Springer, New York, 2004.
    [4] R. Khattree, On construction of constant block-sum partially balanced incomplete block designs, Commun. Stat. Theor. M., 49 (2020), 2585-2606. doi: 10.1080/03610926.2019.1576895. doi: 10.1080/03610926.2019.1576895
    [5] P. Kaur, D. G. Kumar, Construction of incomplete Sudoku square and partially balanced incomplete block designs, Commun. Stat. Theor. M., 49 (2020), 1462-1474. doi: 10.1080/03610926.2018.1563177. doi: 10.1080/03610926.2018.1563177
    [6] I. Iqbal, M. Parveen, Z. Mahmood, New diallel cross designs through resolvable balanced incomplete block designs for field experiments, Sarhad J. Agric., 34 (2018), 994-1000. doi: 10.17582/journal.sja/2018/34.4.994.1000. doi: 10.17582/journal.sja/2018/34.4.994.1000
    [7] A. Adhikari, M. Bose, D. Kumar, B. Roy, Applications of partially balanced incomplete block designs in developing (2, n)-visual cryptographic schemes, IEICE T. Fund. Electr., E90-A (2007), 949-951. doi: 10.1093/ietfec/e90-a.5.949. doi: 10.1093/ietfec/e90-a.5.949
    [8] R. C. Bose, Partially balanced incomplete block designs with two associate classes involving only two replications, Calcutta Stat. Assoc. Bul., 3 (1951), 120-125. doi: 10.1177/0008068319510304. doi: 10.1177/0008068319510304
    [9] R. C. Bose, K. R. Nair, Partially balanced incomplete block designs, Sankhya, 4 (1939), 337-372. Available from: https://www.jstor.org/stable/40383923.
    [10] R. C. Bose, T. Shimamoto, Classification and analysis of partially balanced incomplete block designs with two associate classes, J. Am. Stat. Assoc., 47 (1952), 151-184. doi: 10.2307/2280741. doi: 10.2307/2280741
    [11] W. D. Wallis, Regular graph designs, J. Stat. Plan. Infer., 51 (1996), 273-281. doi: 10.1016/0378-3758(95)00091-7. doi: 10.1016/0378-3758(95)00091-7
    [12] D. L. Kreher, G. F. Royle, W. D. Wallis, A family of resolvable regular graph designs, Discrete Math., 156 (1996), 269-275. doi: 10.1016/0012-365X(95)00052-X. doi: 10.1016/0012-365X(95)00052-X
    [13] H. B. Walikar, B. D. Acharya, H. S. Ramane, H. G. Shekharappa, S. Arumugam, Partially balanced incomplete block designs arising from minimal dominating sets of a graph, AKCE. Int. J. Graphs Co., 4 (2007), 223-232. doi: 10.1080/09728600.2007.12088837. doi: 10.1080/09728600.2007.12088837
    [14] F. R. Barandagh, A. R. Barghi, B. Pejman, M. R. Parsa, Strongly regular graphs arising from balanced incomplete block design with λ = 1, Gen. Math. Notes, 24 (2014), 70-77.
    [15] S. A. Cakiroglu, Optimal regular graph designs, Stat. Comput., 28 (2018), 103-112. doi: 10.1007/s11222-016-9720-8. doi: 10.1007/s11222-016-9720-8
    [16] R. Ahmed, F. Shehzad, M. Jamil, H. M. K. Rasheed, Construction of some circular regular graph designs in blocks of size four using cyclic shifts, J. Stat. Theory Appl., 19 (2020), 314-324. doi: 10.2991/jsta.d.200423.001. doi: 10.2991/jsta.d.200423.001
    [17] A. Boua, L. Oukhtite, A. Raji, O. A. Zemzami, An algorithm to construct error correcting codes from planar near-rings, Int. J. Math. Eng. Sci., 3 (2014), 614-623. Available from: https://vixra.org/pdf/1405.0130v1.pdf.
    [18] C. J. Colbourn, J. H. Dinitz, Handbook of combinatorial designs, 2 Eds., Chapman and Hall-CRC, 2007.
    [19] S. J. M. Hwang, Application of balanced incomplete block designs in error detection and correction, 2016. doi: 10.4135/9781473941977.
    [20] R. Merris, Combinatorics, 2 Eds., John Wiley & Sons, Inc., 2003.
    [21] U. Shumacher, Suborthogonal double covers of complete graphs by stars, Discret. Appl. Math., 95 (1999), 439-444. doi: 10.1016/S0166-218X(99)00091-8. doi: 10.1016/S0166-218X(99)00091-8
    [22] S. A Hartmann, Symptotic results on suborthogonal G-decompositions of complete digraphs, Discret. Appl. Math., 95 (1999), 311-320. doi: 10.1016/S0166-218X(99)00083-9. doi: 10.1016/S0166-218X(99)00083-9
    [23] S. Hartmann, U. Shumacher, Suborthogonal double covers of complete graphs, Congressus Numerantium, 147 (2000), 33-40.
    [24] R. El-Shanawany, H. Shabana, General cyclic orthogonal double covers of finite regular circulant graphs, Open J. Discret. Math., 4 (2014), 19-27. doi: 10.4236/ojdm.2014.42004. doi: 10.4236/ojdm.2014.42004
    [25] M. Higazy, Suborthogonal double covers of the complete bipartite graphs by all bipartite subgraphs with five edges over finite fields, Far East J. Appl. Math., 91 (2015), 63-80. doi: 10.17654/FJAMApr2015_063_080. doi: 10.17654/FJAMApr2015_063_080
    [26] H. D. O. F. Gronau, M. Grüttmüller, S. Hartmann, U. Leck, V. Leck, On orthogonal double covers of graphs, Design. Code. Cryptogr., 7 (2002), 49-91. doi: 10.1023/A:1016546402248. doi: 10.1023/A:1016546402248
    [27] R. El-Shanawany, M. Higazy, H. Shabana, A. El-Mesady, Cartesian product of two symmetric starter vectors of orthogonal double covers, AKCE Int. J. Graphs Co., 12 (2015), 59-63. doi: 10.1016/j.akcej.2015.06.009. doi: 10.1016/j.akcej.2015.06.009
    [28] S. El-Serafi, R. El-Shanawany, H. Shabana, Orthogonal double cover of complete bipartite graph by disjoint union of complete bipartite graphs, Ain. Shams Eng. J., 6 (2015), 657-660. doi: 10.1016/j.asej.2014.12.002. doi: 10.1016/j.asej.2014.12.002
    [29] R. El-Shanawany, A. El-Mesady, Cyclic orthogonal double covers of circulants by certain nerve cell graphs, Contrib. Discret. Math., 14 (2019), 105-116. doi: 10.11575/cdm.v14i1.62428. doi: 10.11575/cdm.v14i1.62428
    [30] R. El-Shanawany, A. El-Mesady, On cyclic orthogonal double covers of circulant graphs by special infinite graphs, AKCE Int. J. Graphs Co., 14 (2017), 199-207. doi: 10.1016/j.akcej.2017.04.002. doi: 10.1016/j.akcej.2017.04.002
    [31] R. Sampathkumar, S. Srinivasan, Cyclic orthogonal double covers of 4-regular circulant graphs, Discrete Math., 311 (2011), 2417-2422. doi: 10.1016/j.disc.2011.06.021. doi: 10.1016/j.disc.2011.06.021
    [32] R. El-Shanawany, A. El-Mesady, On the one edge algorithm for the orthogonal double covers, Prikl. Diskretn. Mat., 45 (2019), 78-84. doi: 10.17223/20710410/45/8. doi: 10.17223/20710410/45/8
    [33] R. Sampathkumar, Orthogonal double covers of complete bipartite graphs, Australas. J. Comb., 49 (2011), 15-18. Available from: https://ajc.maths.uq.edu.au/pdf/49/ajc_v49_p015.pdf.
    [34] R. El-Shanawany, H. D. O. F. Gronau, M. Grüttmüller, Orthogonal double covers of Kn, n by small graphs, Discret. Appl. Math., 138 (2004), 47-63. doi: 10.1016/S0166-218X(03)00269-5. doi: 10.1016/S0166-218X(03)00269-5
    [35] M. Higazy, R. Scapellato, Y. S. Hamed, A complete classification of 5-regular circulant graphs that allow cyclic orthogonal double covers, J. Algebr. Comb., 2021. doi: 10.1007/s10801-020-01008-4. doi: 10.1007/s10801-020-01008-4
    [36] R. Scapellato, R. El Shanawany, M. Higazy, Orthogonal double covers of Cayley graphs, Discret. Appl. Math, 157 (2009), 3111-3118. doi: 10.1016/j.dam.2009.06.005. doi: 10.1016/j.dam.2009.06.005
    [37] R. Sampathkumar, S. Srinivasan, More mutually orthogonal graph squares, Utilitas Math., 91 (2013), 345-354.
    [38] R. El-Shanawany, A. El-Mesady, Mutually orthogonal graph squares for disjoint union of stars, Ars Comb., 149 (2020), 83-91.
    [39] M. Higazy, Lambda-mutually orthogonal covers of complete bipartite graphs, Adv. Appl. Discret. Mat., 17 (2016), 151-167. doi: 10.17654/DM017020151. doi: 10.17654/DM017020151
    [40] R. El-Shanawany, A. El-Mesady, On mutually orthogonal certain graph squares, Online J. Anal. Comb., 14 (2020).
    [41] R. Sampathkumar, S. Srinivasan, Mutually orthogonal graph squares, J. Comb. Des., 17 (2009), 369-373. doi: 10.1002/jcd.20216. doi: 10.1002/jcd.20216
    [42] R. El-Shanawany, On mutually orthogonal disjoint copies of graph squares, Note Mat., 36 (2016), 89-98. doi: 10.1285/i15900932v36n2p89. doi: 10.1285/i15900932v36n2p89
    [43] M. Higazy, A. El-Mesady, M. S. Mohamed, On graph-orthogonal arrays by mutually orthogonal graph squares, Symmetry, 12 (2020), 1895. doi: 10.3390/sym12111895. doi: 10.3390/sym12111895
    [44] C. J. Colbourn, J. H. Dinitz, Mutually orthogonal latin squares: A brief survey of constructions, J. Stat. Plan. Infer., 95 (2001), 9-48. doi: 10.1016/S0378-3758(00)00276-7. doi: 10.1016/S0378-3758(00)00276-7
    [45] M. Higazy, A. El-Mesady, E. E. Mahmoud, M. H. Alkinani, Circular intensely orthogonal double cover design of balanced complete multipartite graphs, Symmetry, 12 (2020), 1743. doi: 10.3390/sym12101743. doi: 10.3390/sym12101743
    [46] N. Yu. Erokhovets, Gal's conjecture for nestohedra corresponding to complete bipartite graphs, P. Steklov. Math., 266 (2009), 120-132. doi: 10.1134/S0081543809030079. doi: 10.1134/S0081543809030079
    [47] S. Hartmann, Orthogonal decompositions of complete digraphs, Graph. Combinator., 18 (2002), 285-302. doi: 10.1007/s003730200021. doi: 10.1007/s003730200021
    [48] D. Fronček, A. Rosa, Symmetric graph designs on friendship graphs, J. Comb. Des., 8 (2000), 201-206. doi: 10.1002/(sici)1520-6610(2000)8:3<201::aid-jcd5>3.0.co;2-#. doi: 10.1002/(sici)1520-6610(2000)8:3<201::aid-jcd5>3.0.co;2-#
    [49] H. D. O. F. Gronau, R. C. Mullin, A. Rosa, P. J. Schellenberg, Symmetric graph designs, Graph. Combinator., 16 (2000), 93-102. doi: 10.1007/s003730050006. doi: 10.1007/s003730050006
    [50] P. M. Gergely, Partitions with certain intersection properties, J. Comb. Des., 19 (2011), 345-354. doi: 10.1002/jcd.20290. doi: 10.1002/jcd.20290
    [51] Jr. E. Assmus, J. D. Key, Designs and codes: An update, Code. Des. Geom., 9 (1996), 7-27. doi: 10.1007/BF00169770. doi: 10.1007/BF00169770
    [52] A. E. Brouwer, C. A. Eijl, On the p-rank of the adjacency matrices of strongly regular graphs, J. Algebr. Comb., 1 (1992), 329-346. doi: 10.1023/A:1022438616684. doi: 10.1023/A:1022438616684
    [53] W. H. Haemers, C. Parker, V. Pless, V. D. Tonchev, A design and a code invariant under the simple group Co3, J. Comb. A., 62 (1993), 225-233. doi: 10.1016/0097-3165(93)90045-A. doi: 10.1016/0097-3165(93)90045-A
    [54] V. D. Tonchev, Binary codes derived from the Hoffman-Singleton and Higman-Sims graphs, IEEE T. Inform. Theory, 43 (1997), 1021-1025. doi: 10.1109/18.568714. doi: 10.1109/18.568714
    [55] W. H. Haemers, R. Peeters, J. M. Rijckevorsel, Binary codes of strongly regular graphs, Design. Code. Cryptogr., 17 (1999), 187-209. doi: 10.1023/A:1026479210284. doi: 10.1023/A:1026479210284
    [56] D. Crnković, B. G; Rodrigues, S. Rukavina, L. Simčić, Ternary codes from the strongly regular (45, 12, 3, 3) graphs and orbit matrices of 2-(45, 12, 3) designs, Discrete Math., 312 (2012), 3000-3010. doi: 10.1016/j.disc.2012.06.012. doi: 10.1016/j.disc.2012.06.012
    [57] D. Crnković, M. Maximović, B. Rodrigues, S. Rukavina, Self-orthogonal codes from the strongly regular graphs on up to 40 vertices, Adv. Math. Commun., 10 (2016), 555-582. doi: 10.3934/amc.2016026. doi: 10.3934/amc.2016026
    [58] W. Fish, R. Fray, E. Mwambene, Binary codes from the complements of the triangular graphs, Quaest. Math., 33 (2010), 399-408. doi: 10.2989/16073606.2010.541595. doi: 10.2989/16073606.2010.541595
    [59] M. Grassl, M. Harada, New self-dual additive F4-codes constructed from circulant graphs, Discrete Math., 340 (2017), 399-403. doi: 10.1016/j.disc.2016.08.023. doi: 10.1016/j.disc.2016.08.023
    [60] J. D. Key, B. G. Rodrigues, LCD codes from adjacency matrices of graphs, Appl. Algebr. Eng. Comm., 29 (2018), 227-244. doi: 10.1007/s00200-017-0339-6. doi: 10.1007/s00200-017-0339-6
    [61] D. Leemans, B. G. Rodrigues, Binary codes of some strongly regular subgraphs of the McLaughlin graph, Design. Code. Cryptogr., 67 (2013), 93-109. doi: 10.1007/s10623-011-9589-7. doi: 10.1007/s10623-011-9589-7
    [62] M. Higazy, T. A. Nofal, On network designs with coding error detection and correction application, Comput. Mater. Con., 67 (2021), 3401-3418. doi: 10.32604/cmc.2021.015790. doi: 10.32604/cmc.2021.015790
    [63] W. Fish, J. D. Key, E. Mwambene, Special LCD codes from products of graphs, Appl. Algebr. Eng. Comm., 2021, doi: 10.1007/s00200-021-00517-4. doi: 10.1007/s00200-021-00517-4
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2446) PDF downloads(75) Cited by(5)

Figures and Tables

Figures(2)  /  Tables(6)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog