Research article Special Issues

Real-time artificial intelligence based health monitoring, diagnosing and environmental control system for COVID-19 patients


  • By upgrading medical facilities with internet of things (IoT), early researchers have produced positive results. Isolated COVID-19 patients in remote areas, where patients are not able to approach a doctor for the detection of routine parameters, are now getting feasible. The doctors and families will be able to track the patient's health outside of the hospital utilizing sensors, cloud storage, data transmission, and IoT mobile applications. The main purpose of the proposed research-based project is to develop a remote health surveillance system utilizing local sensors. The proposed system also provides GSM messages, live location, and send email to the doctor during emergency conditions. Based on artificial intelligence (AI), a feedback action is taken in case of the absence of a doctor, where an automatic injection system injects the dose into the patient's body during an emergency. The significant parameters catering to our project are limited to ECG monitoring, SpO2 level detection, body temperature, and pulse rate measurement. Some parameters will be remotely shown to the doctor via the Blynk application in case of any abrupt change in the parameters. If the doctor is not available, the IoT system will send the location to the emergency team and relatives. In severe conditions, an AI-based system will analyze the parameters and injects the dose.

    Citation: Muhammad Zia Ur Rahman, Ali Hassan Raza, Abeer Abdulaziz AlSanad, Muhammad Azeem Akbar, Rabia Liaquat, Muhammad Tanveer Riaz, Lulwah AlSuwaidan, Halah Abdulaziz Al-Alshaikh, Hatoon S Alsagri. Real-time artificial intelligence based health monitoring, diagnosing and environmental control system for COVID-19 patients[J]. Mathematical Biosciences and Engineering, 2022, 19(8): 7586-7605. doi: 10.3934/mbe.2022357

    Related Papers:

    [1] Eunha Shim, Beth Kochin, Alison Galvani . Insights from epidemiological game theory into gender-specific vaccination against rubella. Mathematical Biosciences and Engineering, 2009, 6(4): 839-854. doi: 10.3934/mbe.2009.6.839
    [2] Hyun Mo Yang, André Ricardo Ribas Freitas . Biological view of vaccination described by mathematical modellings: from rubella to dengue vaccines. Mathematical Biosciences and Engineering, 2019, 16(4): 3195-3214. doi: 10.3934/mbe.2019159
    [3] Lili Liu, Xi Wang, Yazhi Li . Mathematical analysis and optimal control of an epidemic model with vaccination and different infectivity. Mathematical Biosciences and Engineering, 2023, 20(12): 20914-20938. doi: 10.3934/mbe.2023925
    [4] Pannathon Kreabkhontho, Watchara Teparos, Thitiya Theparod . Potential for eliminating COVID-19 in Thailand through third-dose vaccination: A modeling approach. Mathematical Biosciences and Engineering, 2024, 21(8): 6807-6828. doi: 10.3934/mbe.2024298
    [5] Eunha Shim . Optimal strategies of social distancing and vaccination against seasonal influenza. Mathematical Biosciences and Engineering, 2013, 10(5&6): 1615-1634. doi: 10.3934/mbe.2013.10.1615
    [6] Majid Jaberi-Douraki, Seyed M. Moghadas . Optimal control of vaccination dynamics during an influenza epidemic. Mathematical Biosciences and Engineering, 2014, 11(5): 1045-1063. doi: 10.3934/mbe.2014.11.1045
    [7] Xunyang Wang, Canyun Huang, Yuanjie Liu . A vertically transmitted epidemic model with two state-dependent pulse controls. Mathematical Biosciences and Engineering, 2022, 19(12): 13967-13987. doi: 10.3934/mbe.2022651
    [8] Hamed Karami, Pejman Sanaei, Alexandra Smirnova . Balancing mitigation strategies for viral outbreaks. Mathematical Biosciences and Engineering, 2024, 21(12): 7650-7687. doi: 10.3934/mbe.2024337
    [9] Lan Zou, Jing Chen, Shigui Ruan . Modeling and analyzing the transmission dynamics of visceral leishmaniasis. Mathematical Biosciences and Engineering, 2017, 14(5&6): 1585-1604. doi: 10.3934/mbe.2017082
    [10] Hai-Feng Huo, Tian Fu, Hong Xiang . Dynamics and optimal control of a Zika model with sexual and vertical transmissions. Mathematical Biosciences and Engineering, 2023, 20(5): 8279-8304. doi: 10.3934/mbe.2023361
  • By upgrading medical facilities with internet of things (IoT), early researchers have produced positive results. Isolated COVID-19 patients in remote areas, where patients are not able to approach a doctor for the detection of routine parameters, are now getting feasible. The doctors and families will be able to track the patient's health outside of the hospital utilizing sensors, cloud storage, data transmission, and IoT mobile applications. The main purpose of the proposed research-based project is to develop a remote health surveillance system utilizing local sensors. The proposed system also provides GSM messages, live location, and send email to the doctor during emergency conditions. Based on artificial intelligence (AI), a feedback action is taken in case of the absence of a doctor, where an automatic injection system injects the dose into the patient's body during an emergency. The significant parameters catering to our project are limited to ECG monitoring, SpO2 level detection, body temperature, and pulse rate measurement. Some parameters will be remotely shown to the doctor via the Blynk application in case of any abrupt change in the parameters. If the doctor is not available, the IoT system will send the location to the emergency team and relatives. In severe conditions, an AI-based system will analyze the parameters and injects the dose.





    [1] K. Perumal, M. Manohar, A survey on internet of things: case studies, applications, and future directions, in Internet of Things: Novel Advances and Envisioned Applications, Springer, Cham, (2017), 281–297. https://doi.org/10.1007/978-3-319-53472-5_14
    [2] A. Rahaman, M. M. Islam, M. R. Islam, M. S. Sadi, S. Nooruddin, Developing IoT based smart health monitoring systems: a review, Rev. Intell. Artif., 33 (2019), 435–440. https://doi.org/10.18280/ria.330605 doi: 10.18280/ria.330605
    [3] S. M. R. Islam, D. Kwak, M. D. H. Kabir, M. Hossain, K. S. Kwak, The internet of things for health care: a comprehensive survey, IEEE Acces, 3 (2015), 678–708. https://doi.org/10.1109/ACCESS.2015.2437951 doi: 10.1109/ACCESS.2015.2437951
    [4] T. Lin, H. Rivano, F. Le Mouël, A survey of smart parking solutions, IEEE Trans. Intell. Transp. Syst., 18 (2017), 3229–3253. https://doi.org/10.1109/TITS.2017.2685143 doi: 10.1109/TITS.2017.2685143
    [5] A. R. Al-Ali, I. A. Zualkernan, M. Rashid, R. Gupta, M. Alikarar, A smart home energy management system using IoT and big data analytics approach, IEEE Trans. Consum. Electron., 63 (2017), 426–434. https://doi.org/10.1109/TCE.2017.015014 doi: 10.1109/TCE.2017.015014
    [6] A. Zanella, N. Bui, A. Castellani, L. Vangelista, M. Zorzi, Internet of things for smart cities, IEEE Internet Things J., 1 (2014), 22–32. https://doi.org/10.1109/JIOT.2014.2306328 doi: 10.1109/JIOT.2014.2306328
    [7] G. Mois, S. Folea, T. Sanislav, Analysis of three IoT-based wireless sensors for environmental monitoring, IEEE Trans. Instrum. Meas., 66 (2017), 2056–2064. https://doi.org/10.1109/TIM.2017.2677619 doi: 10.1109/TIM.2017.2677619
    [8] B. Chen, J. Wan, L. Shu, P. Li, M. Mukherjee, B. Yin, Smart factory of industry 4.0: key technologies, application case, and challenges, IEEE Access, 6 (2018), 6505–6519. https://doi.org/10.1109/ACCESS.2017.2783682 doi: 10.1109/ACCESS.2017.2783682
    [9] M. Ayaz, M. Ammad-Uddin, Z. Sharif, A. Mansour, E. H. M. Aggoune, Internet-of-things (IoT)-based smart agriculture: toward making the felds talk, IEEE Access, 7 (2019), 129551–129583. https://doi.org/10.1109/ACCESS.2019.2932609 doi: 10.1109/ACCESS.2019.2932609
    [10] M. Hasan, M. M. Islam, M. I. I. Zarif, M. M. A. Hashem, Attack and anomaly detection in IoT sensors in IoT sites using machine learning approaches, Internet Things, 7 (2019), 100059. https://doi.org/10.1016/j.iot.2019.100059 doi: 10.1016/j.iot.2019.100059
    [11] S. Nooruddin, M. M. Islam, F. A. Sharna, An IoT based device-type invariant fall detection system, Internet Things, 9 (2020), 100130. https://doi.org/10.1016/j.iot.2019.100130 doi: 10.1016/j.iot.2019.100130
    [12] M. Islam, N. Neom, M. Imtiaz, S. Nooruddin, M. Islam, M. Islam, A review on fall detection systems using data from smartphone sensors, Ingénierie des systèmes d Inf., 24 (2019), 569–576. https://doi.org/10.18280/isi.240602 doi: 10.18280/isi.240602
    [13] S. Mahmud, X. Lin, J. H. Kim, H. Iqbal, M. Rahat-Uz-Zaman, S. Reza, et al., A multi-modal human machine interface for controlling a smart wheelchair, in: 2019 IEEE 7th Conference on Systems, Process and Control (ICSPC), (2019), 10–13. https://doi.org/10.1109/ICSPC47137.2019.9068027
    [14] S. Mahmud, X. Lin, J. H. Kim, Interface for human machine interaction for assistant devices: a review, in: 2020 10th Annual Computing and Communication Workshop and Conference (CCWC), (2020), 768–773. https://doi.org/10.1109/CCWC47524.2020.9031244
    [15] X. Lin, S. Mahmud, E. Jones, A. Shaker, A. Miskinis, S. Kanan, et al., Virtual reality-based musical therapy for mental health management, in 2020 10th Annual Computing and Communication Workshop and Conference (CCWC), (2020), 948–952. https://doi.org/10.1109/CCWC47524.2020.9031157
    [16] A. Mdhaffar, T. Chaari, K. Larbi, M. Jmaiel, B. Freisleben, IoT-based health monitoring via LoRaWAN, in IEEE EUROCON 2017-17th International Conference on Smart Technologies, (2017), 519–524. https://doi.org/10.1109/EUROCON.2017.8011165
    [17] L. You, C. Liu, S. Tong, Community medical network (CMN): architecture and implementation, in 2011 Global Mobile Congress (GMC), (2011), 1–6. https://doi.org/10.1109/GMC.2011.6103930
    [18] G. Yang, L. Xie, M. Mantysalo, X. Zhou, Z. Pang, L. D. Xu, et al., A health-IoT platform based on the integration of intelligent packaging, unobtrusive bio-sensor, and intelligent medicine box, IEEE Trans. Ind. Inf., 10 (2014), 2180–2191. http://dx.doi.org/10.1109/TII.2014.2307795 doi: 10.1109/TII.2014.2307795
    [19] P. Serikul, N. Nakpong, N. Nakjuatong, Smart farm monitoring via the Blynk IoT platform: case study: humidity monitoring and data recording, in 2018 16th International Conference on ICT and Knowledge Engineering (ICT & KE), (2018), 1–6. https://doi.org/10.1109/ICTKE.2018.8612441
    [20] World Health Organization, WHO coronavirus disease (COVID-19) dashboard with vaccination data, 2021. Available from: https://covid19.who.int/region/emro/country/pk.
    [21] A. Mainwaring, J. Polastre, R. Szewczyk, D. Culler, Wireless sensor networks for habitat monitoring, in Proceedings of the 10th Annual International Conference on Mobile Computing and Networking, (2002), 88–97. https://doi.org/10.1145/570738.570751
    [22] M. T. Riaz, A. A. AlSanad, S. Ahmad, M. A. Akbar, L. AlSuwaidan, H. A. AL-ALShaikh, et al., wireless controlled intelligent healthcare system for diplegia patients, Math. Biosci. Eng., 19 (2022), 456–472. https://doi.org/10.3934/mbe.2022022 doi: 10.3934/mbe.2022022
    [23] M. Hamza, M. A. Akbar, A. A. Alsanad, L. Alsuwaidan, H. S. AlSagri, et al., Decision-making framework of requirement engineering barriers in the domain of global healthcare information systems, Math. Prob. Eng., 2022 (2022). https://doi.org/10.1155/2022/8276662 doi: 10.1155/2022/8276662
    [24] M.A. Akbar, A. Alsanad, S. Mahmood, A. Alothaim, A multicriteria decision making taxonomy of IoT security challenging factors, IEEE Access, 9 (2021), 128841–128861. https://doi.org/10.1109/ACCESS.2021.3104527 doi: 10.1109/ACCESS.2021.3104527
    [25] P. Magaña-Espinoza, R. Aquino-Santos, N. Cárdenas-Benítez, J. Aguilar-Velasco, C. Buenrostro-Segura, A. Edwards-Block, et al., WiSPH: a wireless sensor network-based home care monitoring system, Sensors, 14 (2014), 7096–7119. https://doi.org/10.3390/s140407096 doi: 10.3390/s140407096
    [26] C. A. Palacios, J. A. Reyes-Suárez, L. A. Bearzotti, V. Leiva, C. Marchant, Knowledge discovery for higher education student retention based on data mining: machine learning algorithms and case study in Chile, Entropy, 23 (2021), 85. https://doi.org/10.3390/e23040485 doi: 10.3390/e23040485
    [27] N. Bustos, M. Tello, G. Droppelmann, N. García, F. Feijoo, V. Leiva. Machine learning techniques as an efficient alternative diagnostic tool for COVID-19 cases, Signa Vitae, 18 (2022), 23–33. https://www.signavitae.com/articles/10.22514/sv.2021.110
    [28] M. Z. Ur-Rahman, M. T. Riaz, M. M. S. Al-Mahmud, M. Rizwan, M. A. Choudhry, The prescribed fixed structure intelligent robust control of an electrohydraulic servo system, Math. Prob. Eng., 2022 (2022). https://doi.org/10.1155/2022/5144602 doi: 10.1155/2022/5144602
    [29] M. W. Li, D. Y. Xu, J. Geng, W. C. Hong, A ship motion forecasting approach based on empirical mode decomposition method hybrid deep learning network and quantum butterfly optimization algorithm, Nonlinear Dyn., 107 (2022), 2447–2467. https://doi.org/10.1007/s11071-021-07139-y doi: 10.1007/s11071-021-07139-y
    [30] J. Pan, W. J. Tompkins, A real-time QRS detection algorithm, IEEE Trans. Biomed. Eng., 3 (1985), 230–236. https://doi.org/10.1109/TBME.1985.325532.PMID3997178 doi: 10.1109/TBME.1985.325532.PMID3997178
    [31] K. S. Oh, K. Jung, GPU implementation of neural networks, Pattern Recognit., 37 (2004), 1311–1314. https://doi.org/10.1016/j.patcog.2004.01.013 doi: 10.1016/j.patcog.2004.01.013
    [32] P. Valsalan, T. A. B. Baomar, A. H. O. Baabood, IoT based health monitoring system, J. Crit. Rev., 7 (2020), 739–743. http://dx.doi.org/10.31838/jcr.07.04.137
    [33] K. Guk, G. Han, J. Lim, K. Jeong, T. Kang, E. K. Lim, et al., Evolution of wearable devices with real-time disease monitoring for personalized healthcare, Nanomaterials, 9 (2019), 813. https://doi.org/10.3390/nano9060813 doi: 10.3390/nano9060813
    [34] D. S. R. Krishnan, S. C. Gupta, T. Choudhury, An IoT based patient health monitoring system, in 2018 International Conference on Advances in Computing and Communication Engineering (ICACCE), 2018, 1–7. https://doi.org/10.1109/ICACCE.2018.8441708
    [35] N. Misran, M. S. Islam, G. K. Beng, N. Amin, M. T. Islam, IoT based health monitoring system with LoRa communication technology, in 2019 International Conference on Electrical Engineering and Informatics (ICEEI), 2019,514–517. https://doi.org/10.1109/ICEEI47359.2019.8988869
    [36] M. Manas, A. Sinha, S. Sharma, M. R. Mahboob, A novel approach for IoT based wearable health monitoring and messaging system, J. Ambient Intell. Humanized Comput., 10 (2019), 2817–2828. https://doi.org/10.1007/s12652-018-1101-z doi: 10.1007/s12652-018-1101-z
    [37] M. M. Khan, S. Mehnaz, A. Shaha, M. Nayem, S. Bourouis, IoT-Based Smart Health Monitoring System for COVID-19 Patients, Comput. Math. Methods Med., 2021 (2021). https://doi.org/10.1155/2021/8591036 doi: 10.1155/2021/8591036
    [38] M. T. Riaz, E. M. Ahmed, F. Durrani, M. A. Mond, Wireless android-based home automation system, Adv. Sci. Technol. Eng. Syst. J., 2 (2017), 234–239. https://doi.org/10.25046/aj020128 doi: 10.25046/aj020128
    [39] J. P. Queralta, T. N. Gia, H. Tenhunen, T. Westerlund, Edge-AI in LoRa-based health monitoring: fall detection system with fog computing and LSTM recurrent neural networks, in 2019 42nd International Conference on Telecommunications and Signal Processing (TSP), (2019), 601–604. https://doi.org/10.1109/TSP.2019.8768883
    [40] U. Dampage, C. Balasuriya, S. Thilakarathna, D. Rathnayaka, L. Kalubowila, AI-based heart monitoring system, in 2021 IEEE 4th International Conference on Computing, Power and Communication Technologies (GUCON), (2021), 1–6. https://doi.org/10.1109/GUCON50781.2021.9573888
    [41] G. J. Joyia, R. M. Liaqat, A. Farooq, S. Rehman, Internet of medical things (IoMT): Applications, benefits and future challenges in healthcare domain, J. Commun., 12 (2017), 240–247. https://doi.org/10.12720/jcm.12.4.240-247 doi: 10.12720/jcm.12.4.240-247
    [42] T. T. Chhowa, M. A. Rahman, A. K. Paul, R. Ahmmed, A narrative analysis on deep learning in IoT based medical big data analysis with future perspectives, in 2019 International Conference on Electrical, Computer and Communication Engineering (ECCE), 2019, 1–6. https://doi.org/10.1109/ECACE.2019.8679200
  • This article has been cited by:

    1. Impact of vaccine arrival on the optimal control of a newly emerging infectious disease: A theoretical study, 2012, 9, 1551-0018, 539, 10.3934/mbe.2012.9.539
    2. Bruno Buonomo, Modeling ITNs Usage: Optimal Promotion Programs Versus Pure Voluntary Adoptions, 2015, 3, 2227-7390, 1241, 10.3390/math3041241
    3. Hamadjam Abboubakar, Jean Claude Kamgang, Leontine Nkague Nkamba, Daniel Tieudjo, Bifurcation thresholds and optimal control in transmission dynamics of arboviral diseases, 2018, 76, 0303-6812, 379, 10.1007/s00285-017-1146-1
    4. Benjamin Riche, Hélène Bricout, Marie-Laure Kürzinger, Sylvain Roche, Jean Iwaz, Jean-François Etard, René Ecochard, Modeling and predicting the long-term effects of various strategies and objectives of varicella-zoster vaccination campaigns, 2016, 15, 1476-0584, 927, 10.1080/14760584.2016.1183483
    5. Lingcai Kong, Jinfeng Wang, Weiguo Han, Zhidong Cao, Modeling Heterogeneity in Direct Infectious Disease Transmission in a Compartmental Model, 2016, 13, 1660-4601, 253, 10.3390/ijerph13030253
    6. Nkengafac Villyen Motaze, Zinhle E. Mthombothi, Olatunji Adetokunboh, C. Marijn Hazelbag, Enrique M. Saldarriaga, Lawrence Mbuagbaw, Charles Shey Wiysonge, The Impact of Rubella Vaccine Introduction on Rubella Infection and Congenital Rubella Syndrome: A Systematic Review of Mathematical Modelling Studies, 2021, 9, 2076-393X, 84, 10.3390/vaccines9020084
    7. BRUNO BUONOMO, ON THE OPTIMAL VACCINATION STRATEGIES FOR HORIZONTALLY AND VERTICALLY TRANSMITTED INFECTIOUS DISEASES, 2011, 19, 0218-3390, 263, 10.1142/S0218339011003853
    8. Bruno Buonomo, 2014, Chapter 3, 978-3-319-06922-7, 23, 10.1007/978-3-319-06923-4_3
    9. Chairat Modnak, Jin Wang, Zindoga Mukandavire, Simulating optimal vaccination times during cholera outbreaks, 2014, 07, 1793-5245, 1450014, 10.1142/S1793524514500144
    10. Drew Posny, Jin Wang, Zindoga Mukandavire, Chairat Modnak, Analyzing transmission dynamics of cholera with public health interventions, 2015, 264, 00255564, 38, 10.1016/j.mbs.2015.03.006
    11. Matt J. Keeling, Andrew Shattock, Optimal but unequitable prophylactic distribution of vaccine, 2012, 4, 17554365, 78, 10.1016/j.epidem.2012.03.001
    12. Bruno Buonomo, Cruz Vargas-De-León, Effects of Mosquitoes Host Choice on Optimal Intervention Strategies for Malaria Control, 2014, 132, 0167-8019, 127, 10.1007/s10440-014-9894-z
    13. Bruno Buonomo, Piero Manfredi, Alberto d’Onofrio, Optimal time-profiles of public health intervention to shape voluntary vaccination for childhood diseases, 2019, 78, 0303-6812, 1089, 10.1007/s00285-018-1303-1
    14. Adison Thongtha, Chairat Modnak, Optimal COVID-19 epidemic strategy with vaccination control and infection prevention measures in Thailand, 2022, 7, 24680427, 835, 10.1016/j.idm.2022.11.002
    15. Calvin Tadmon, Arnaud Feukouo Fossi, Berge Tsanou, A two–strain avian–human influenza model with environmental transmission: Stability analysis and optimal control strategies, 2024, 10075704, 107981, 10.1016/j.cnsns.2024.107981
    16. Gui Guan, Zhenyuan Guo, Yanyu Xiao, Dynamical behaviors of a network-based SIR epidemic model with saturated incidence and pulse vaccination, 2024, 137, 10075704, 108097, 10.1016/j.cnsns.2024.108097
    17. Samiullah Salim, Fazal Dayan, Muhammad Azizur Rehman, Husam A. Neamah, Optimization and Control in Rubella Transmission Dynamics: A Boundedness-Preserving Numerical Model with Vaccination, 2024, 23529148, 101595, 10.1016/j.imu.2024.101595
    18. Habtamu Ayalew Engida, Demeke Fisseha, Malaria and leptospirosis co-infection: A mathematical model analysis with optimal control and cost-effectiveness analysis, 2025, 24682276, e02517, 10.1016/j.sciaf.2024.e02517
    19. Giovanni Ziarelli, Stefano Pagani, Nicola Parolini, Francesco Regazzoni, Marco Verani, A model learning framework for inferring the dynamics of transmission rate depending on exogenous variables for epidemic forecasts, 2025, 437, 00457825, 117796, 10.1016/j.cma.2025.117796
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(7747) PDF downloads(454) Cited by(10)

Article outline

Figures and Tables

Figures(18)  /  Tables(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog