Nowadays online collective actions are pervasive, such as the rumor spreading on the Internet. The observed curves take on the S-shape, and we focus on evolutionary dynamics for S- shape curves of online rumor spreading. For agents, key factors, such as internal aspects, external aspects, and hearing frequency jointly determine whether to spread it. Agent-based modeling is applied to capture micro-level mechanism of this S-shape curve. We have three findings: (a) Standard S-shape curves of spreading can be obtained if each agent has the zero threshold; (b) Under zero-mean thresholds, as heterogeneity (SD) grows from zero, S-shape curves with longer right tails can be obtained. Generally speaking, stronger heterogeneity comes up with a longer duration; and (c) Under positive mean thresholds, the spreading curve is two-staged, with a linear stage (first) and nonlinear stage (second), but not standard S-shape curves either. From homogeneity to heterogeneity, the spreading S-shaped curves have longer right tail as the heterogeneity grows. For the spreading duration, stronger heterogeneity usually brings a shorter duration. The effects of heterogeneity on spreading curves depend on different situations. Under both zero and positive-mean thresholds, heterogeneity leads to S-shape curves. Hence, heterogeneity enhances the spreading with thresholds, but it may postpone the spreading process with homogeneous thresholds.
Citation: Peng Lu, Rong He, Dianhan Chen. Exploring S-shape curves and heterogeneity effects of rumor spreading in online collective actions[J]. Mathematical Biosciences and Engineering, 2022, 19(3): 2355-2380. doi: 10.3934/mbe.2022109
[1] | Hengxiao Qi, Muhammad Yussouf, Sajid Mehmood, Yu-Ming Chu, Ghulam Farid . Fractional integral versions of Hermite-Hadamard type inequality for generalized exponentially convexity. AIMS Mathematics, 2020, 5(6): 6030-6042. doi: 10.3934/math.2020386 |
[2] | Yu-Pei Lv, Ghulam Farid, Hafsa Yasmeen, Waqas Nazeer, Chahn Yong Jung . Generalization of some fractional versions of Hadamard inequalities via exponentially (α,h−m)-convex functions. AIMS Mathematics, 2021, 6(8): 8978-8999. doi: 10.3934/math.2021521 |
[3] | Moquddsa Zahra, Dina Abuzaid, Ghulam Farid, Kamsing Nonlaopon . On Hadamard inequalities for refined convex functions via strictly monotone functions. AIMS Mathematics, 2022, 7(11): 20043-20057. doi: 10.3934/math.20221096 |
[4] | Lanxin Chen, Junxian Zhang, Muhammad Shoaib Saleem, Imran Ahmed, Shumaila Waheed, Lishuang Pan . Fractional integral inequalities for h-convex functions via Caputo-Fabrizio operator. AIMS Mathematics, 2021, 6(6): 6377-6389. doi: 10.3934/math.2021374 |
[5] | Shuang-Shuang Zhou, Saima Rashid, Muhammad Aslam Noor, Khalida Inayat Noor, Farhat Safdar, Yu-Ming Chu . New Hermite-Hadamard type inequalities for exponentially convex functions and applications. AIMS Mathematics, 2020, 5(6): 6874-6901. doi: 10.3934/math.2020441 |
[6] | Maryam Saddiqa, Saleem Ullah, Ferdous M. O. Tawfiq, Jong-Suk Ro, Ghulam Farid, Saira Zainab . k-Fractional inequalities associated with a generalized convexity. AIMS Mathematics, 2023, 8(12): 28540-28557. doi: 10.3934/math.20231460 |
[7] | Muhammad Tariq, Asif Ali Shaikh, Sotiris K. Ntouyas, Jessada Tariboon . Some novel refinements of Hermite-Hadamard and Pachpatte type integral inequalities involving a generalized preinvex function pertaining to Caputo-Fabrizio fractional integral operator. AIMS Mathematics, 2023, 8(11): 25572-25610. doi: 10.3934/math.20231306 |
[8] | Eze R. Nwaeze, Muhammad Adil Khan, Ali Ahmadian, Mohammad Nazir Ahmad, Ahmad Kamil Mahmood . Fractional inequalities of the Hermite–Hadamard type for m-polynomial convex and harmonically convex functions. AIMS Mathematics, 2021, 6(2): 1889-1904. doi: 10.3934/math.2021115 |
[9] | Hong Yang, Shahid Qaisar, Arslan Munir, Muhammad Naeem . New inequalities via Caputo-Fabrizio integral operator with applications. AIMS Mathematics, 2023, 8(8): 19391-19412. doi: 10.3934/math.2023989 |
[10] | Muhammad Imran Asjad, Waqas Ali Faridi, Mohammed M. Al-Shomrani, Abdullahi Yusuf . The generalization of Hermite-Hadamard type Inequality with exp-convexity involving non-singular fractional operator. AIMS Mathematics, 2022, 7(4): 7040-7055. doi: 10.3934/math.2022392 |
Nowadays online collective actions are pervasive, such as the rumor spreading on the Internet. The observed curves take on the S-shape, and we focus on evolutionary dynamics for S- shape curves of online rumor spreading. For agents, key factors, such as internal aspects, external aspects, and hearing frequency jointly determine whether to spread it. Agent-based modeling is applied to capture micro-level mechanism of this S-shape curve. We have three findings: (a) Standard S-shape curves of spreading can be obtained if each agent has the zero threshold; (b) Under zero-mean thresholds, as heterogeneity (SD) grows from zero, S-shape curves with longer right tails can be obtained. Generally speaking, stronger heterogeneity comes up with a longer duration; and (c) Under positive mean thresholds, the spreading curve is two-staged, with a linear stage (first) and nonlinear stage (second), but not standard S-shape curves either. From homogeneity to heterogeneity, the spreading S-shaped curves have longer right tail as the heterogeneity grows. For the spreading duration, stronger heterogeneity usually brings a shorter duration. The effects of heterogeneity on spreading curves depend on different situations. Under both zero and positive-mean thresholds, heterogeneity leads to S-shape curves. Hence, heterogeneity enhances the spreading with thresholds, but it may postpone the spreading process with homogeneous thresholds.
Convex functions has applications in almost all branches of mathematics for example in mathematical analysis, optimization theory and mathematical statistics etc. A convex function can be expressed and visualized in many different ways which further provide the motivation and encouragement for defining new concepts. Let us recall its definition as follows:
A function f:J⊆R→R is said to be convex, if
f(tx+(1−t)y)≤tf(x)+(1−t)f(y), | (1.1) |
holds for all x,y∈J and t∈[0,1]. Likewise f is concave if (−f) is convex.
A convex function is generalized in different forms, one of the generalization is the exponentially (θ,h−m)-convex function. Farid and Mahreen [11] introduced exponentially (θ,h−m)-convex functions as follows:
Definition 1.1. Let J⊆R be an interval containing (0,1) and let h:J→R be a non-negative function. For fix t∈(0,1), (θ,m)∈(0,1]2 and η∈R. A function f:[0,b]→R is called exponentially (θ,h−m)-convex function, if f is non-negative and for all x,y∈[0,b] one has
f(tx+m(1−t)y)≤h(tθ)f(x)eηx+mh(1−tθ)f(y)eηy. | (1.2) |
Remark 1.2. By selecting suitable function h and particular values of parameter m and η, the above definition produces the functions comprise in the following remark:
(i) By setting η=0, (θ,h−m)-convex function [12] can be obtained.
(ii) By taking η=0 and θ=1, (h−m)-convex function can be captured.
(iii) By choosing η=0 and h(tθ)=tθ, (θ,m)-convex function can be obtained.
(iv) By setting η=0, θ=1 and m=1, h-convex function [32] can be captured.
(v) By taking η=0, θ=1 and h(t)=t, m-convex function [31] can be obtained.
(vi) By choosing η=0, θ=1, m=1 and h(t)=t, convex function can be captured.
(vii) By setting η=0, m=1, θ=1 and h(t)=1, P-function [6] can be obtained.
(viii) By taking θ=1 and h(t)=ts, exponentially (s,m)-convex function [28] can be captured.
(ix) By choosing θ=1, m=1 and h(t)=ts, exponentially s-convex function [23] can be obtained.
(x) By setting θ=1, and h(t)=t, exponentially m-convex function [29] can be captured.
(xi) By taking θ=1, m=1 and h(t)=t, exponentially convex function [3] can be obtained.
(xii) By choosing η=0, θ=1 and h(t)=ts, (s,m)-convex function [2] can be captured.
(xiii) By setting θ=1, η=0, m=1 and h(t)=ts, s-convex function [23] can be obtained.
(xiv) By taking θ=1, η=0, m=1 and h(t)=1t, Godunova-Levin function [14] can be captured.
(xv) By choosing θ=1, η=0, m=1 and h(t)=1ts, s-Godunova-Levin function of second kind can be obtained.
The following inequality, named Hermite–Hadamard inequality, is one of the most famous inequalities in the literature for convex functions.
Theorem 1.3. Let f:J⊆R→R be a convex function on J and a,b∈J with a<b. Then the following double inequality holds:
f(a+b2)≤1b−a∫baf(x)dx≤f(a)+f(b)2. | (1.3) |
Various extensions of this notion have been reported in the literature in recent years, see [1,4,7,16,17,18,21,22,26,30].
The objective of this paper is to obtain inequalities of Hadamard type via Caputo k-fractional derivatives of exponentially (θ,h−m)-convex functions. Study of integration or differentiation of fractional order is known as fractional calculus. Its history is as old as the history of calculus. A lot of work has been published since the day of Leibniz (1695) and since then has occupied great number of mathematicians of their time [15,20,25,27].
Fractional integral inequalities are in the study of several researchers, see [5,9,13] and references therein. The classical Caputo fractional derivatives are defined as follows:
Definition 1.4. [20] Let α>0 and α∉{1,2,3,…}, n=[α]+1, f∈ACn[a,b] (the set of all functions f such that f(n) are absolutely continuous on [a,b]). The Caputo fractional derivatives of order α are defined by
CDαa+f(x)=1Γ(n−α)∫xaf(n)(t)(x−t)α−n+1dt,x>a, | (1.4) |
and
CDαb−f(x)=(−1)nΓ(n−α)∫bxf(n)(t)(t−x)α−n+1dt,x<b. | (1.5) |
If α=n∈{1,2,3,…} and usual derivative of order n exists, then Caputo fractional derivative (CDαa+f)(x) coincides with f(n)(x), whereas (CDαb−f)(x) coincides with f(n)(x) with exactness to a constant multiplier (−1)n. In particular, we have
(CD0a+f)(x)=(CD0b−f)(x)=f(x), | (1.6) |
where n=1 and α=0.
In [9], Farid et al. defined Caputo k−fractional derivatives as follows:
Definition 1.5. Let α>0,k≥1 and α∉{1,2,3,…}, n=[α]+1, f∈ACn[a,b]. The Caputo k-fractional derivatives of order α are given as
CDα,ka+f(x)=1kΓk(n−αk)∫xaf(n)(t)(x−t)αk−n+1dt,x>a, | (1.7) |
and
CDα,kb−f(x)=(−1)nkΓk(n−αk)∫bxf(n)(t)(t−x)αk−n+1dt,x<b, | (1.8) |
where Γk(α) is the k-gamma function defined as
Γk(α)=∫∞0tα−1e−tkkdt. |
Also
Γk(α+k)=αΓk(α). |
Motivated by above results and literatures, the paper is organized in the following manner:
In section 2, we present some inequalities of Hadamard type for exponentially (θ,h−m)−convex functions via Caputo k−fractional derivatives. In section 3, we use the integral identity including the (n+1)-order derivative of f to establish interesting Hadamard type inequalities for exponentially (θ,h−m)−convexity via Caputo k-fractional derivatives. In section 4, a briefly conclusion will be provided as well.
In this section, we give the Caputo k–fractional derivatives inequality of Hadamard type for a function whose n-th derivatives are exponentially (θ,h−m)–convex.
Theorem 2.1. Let α>0,k≥1 and α∉{1,2,3,…}, n=[α]+1 and [a,b]⊂[0,+∞), f:[0,+∞)→R be a function such that f∈ACn[a,mb], where a<mb. Also, assume that f(n) be an exponentially (θ,h−m)-convex function with (θ,m)∈(0,1]2 and η∈R. Then the following inequalities for Caputo k-fractional derivatives hold:
1g(η)f(n)(bm+a2)≤kΓk(n−αk+k)(mb−a)n−αk×(h(1−12θ)mn−αk+1(−1)n(CDα,kb−f)(am)+h(12θ)(CDα,ka+f)(mb))≤kn−αk×{(h(1−12θ)m2f(n)(am2)eηam2+h(12θ)mf(n)(b)eηb)∫10tn−αk−1h(1−tθ)dt+(h(1−12θ)mf(n)(b)eηb+h(12θ)f(n)(a)eηa)∫10tn−αk−1h(tθ)dt}, | (2.1) |
where g(η)=1eηbforη<0 and g(η)=1eηamforη≥0.
Proof. Since f(n) is an exponentially (θ,h−m)-convex function on [a,b], then
f(n)(um+v2)≤h(1−12θ)mf(n)(u)eηu+h(12θ)f(n)(v)eηv,u,v∈[a,b]. |
By setting u=(1−t)am+tb≤b and v=m(1−t)b+ta≥a in the above inequality for t∈[0,1], then by integrating with respect to t over [0,1] after multiplying with tn−αk−1, we have
f(n)(bm+a2)∫10tn−αk−1dt≤h(1−12θ)(∫10tn−αk−1mf(n)((1−t)am+tb)eη((1−t)am+tb)dt+h(12θ)∫10tn−αk−1f(n)(m(1−t)b+ta)eη(m(1−t)b+ta)dt). |
Now, if we let w=(1−t)am+tb and z=m(1−t)b+ta in right hand side of above inequality, we get
f(n)(bm+a2)1n−αk≤h(1−12θ)(∫bam(w−amb−am)n−αk−1mf(n)(w)dweηw(b−am)+h(12θ)∫mba(mb−zmb−a)n−αk−1f(n)(z)dzeηz(mb−a)). |
Hence
f(n)(bm+a2)≤{g(η)kΓk(n−αk+k)(mb−a)n−αk(h(1−12θ)mn−αk+1(−1)n(CDα,kb−f)(am)+h(12θ)(CDα,ka+f)(mb))}. | (2.2) |
On the other hand by using exponentially (θ,h−m)-convexity of f(n), we have
mf(n)((1−t)am+tb)≤m2h(1−tθ)f(n)(am2)eηam2+mh(tθ)f(n)(b)eηb. |
By multiplying both sides of above inequality with (n−αk)h(1−12θ)tn−αk−1 and integrating with respect to t over [0,1], after some calculations we get
kΓk(n−αk+k)(mb−a)n−αk(h(1−12θ)mn−αk+1(−1)n(CDα,kb−f)(am))≤h(1−12θ)(n−αk){m2f(n)(am2)eηam2∫10tn−αk−1h(1−tθ)dt+mf(n)(b)eηb∫10tn−αk−1h(tθ)dt}. | (2.3) |
Similarly,
f(n)(m(1−t)b+ta)≤mh(1−tθ)f(n)(b)eηb+h(tθ)f(n)(a)eηa. |
By multiplying both sides of above inequality with (n−αk)h(12θ)tn−αk−1 and integrating with respect to t over [0,1], after some calculations we get
kΓk(n−αk+k)(mb−a)n−αk(h(12θ)(CDα,ka+f)(mb))≤h(12θ)(n−αk){mf(n)(b)eηb∫10tn−αk−1h(1−tθ)dt+f(n)(a)eηa∫10tn−αk−1h(tθ)dt}. | (2.4) |
By adding (2.3) and (2.4), we obtain
kΓk(n−αk+k)(mb−a)n−αk(h(1−12θ)mn−αk+1(−1)n(CDα,kb−f)(am)+h(12θ)(CDα,ka+f)(mb))≤(n−αk){(h(1−12θ)m2f(n)(am2)eηam2+h(12θ)mf(n)(b)eηb)∫10tn−αk−1h(1−tθ)dt+(h(1−12θ)mf(n)(b)eηb+h(12θ)f(n)(a)eηa)∫10tn−αk−1h(tθ)dt}. |
Combining above with (2.2), we get required result.
Corollary 2.2. By setting k=1 in inequality (2.1), the following inequalities hold for exponentially (θ,h−m)-convex functions via Caputo fractional derivatives:
1g(η)f(n)(bm+a2)≤Γ(n−α+1)(mb−a)n−α(h(1−12θ)mn−α+1(−1)n(CDαb−f)(am)+h(12θ)(CDαa+f)(mb))≤(n−α){(h(1−12θ)m2f(n)(am2)eηam2+h(12θ)mf(n)(b)eηb)∫10tn−α−1h(1−tθ)dt+(h(1−12θ)mf(n)(b)eηb+h(12θ)f(n)(a)eηa)∫10tn−α−1h(tθ)dt}. |
Corollary 2.3. Taking η=0 in (2.1), the following inequalities hold for (θ,h−m)-convex functions via Caputo k-fractional derivatives:
f(n)(bm+a2)≤kΓk(n−αk+k)(mb−a)n−αk(h(1−12θ)mn−αk+1(−1)n(CDα,kb−f)(am)+h(12θ)(CDα,ka+f)(mb))≤(kn−αk){(h(1−12θ)m2f(n)(am2)+h(12θ)mf(n)(b))∫10tn−αk−1h(1−tθ)dt+(h(1−12θ)mf(n)(b)+h(12θ)f(n)(a))∫10tn−αk−1h(tθ)dt}. |
Corollary 2.4. Choosing η=0 and θ=1 in (2.1), the following inequalities hold for (h−m)-convex functions via Caputo k-fractional derivatives defined in [[24], Theorem 2.1]:
f(n)(bm+a2)≤kΓk(n−αk+k)2(mb−a)n−αk(mn−αk+1(−1)n(CDα,kb−f)(am)+(CDα,ka+f)(mb))≤kn−α2k{(m2f(n)(am2)+mf(n)(b))∫10tn−αk−1h(1−t)dt+(mf(n)(b)+f(n)(a))∫10tn−αk−1h(t)dt}. |
Corollary 2.5. By setting η=0, θ=1 and k=1 in (2.1), the following inequalities hold for (h−m)-convex functions via Caputo fractional derivatives defined in [[24], Corollary 2.2]:
f(n)(bm+a2)≤Γ(n−α+1)2(mb−a)n−α(mn−α+1(−1)n(CDαb−f)(am)+(CDαa+f)(mb))≤n−α2{(m2f(n)(am2)+mf(n)(b))∫10tn−α−1h(1−t)dt+(mf(n)(b)+f(n)(a))∫10tn−α−1h(t)dt}. |
Corollary 2.6. Taking θ=1 and h(t)=ts in (2.1), the following inequalities hold for exponentially (s,m)-convex functions via Caputo k-fractional derivatives:
1g(η)f(n)(bm+a2)≤kΓk(n−αk+k)2s(mb−a)n−αk(mn−αk+1(−1)n(CDα,kb−f)(am)+(CDα,ka+f)(mb))≤kn−αk2s{(m2f(n)(am2)eηam2+mf(n)(b)eηb)β(kn−αk,s+1)+(mf(n)(b)eηb+f(n)(a)eηa)kkn−α+ks}, |
where β(⋅,⋅) is well–known beta function.
Corollary 2.7. Choosing η=0, θ=1, m=1 and h(t)=t in (2.1), the following inequalities hold for convex functions via Caputo k-fractional derivatives defined in [[8], Theorem 2.2]:
f(n)(a+b2)≤kΓk(n−αk+k)2(b−a)n−αk((−1)n(CDα,kb−f)(a)+(CDα,ka+f)(b))≤f(n)(a)+f(n)(b)2. |
Corollary 2.8. By setting η=0, θ=1, m=1, h(t)=t and k=1 in (2.1), the following inequalities hold for convex functions via Caputo fractional derivatives:
f(n)(a+b2)≤Γ(n−α+1)2(b−a)n−α((−1)n(CDαb−f)(a)+(CDαa+f)(b))≤f(n)(a)+f(n)(b)2. |
In the following we generalize the fractional Hadamard type inequalities for exponentially (θ,h−m)−convex function via Caputo k-fractional derivatives.
Theorem 2.9. Let α>0,k≥1 and α∉{1,2,3,…}, n=[α]+1 and [a,b]⊂[0,+∞), f:[0,+∞)→R be a function such that f∈ACn[a,mb], where a<mb. Also, assume that f(n) be an exponentially (θ,h−m)-convex function with (θ,m)∈(0,1]2 and η∈R. Then the following inequalities for Caputo k-fractional derivatives hold:
1g(η)f(n)(a+bm2)≤2(n−αk)kΓk(n−αk+k)(bm−a)n−αk(h(1−12θ)mn−αk+1(−1)(n)(CDα,k(a+bm2m)−f)(am)+h(12θ)(CDα,k(a+bm2)+f)(mb))≤(kn−αk){(h(1−12θ)m2f(n)(am2)eηam2+h(12θ)mf(n)(b)eηb)∫10tn−αk−1h(1−(t2)θ)dt+(h(1−12θ)mf(n)(b)eηb+h(12θ)f(n)(a)eηa)∫10tn−αk−1h((t2)θ)dt}, | (2.5) |
where g(η)=1eηbforη<0 and g(η)=1eηamforη≥0.
Proof. From exponentially (θ,h−m)−convexity of f(n) one can have
f(n)(um+v2)≤h(1−12θ)mf(n)(u)eηu+h(12θ)f(n)(v)eηv. |
Putting u=t2b+(2−t)2am and u=t2a+m(2−t)2b in the above inequality where t∈[0,1], and multiplying with tn−αk−1, then integrating with respect to t over [0,1] one can have
f(n)(a+bm2)∫10tn−αk−1dt≤h(1−12θ)(∫10tn−αk−1mf(n)(t2b+(2−t)2am)eη(t2b+(2−t)2am)dt+h(12θ)∫10tn−αk−1f(n)(t2a+m(2−t)2b)eη(t2a+m(2−t)2b)dt). |
By change of variables, we get
1g(η)f(n)(a+bm2)≤2(n−αk)kΓk(n−αk+k)(bm−a)n−αk×(h(1−12θ)mn−αk+1(−1)(n)(CDα,k(a+bm2m)−f)(am)+h(12θ)(CDα,k(a+bm2)+f)(mb)). | (2.6) |
Now, using the exponentially (θ,h−m)−convexity of f(n), we can write
f(n)(t2a+m(2−t)2b)≤h((t2)θ)f(n)(a)eηa+mh(1−(t2)θ)f(n)(b)eηb. |
Multiplying both sides of above inequality with (n−αk)h(12θ)tn−αk−1 and integrating with respect to t over [0,1], then by change of variables, we have
h(12θ)2(n−αk)kΓk(n−αk+k)(bm−a)n−αk((CDα,k(a+bm2)+f)(mb))≤(n−αk)h(12θ){mf(n)(b)eηb∫10tn−αk−1h(1−(t2)θ)dt+f(n)(a)eηa∫10tn−αk−1h((t2)θ)dt}. | (2.7) |
Again by using the exponentially (θ,h−m)−convexity of f(n), we can write
mf(n)(t2b+(2−t)2am)≤mh(t2)θf(n)(b)eηb+m2h(1−(t2)θ)f(n)(am2)eηam2. |
Multiplying both sides of above inequality with (n−αk)h(1−12θ)tn−αk−1 and integrating with respect to t over [0,1], then by change of variables, we have
h(1−12θ)2(n−αk)kΓk(n−αk+k)(bm−a)n−αk(mn−αk+1(−1)(n)(CDα,k(a+bm2m)−f)(am))≤(n−αk)h(1−12θ){m2f(n)(am2)eηam2∫10tn−αk−1h(1−(t2)θ)dt+mf(n)(b)eηb∫10tn−αk−1h((t2)θ)dt}. | (2.8) |
Adding (2.7) and (2.8), we get
2(n−αk)kΓk(n−αk+k)(bm−a)n−αk(h(1−12θ)mn−αk+1(−1)(n)(CDα,k(a+bm2m)−f)(am)+h(12θ)(CDα,k(a+bm2)+f)(mb))≤(n−αk){(h(1−12θ)m2f(n)(am2)eηam2+h(12θ)mf(n)(b)eηb)∫10tn−αk−1h(1−(t2)θ)dt+(h(1−12θ)mf(n)(b)eηb+h(12θ)f(n)(a)eηa)∫10tn−αk−1h((t2)θ)dt}. |
By combining above with (2.6), we get required result.
Corollary 2.10. By setting k=1 in inequality (2.5), the following inequalities hold for exponentially (θ,h−m)-convex functions via Caputo fractional derivatives:
1g(η)f(n)(a+bm2)≤2(n−α)Γ(n−α+1)(bm−a)n−αk(h(1−12θ)mn−α+1(−1)(n)(CDα(a+bm2m)−f)(am)+h(12θ)(CDα(a+bm2)+f)(mb))≤(n−α){(h(1−12θ)m2f(n)(am2)eηam2+h(12θ)mf(n)(b)eηb)∫10tn−α−1h(1−(t2)θ)dt+(h(1−12θ)mf(n)(b)eηb+h(12θ)f(n)(a)eηa)∫10tn−α−1h((t2)θ)dt}. |
Corollary 2.11. Taking η=0 in (2.5), the following inequalities hold for (θ,h−m)-convex functions via Caputo k-fractional derivatives:
f(n)(a+bm2)≤2(n−αk)kΓk(n−αk+k)(bm−a)n−αk(h(1−12θ)mn−αk+1(−1)(n)(CDα,k(a+bm2m)−f)(am)+h(12θ)(CDα,k(a+bm2)+f)(mb))≤(kn−αk){(h(1−12θ)m2f(n)(am2)+h(12θ)mf(n)(b))∫10tn−αk−1h(1−(t2)θ)dt+(h(1−12θ)mf(n)(b)+h(12θ)f(n)(a))∫10tn−αk−1h((t2)θ)dt}. |
Corollary 2.12. Choosing η=0 and θ=1 in (2.5), the following inequalities hold for (h−m)-convex functions via Caputo k-fractional derivatives defined in [[24], Theorem 2.4]:
f(n)(a+bm2)≤2(n−αk)kΓk(n−αk+k)(bm−a)n−αkh(12)(mn−αk+1(−1)(n)(CDα,k(a+bm2m)−f)(am)+(CDα,k(a+bm2)+f)(mb))≤kn−αkh(12)×{(m2f(n)(am2)+mf(n)(b))∫10tn−αk−1h(2−t2)dt+(mf(n)(b)+f(n)(a))∫10tn−αk−1h(t2)dt}. |
Corollary 2.13. By setting η=0, θ=1 and k=1 in (2.5), the following inequalities hold for (h−m)-convex functions via Caputo fractional derivatives defined in [[24], Corollary 2.5]:
f(n)(a+bm2)≤2(n−α)Γ(n−α+1)(bm−a)n−αkh(12)(mn−α+1(−1)(n)(CDα(a+bm2m)−f)(am)+(CDα(a+bm2)+f)(mb))≤(n−α)h(12)×{(m2f(n)(am2)+mf(n)(b))∫10tn−α−1h(2−t2)dt+(mf(n)(b)+f(n)(a))∫10tn−α−1h(t2)dt}. |
Corollary 2.14. Taking θ=1 and h(t)=ts in (2.5), the following inequalities hold for exponentially (s,m)-convex functions via Caputo k-fractional derivatives:
1g(η)f(n)(a+bm2)≤2(n−αk−s)kΓk(n−αk+k)(bm−a)n−αk×(mn−αk+1(−1)(n)(CDα,k(a+bm2m)−f)(am)+(CDα,k(a+bm2)+f)(mb)).≤122s{(m2f(n)(am2)eηam2+mf(n)(b)eηb)kΓk(n−αk+k)+(mf(n)(b)eηb+f(n)(a)eηa)kn−αkn−α+ks}. |
Corollary 2.15. Choosing η=0, θ=1, m=1 and h(t)=t in (2.5), the following inequalities hold for convex functions via Caputo k-fractional derivatives defined in [[10], Theorem 6]:
f(n)(a+b2)≤2(n−αk)kΓk(n−αk+k)2(b−a)n−αk×((−1)(n)(CDα,k(a+b2)−f)(a)+(CDα,k(a+b2)+f)(b))≤f(n)(a)+f(n)(b)2. |
Corollary 2.16. By setting η=0, θ=1, m=1, h(t)=t and k=1 in (2.5), the following inequalities hold for convex functions via Caputo fractional derivatives defined in [[19] Theorem 2.2]:
f(n)(a+b2)≤2(n−α)Γ(n−α+1)2(b−a)n−αk×((−1)(n)(CDα(a+b2)−f)(a)+(CDα(a+b2)+f)(b))≤f(n)(a)+f(n)(b)2. |
In the next, some other inequalities of Hadamard type for exponentially (θ,h−m)−convex function via Caputo k−fractional derivatives are given.
Theorem 2.17. Let α>0,k≥1 and α∉{1,2,3,…}, n=[α]+1 and f:[0,+∞)→R be a function such that f∈ACn[a,mb], where a<mb. Also, assume that f(n) be an exponentially (θ,h−m)-convex function with (θ,m)∈(0,1]2 and η∈R. Then the following inequalities for Caputo k-fractional derivatives hold:
kΓk(n−αk)(b−a)n−αk((CDα,ka+f)(b)+(−1)n(CDα,kb−f)(a))≤(f(n)(a)eηa+f(n)(b)eηb)×∫10tn−αk−1h(tθ)dt+m(f(n)(bm)eηbm+f(n)(am)eηam)∫10tn−αk−1h(1−tθ)dt≤1(np−αkp−p+1)1p(∫10(h(tθ))qdt)1q×(f(n)(a)eηa+f(n)(b)eηb+m(f(n)(bm)eηbm+f(n)(am)eηam)), | (2.9) |
where p−1+q−1=1 and p>1.
Proof. Since f(n) is exponentially (θ,h−m)−convex on [a,b], then for (θ,m)∈(0,1]2 and t∈[0,1], we have
f(n)(ta+(1−t)b)+f(n)((1−t)a+tb)≤h(tθ)(f(n)(a)eηa+f(n)(b)eηb)+mh(1−tθ)(f(n)(bm)eηbm+f(n)(am)eηam). |
Multiplying both sides of above inequality with tn−αk−1 and integrating the above inequality with respect to t on [0,1], we have
∫10tn−αk−1(f(n)(ta+(1−t)b)+f(n)((1−t)a+tb))dt≤(f(n)(a)eηa+f(n)(b)eηb)∫10tn−αk−1h(tθ)dt+m(f(n)(bm)eηbm+f(n)(am)eηam)∫10tn−αk−1h(1−tθ)dt. |
If we set x=ta+(1−t)b in the left side of above inequality, we get the following inequality
kΓk(n−αk)(b−a)n−αk((CDα,ka+f)(b)+(−1)n(CDα,kb−f)(a))≤(f(n)(a)eηa+f(n)(b)eηb)∫10tn−αk−1h(tθ)dt+m(f(n)(bm)eηbm+f(n)(am)eηam)∫10tn−αk−1h(1−tθ)dt. | (2.10) |
We get the first inequality of (2.9). The second inequality of (2.9) follows by using the Hölder's inequality
∫10tn−αk−1h(tθ)dt≤1(np−αkp−p+1)1p(∫10(h(tθ))qdt)1q. |
Combining it with (2.10) we get (2.9).
Corollary 2.18. By setting k=1 in (2.9), the following inequalities hold for exponentially (θ,h−m)-convex functions via Caputo fractional derivatives:
Γ(n−α)(b−a)n−α((CDαa+f)(b)+(−1)n(CDαb−f)(a))≤(f(n)(a)eηa+f(n)(b)eηb)×∫10tn−α−1h(tθ)dt+m(f(n)(bm)eηbm+f(n)(am)eηam)∫10tn−α−1h(1−tθ)dt≤1(np−αp−p+1)1p(∫10(h(tθ))qdt)1q×(f(n)(a)eηa+f(n)(b)eηb+m(f(n)(bm)eηbm+f(n)(am)eηam)). |
Corollary 2.19. Taking η=0 in (2.9), the following inequalities hold for (θ,h−m)-convex functions via Caputo k-fractional derivatives:
kΓk(n−αk)(b−a)n−αk((CDα,ka+f)(b)+(−1)n(CDα,kb−f)(a))≤(f(n)(a)+f(n)(b))×∫10tn−αk−1h(tθ)dt+m(f(n)(bm)+f(n)(am))∫10tn−αk−1h(1−tθ)dt≤1(np−αkp−p+1)1p(∫10(h(tθ))qdt)1q×(f(n)(a)+f(n)(b)+m(f(n)(bm)+f(n)(am))). |
Corollary 2.20. Choosing η=0 and θ=1 in (2.9), the following inequalities hold for (h−m)-convex functions via Caputo k-fractional derivatives defined in [[24], Theorem 2.7]:
kΓk(n−αk)(b−a)n−αk((CDα,ka+f)(b)+(−1)n(CDα,kb−f)(a))≤(f(n)(a)+f(n)(b))×∫10tn−αk−1h(t)dt+m(f(n)(bm)+f(n)(am))∫10tn−αk−1h(1−t)dt≤1(np−αkp−p+1)1p(∫10(h(t))qdt)1q×(f(n)(a)+f(n)(b)+m(f(n)(bm)+f(n)(am))). |
Corollary 2.21. By setting η=0, θ=1 and k=1 in (2.9), the following inequalities hold for (h−m)-convex functions via Caputo fractional derivatives defined in [[24], Corollary 2.8]:
Γ(n−α)(b−a)n−α((CDαa+f)(b)+(−1)n(CDαb−f)(a))≤(f(n)(a)+f(n)(b))×∫10tn−α−1h(t)dt+m(f(n)(bm)+f(n)(am))∫10tn−α−1h(1−t)dt≤1(np−αp−p+1)1p(∫10(h(t))qdt)1q×(f(n)(a)+f(n)(b)+m(f(n)(bm)+f(n)(am))). |
Corollary 2.22. Taking θ=1 and h(t)=ts in (2.9), the following inequalities hold for exponentially (s,m)-convex functions via Caputo k-fractional derivatives:
kΓk(n−αk)(b−a)n−αk((CDα,ka+f)(b)+(−1)n(CDα,kb−f)(a))≤k(f(n)(a)eηa+f(n)(b)eηb)kn−α+ks+m(f(n)(bm)eηbm+f(n)(am)eηam)β(n−αk,s+1)≤k(f(n)(a)eηa+f(n)(b)eηb)kn−α+ks+m(f(n)(bm)eηbm+f(n)(am)eηam)(np−αkp−p+1)1p(qs+1)1q. |
Corollary 2.23. Choosing η=0, θ=1, m=1 and h(t)=t in (2.9), the following inequalities hold for convex functions via Caputo k-fractional derivatives:
kΓk(n−αk)(b−a)n−αk((CDα,ka+f)(b)+(−1)n(CDα,kb−f)(a))≤k(f(n)(a)+f(n)(b))kn−α≤2(f(n)(a)+f(n)(b))(np−αkp−p+1)1p(q+1)1q. |
Theorem 2.24. Let α>0,k≥1 and α∉{1,2,3,…}, n=[α]+1 and [a,b]⊂[0,+∞), f:[0,+∞)→R be a function such that f∈ACn[a,mb], where a<mb and h be a superadditive function. Also, assume that f(n) be an exponentially (θ,h−m)-convex function with (θ,m)∈(0,1]2 and η∈R. Then the following inequality for Caputo k−fractional derivatives holds:
kΓk(n−αk+k)(b−a)n−αk((CDα,ka+f)(b)+(−1)n(CDα,kb−f)(a))≤h(1)2((f(n)(a)eηa+f(n)(b)eηb)+m(f(n)(bm)eηbm+f(n)(am)eηam)). | (2.11) |
Proof. Since f(n) is exponentially (θ,h−m)−convex on [a,b], then for t∈[0,1], we get
f(n)(ta+(1−t)b)+f(n)((1−t)a+tb)≤(h(tθ)+h(1−tθ))2((f(n)(a)eηa+f(n)(b)eηb)+m(f(n)(bm)eηbm+f(n)(am)eηam)). |
Since h is superadditive function, then
h(tθ)+h(1−tθ)≤h(1),for allθ∈(0,1]andt∈[0,1]. |
Therefore
f(n)(ta+(1−t)b)+f(n)((1−t)a+tb)≤h(1)2((f(n)(a)eηa+f(n)(b)eηb)+m(f(n)(bm)eηbm+f(n)(am)eηam)). |
Multiplying both sides of above inequality with tn−αk−1 and integrating with respect to t over [0,1], yield the following
∫10tn−αk−1(f(n)(ta+(1−t)b)+f(n)((1−t)a+tb))dt≤h(1)2((f(n)(a)eηa+f(n)(b)eηb)+m(f(n)(bm)eηbm+f(n)(am)eηam))∫10tn−αk−1dt. |
By change of variable, we get the required result.
Corollary 2.25. By setting k=1 in (2.11), the following inequality holds for exponentially (θ,h−m)-convex functions via Caputo fractional derivatives:
Γ(n−α+1)(b−a)n−α((CDαa+f)(b)+(−1)n(CDαb−f)(a))≤h(1)2((f(n)(a)eηa+f(n)(b)eηb)+m(f(n)(bm)eηbm+f(n)(am)eηam)). |
Corollary 2.26. Taking η=0 and θ=1 in (2.11), the following inequality holds for (h−m)-convex functions via Caputo k-fractional derivatives defined in [[24], Theorem 2.9]:
kΓk(n−αk+k)(b−a)n−αk((CDα,ka+f)(b)+(−1)n(CDα,kb−f)(a))≤h(1)2((f(n)(a)+f(n)(b))+m(f(n)(bm)+f(n)(am))). |
Corollary 2.27. Choosing η=0, θ=1 and k=1 in (2.11), the following inequality holds for (h−m)-convex functions via Caputo k-fractional derivatives defined in [[24], Corollary 2.10]:
Γ(n−α+1)(b−a)n−α((CDαa+f)(b)+(−1)n(CDαb−f)(a))≤h(1)2((f(n)(a)+f(n)(b))+m(f(n)(bm)+f(n)(am))). |
Corollary 2.28. By setting η=0, θ=1, m=1, h(t)=t and k=1 in (2.11), the following inequality holds for convex functions via Caputo fractional derivatives:
Γ(n−α+1)(b−a)n−α((CDαa+f)(b)+(−1)n(CDαb−f)(a))≤f(n)(a)+f(n)(b). |
We need the following known lemma to prove our next results.
Lemma 3.1. [24] Let α>0,k≥1 and α∉{1,2,3,…}, n=[α]+1 and f:[a,mb]→R, where a,b∈[0,+∞) be a differentiable mapping on interval (a,mb), with a<mb and m∈(0,1]. If f∈ACn+1[a,mb], then the following equality for Caputo k−fractional derivatives holds:
f(n)(mb)+f(n)(b)2−kΓk(n−αk+k)2(mb−a)n−αk((CDα,ka+f)(mb)+(CDα,kmb−f)(a))=mb−a2∫10((1−t)n−αk−tn−αk)f(n+1)(m(1−t)b+ta)dt. |
Caputo k−fractional derivative inequalities of Hadamard type for exponentially (θ,h−m)−convex function in terms of the (n+1)-th derivatives in absolute, is obtained in the following theorem by using above lemma.
Theorem 3.2. Let α>0,k≥1 and α∉{1,2,3,…}, n=[α]+1 and [a,b]⊂[0,+∞), f:[0,+∞)→R be a function such that f∈ACn+1[a,mb], where a<mb. If |f(n+1)| is an exponentially (θ,h−m)−convex with (θ,m)∈(0,1]2 and η∈R, then the following inequality for Caputo k−fractional derivatives holds:
|f(n)(mb)+f(n)(a)2−kΓk(n−αk+k)2(mb−a)n−αk(CDα,kb+f)(mb)+(CDα,kmb−f)(a)|≤mb−a2((2np−αkp+1−1)1p(2np−αkp+1(np−αkp+1))1p−1)×(|f(n+1)(a)|eηa((∫120(h(tθ))qdt)1q+(∫112(h(tθ))qdt)1q)+m|f(n+1)(b)|eηb((∫120(h(1−tθ))qdt)1q+(∫112(h(1−tθ))qdt)1q)), | (3.1) |
where 1p+1q=1 and p>1.
Proof. From Lemma 3.1 and by using the properties of modulus, we get
|f(n)(mb)+f(n)(b)2−kΓk(n−αk+k)2(mb−a)n−αk((CDα,ka+f)(mb)+(CDα,kmb−f)(a))|≤mb−a2∫10|(1−t)n−αk−tn−αk||f(n+1)(m(1−t)b+ta)|dt. |
By exponentially (θ,h−m)−convexity of |f(n+1)|, we have
|f(n)(mb)+f(n)(a)2−kΓk(n−αk+k)2(mb−a)n−αk(CDα,ka+f)(mb)+(CDα,kmb−f)(a)|≤mb−a2∫120((1−t)n−αk−tn−αk)(mh(1−tθ)|f(n+1)(b)eηb|+h(tθ)|f(n+1)(a)eηa|)dt+∫112(tn−αk−(1−t)n−αk)(mh(1−tθ)|f(n+1)(b)eηb|+h(tθ)|f(n+1)(a)eηa|)dt=mb−a2{|f(n+1)(a)eηa|(∫120(1−t)n−αkh(tθ)dt−∫120tn−αkh(tθ)dt)+m|f(n+1)(b)eηb|(∫120(1−t)n−αkh(1−tθ)dt−∫120tn−αkh(1−tθ)dt)+|f(n+1)(a)eηa|(∫112tn−αkh(tθ)dt−∫112(1−t)n−αkh(tθ)dt)+m|f(n+1)(b)eηb|(∫112tn−αkh(1−tθ)dt−∫112(1−t)n−αkh(1−tθ)dt)}. | (3.2) |
Now, using the Hölder's inequality in the right hand side of (3.2), we obtain
|f(n)(mb)+f(n)(a)2−kΓk(n−αk+k)2(mb−a)n−αk(CDα,kb+f)(mb)+(CDα,kmb−f)(a)|≤mb−a2{|f(n+1)(a)eηa|((2np−αkp+1−1)1p−1(2np−αkp+1(np−αkp+1))1p(∫120(h(tθ))qdt)1q+(2np−αkp+1−1)1p−1(2np−αkp+1(np−αkp+1))1p(∫112(h(tθ))qdt)1q)+m|f(n+1)(b)eηb|((2np−αkp+1−1)1p−1(2np−αkp+1(np−αkp+1))1p(∫120(h(1−tθ))qdt)1q+(2np−αkp+1−1)1p−1(2np−αkp+1(np−αkp+1))1p(∫112(h(1−tθ))qdt)1q)}. |
After a little computation one can get inequality (3.1).
Corollary 3.3. By setting k=1 in (3.1), the following inequality holds for exponentially (θ,h−m)-convex functions via Caputo fractional derivatives:
|f(n)(mb)+f(n)(a)2−Γ(n−α+1)2(mb−a)n−α(CDαb+f)(mb)+(CDαmb−f)(a)|≤mb−a2((2np−αp+1−1)1p(2np−αp+1(np−αp+1))1p−1)×(|f(n+1)(a)|eηa((∫120(h(tθ))qdt)1q+(∫112(h(tθ))qdt)1q)+m|f(n+1)(b)|eηb((∫120(h(1−tθ))qdt)1q+(∫112(h(1−tθ))qdt)1q)). |
Corollary 3.4. Taking η=0 in (3.1), the following inequality holds for (θ,h−m)-convex functions via Caputo k-fractional derivatives:
|f(n)(mb)+f(n)(a)2−kΓk(n−αk+k)2(mb−a)n−αk(CDα,kb+f)(mb)+(CDα,kmb−f)(a)|≤mb−a2((2np−αkp+1−1)1p(2np−αkp+1(np−αkp+1))1p−1)×(|f(n+1)(a)|((∫120(h(tθ))qdt)1q+(∫112(h(tθ))qdt)1q)+m|f(n+1)(b)|((∫120(h(1−tθ))qdt)1q+(∫112(h(1−tθ))qdt)1q)). |
Corollary 3.5. Choosing η=0 and θ=1 in (3.1), the following inequality holds for (h−m)-convex functions via Caputo k-fractional derivatives defined in [[24], Theorem 3.1]:
|f(n)(mb)+f(n)(a)2−kΓk(n−αk+k)2(mb−a)n−αk(CDα,kb+f)(mb)+(CDα,kmb−f)(a)|≤(mb−a)(|f(n+1)(a)|+m|f(n+1)(b)|)[(2np−αkp+1−1)1p]2[(2np−αkp+1(np−αkp+1))1p−1]×((∫120(h(t))qdt)1q+(∫112(h(t))qdt)1q). |
Corollary 3.6. By setting η=0, θ=1 and k=1 in (3.1), the following inequality holds for (h−m)-convex functions via Caputo fractional derivatives defined in [[24], Corollary 3.2]:
|f(n)(mb)+f(n)(a)2−Γ(n−α+1)2(mb−a)n−α(CDαb+f)(mb)+(CDαmb−f)(a)|≤(mb−a)(|f(n+1)(a)|+m|f(n+1)(b)|)[(2np−αp+1−1)1p]2[(2np−αp+1(np−αp+1))1p−1]×((∫120(h(t))qdt)1q+(∫112(h(t))qdt)1q). |
Corollary 3.7. Taking θ=1 and h(t)=ts in (3.1), the following inequality holds for exponentially (s,m)-convex functions:
|f(n)(mb)+f(n)(a)2−kΓk(n−αk+k)2(mb−a)n−αk(CDα,kb+f)(mb)+(−1)n(CDα,kmb−f)(a)|≤(mb−a)(|f(n+1)(a)eηa|+m|f(n+1)(b)eηb|)2×{(2n−αk+s−12n−αk+s(n−αk+s+1)+(2np−αkp+1−1)1p−(2qs+1−1)1q(2np−αkp+1(np−αkp+1))1p(2qs+1(qs+1))1q)}. |
Corollary 3.8. Choosing η=0, θ=1, m=1, h(t)=t and k=1 in (3.1), the following inequality holds for convex functions via Caputo fractional derivatives:
|f(n)(b)+f(n)(a)2−Γ(n−α+1)2(b−a)n−α(CDαb+f)(b)+(CDαb−f)(a)|≤(b−a)(|f(n+1)(a)|+|f(n+1)(b)|)[(2np−αp+1−1)1p((2q+1−1)1q+1)]2[((2np−αp+1(np−αp+1))1p−1)(2q+1(q+1))1q]. |
In this paper, some inequalities of Hadamard type for exponentially (α,h−m)–convex functions via Caputo k–fractional derivatives are obtained. By applied integral identity including the (n+1)–order derivative of a given function via Caputo k–fractional derivatives, we given some new of its related integral inequalities results. Some new results are given and know results are recaptured as special cases from our results. Since convexity and (exponentially (α,h−m)–convexity) have large applications in many mathematical areas, they can be applied to obtain several results in convex analysis, special functions, quantum mechanics, related optimization theory, mathematical inequalities and may stimulate further research in different areas of pure and applied sciences.
The authors would like to thank the anonymous referees for their valuable comments and suggestions, which led to considerable improvement of the article.
The authors A. Mukheimer and T. Abdeljawad would like to thank Prince Sultan University for paying APC and for the support through the TAS research lab. The work was also supported by the Higher Education Commission of Pakistan.
The authors declare no conflict of interest.
[1] | J. Ma, D. Li, Z. Tian, Rumor spreading in online social networks by considering the bipolar social reinforcement, Phys. A., 447 (2016), 108-115. https://doi.org/10.1016/j.physa.2015.12.005 |
[2] | J. Lee, Y. Choi, Informed public against false rumor in the social media era: Focusing on social media dependency, Telemat. Inform., 35 (2018), 1071-1081. https://doi.org/10.1016/j.tele.2017.12.017 |
[3] | Y. Hu, Q. Pan, W. Hou, M. He, Rumor spreading model considering the proportion of wisemen in the crowd, Phys. A., 505 (2018), 1084-1094. https://doi.org/10.1016/j.physa.2018.04.056 |
[4] | Q. Wang, X. Yang, W. Xi, Effects of group arguments on rumor belief and transmission in online communities: An information cascade and group polarization perspective. Inf. Manage., 55 (2017), 441-449. https://doi.org/10.1016/j.im.2017.10.004 |
[5] | M. Ostilli, E. Yoneki, I. X. Leung, J. F. Mendes, P. Lió, J. Crowcroft, Statistical mechanics of rumour spreading in network communities, Proc. Comp. Sci., 1 (2010), 2331-2339. https://doi.org/10.1016/j.procs.2010.04.262 |
[6] | L. Zhao, Q. Wang, J. Cheng, Y. Chen, J. Wang, W. Huang, Rumor spreading model with consideration of forgetting mechanism: A case of online blogging Live Journal, Phys. A., 390 (2011), 2619-2625. https://doi.org/10.1016/j.physa.2011.03.010 |
[7] | D. Li, J. Ma, How the government's punishment and individual's sensitivity affect the rumor spreading in online social networks, Phys. A., 469 (2017), 284-292. https://doi.org/10.1016/j.physa.2016.11.033 |
[8] | E. Sahafizadeh, B. T. Ladani, The impact of group propagation on rumor spreading in mobile social networks, Phys. A., 506 (2018), 412-423. https://doi.org/10.1016/j.physa.2018.04.038 |
[9] | J. Ma, H. Zhu, Rumor diffusion in heterogeneous networks by considering the individuals' subjective judgment and diverse characteristics, Phys. A., 499 (2018), 276-287. https://doi.org/10.1016/j.physa.2018.02.037 |
[10] | C. Pan, L. X. Yang, X. Yang, Y. Wu, Y. Y. Tang, An effective rumor-containing strategy, Phys. A., 500 (2018), 80-91. https://doi.org/10.1016/j.physa.2018.02.025 |
[11] | L. Wang, G. Song, Global stability of a two-mediums rumor spreading model with media coverage, Phys. A., 482 (2017), 757-771. https://doi.org/10.1016/j.physa.2017.04.027 |
[12] | N. Zhang, H. Huang, B. Su, J. Zhao, B. Zhang, Dynamic 8-state ICSAR rumor propagation model considering official rumor refutation, Phys. A., 415 (2014), 333-346. https://doi.org/10.1016/j.physa.2014.07.023 |
[13] | D. Centola, The spread of behavior in an online social network experiment, Science, 329 (2010), 1194-1197. https://doi.org/10.1126/science.1185231 |
[14] | T. Schelling, Micromotives and macrobehavior, Norton Press, 2005. |
[15] | D. M. Centola, Homophily, networks, and critical mass: Solving the start-up problem in large group collective action, Ration. Soc., 25 (2013), 3-40. https://doi.org/10.1177/1043463112473734 |
[16] | M. Van Zomeren, C. W. Leach, R. Spears, Does group efficacy increase group identification? Resolving their paradoxical relationship, J. Exp. Soc. Psychol., 46 (2010), 1055-1060. https://doi.org/10.1016/j.jesp.2010.05.006 |
[17] | L. Zhao, H. Cui, X. Qiu, X. Wang, J. Wang, SIR rumor spreading model in the new media age, Phys. A., 392 (2013), 995-1003. https://doi.org/10.1016/j.physa.2012.09.030 |
[18] | L. Zhu, Y. Wang, Rumor diffusion model with spatio-temporal diffusion and uncertainty of behavior decision in complex social networks, Phys. A., 502 (2018), 29-39. https://doi.org/10.1016/j.physa.2018.02.060 |
[19] | Y. Tanaka, Y. Sakamoto, T. Matsuka, Transmission of rumor and criticism in twitter after the great japan earthquake, Social Science Electronic Publishing, 2012 |
[20] | J. Shin, L. Jian, K. Driscoll, F. Bar, Political rumoring on twitter during the 2012 us presidential election: rumor diffusion and correction, Social Science Electronic Publishing, 2016 |
[21] | O. Oh, M. Agrawal, R. H. Rao, Community intelligence and social media services: a rumor theoretic analysis of tweets during social crises, Mis Quart., 37 (2013), 407-426. https://doi.org/10.25300/misq/2013/37.2.05 |
[22] | J. Lee, M. Agrawal, H. R. Rao, Message diffusion through social network service: the case of rumor and non-rumor related tweets during boston bombing 2013, Inform. Syst. Front., 17 (2015), 997-1005. https://doi.org/10.1007/s10796-015-9568-z |
[23] | S. Hamidian, M. Diab, Rumor identification and belief investigation on Twitter, in Proceedings of the 7th Workshop on computational approaches to subjectivity, sentiment and social media analysis, (2016), 3-8. |
[24] | M. Mai, A. Nadamoto, E. Aramaki, How do rumors spread during a crisis?: analysis of rumor expansion and disaffirmation on twitter after 3.11 in Japan, Int. J. Web Inf. Syst., 10 (2014), 394-412. https://doi.org/10.1108/IJWIS-04-2014-0015 |
[25] | R. Escalante, M. Odehnal, A deterministic mathematical model for the spread of two rumors, Afrika. Mat., 31(2020), 315-331. https://doi.org/10.1007/s13370-019-00726-8 |
[26] | A. Y. Chua, S. Banerjee, To share or not to share: The role of epistemic belief in online health rumors, Int. J. Med. Inform., 108 (2017), 36-41. https://doi.org/10.1016/j.ijmedinf.2017.08.010 |
[27] | Y. Hu, Q. Pan, W. Hou, M. He, Rumor spreading model with the different attitudes towards rumors, Phys. A., 502 (2018), 331-344. https://doi.org/10.1016/j.physa.2018.02.096 |
[28] | L. A. Huo, P. Huang, X. Fang, An interplay model for authorities' actions and rumor spreading in emergency event, Phys. A., 390 (2011), 3267-3274. https://doi.org/10.1016/j.physa.2011.05.008 |
[29] | K. Ji, J. Liu, G. Xiang, Anti-rumor dynamics and emergence of the timing threshold on complex network, Phys. A., 411 (2014), 87-94. https://doi.org/10.1016/j.physa.2014.06.013 |
[30] | W. Li, S. Tang, S. Pei, S. Yan, S. Jiang, X. Teng, et al., The rumor diffusion process with emerging independent spreaders in complex networks, Phys. A., 397 (2014), 121-128. https://doi.org/10.1016/j.physa.2013.11.021 |
[31] | U. Merlone, D. Radi, Reaching consensus on rumors, Phys. A., 406 (2014), 260-271. https://doi.org/10.1016/j.physa.2014.03.048 |
[32] | L. L. Xia, G. P. Jiang, B. Song, Y. R. Song, Rumor spreading model considering hesitating mechanism in complex social networks, Phys. A., 437 (2015), 295-303. https://doi.org/10.1016/j.physa.2015.05.113 |
[33] | V. Giorno, S. Spina, Rumor spreading models with random denials, Phys. A., 461 (2016), 569-576. https://doi.org/10.1016/j.physa.2016.06.070 |
[34] | R. Zhang, D. Li, Rumor propagation on networks with community structure, Phys. A., 483 (2017), 375-385. https://doi.org/10.1016/j.physa.2017.05.006 |
[35] | L. Zhu, Y. Wang, Rumor spreading model with noise interference in complex social networks, Phys. A., 469 (2017), 750-760. https://doi.org/10.1016/j.physa.2016.11.119 |
[36] |
L. A. Huo, C. Ma, Dynamical analysis of rumor spreading model with impulse vaccination and time delay, Phys. A., 471 (2017), 653-665. doi: 10.1016/j.physa.2016.12.024. doi: 10.1016/j.physa.2016.12.024
![]() |
[37] | M. Jia, H. Ruan, Z. Zhang, How rumors fly, J. Bus. Res., 72 (2017), 33-45. https://doi.org/10.1016/j.jbusres.2016.11.010 |
[38] | R. Y. Tian, Y. J. Liu, Isolation, insertion, and reconstruction: Three strategies to intervene in rumor spread based on super network model, Decis. Support Syst., 67 (2014), 121-130. https://doi.org/10.1016/j.dss.2014.09.001 |
[39] | L. Zhao, J. Wang, Y. Chen, Q. Wang, J. Cheng, H. Cui, SIHR rumor spreading model in social networks, Phys. A., 391 (2012), 2444-2453. https://doi.org/10.1016/j.physa.2011.12.008 |
[40] | L. Zhao, W. Xie, H. O. Gao, X. Qiu, X. Wang, S. Zhang, A rumor spreading model with variable forgetting rate, Phys. A., 392 (2013), 6146-6154. https://doi.org/10.1016/j.physa.2013.07.080 |
[41] | L. Zhao, X. Qiu, X. Wang, J. Wang, Rumor spreading model considering forgetting and remembering mechanisms in inhomogeneous networks, Phys. A., 392 (2013), 987-994. https://doi.org/10.1016/j.physa.2012.10.031 |
[42] | L. Zhao, X. Wang, X. Qiu, J. Wang, A model for the spread of rumors in Barrat-Barthelemy-Vespignani (BBV) networks, Phys. A., 392 (2013), 5542-5551. https://doi.org/10.1016/j.physa.2013.07.012 |
[43] | S. Han, F. Zhuang, Q. He, Z. Shi, X. Ao, Energy model for rumor propagation on social networks, Phys. A., 394 (2014), 99-109. https://doi.org/10.1016/j.physa.2013.10.003 |
[44] | K. Afassinou, Analysis of the impact of education rate on the rumor spreading mechanism, Phys. A., 414 (2014), 43-52. https://doi.org/10.1016/j.physa.2014.07.041 |
[45] | J. Wang, L. Zhao, R. Huang, SIRaRu rumor spreading model in complex networks, Phys. A., 398 (2014), 43-55. https://doi.org/10.1016/j.physa.2013.12.004 |
[46] | Y. Zan, J. Wu, P. Li, Q. Yu, SICR rumor spreading model in complex networks: Counterattack and self-resistance, Phys. A., 405 (2014), 159-170. https://doi.org/10.1016/j.physa.2014.03.021 |
[47] | D. Li, J. Ma, Z. Tian, H. Zhu, An evolutionary game for the diffusion of rumor in complex networks, Phys. A., 433 (2015), 51-58. https://doi.org/10.1016/j.physa.2015.03.080 |
[48] | R. Y. Tian, X. F. Zhang, Y. J. Liu, SSIC model: A multi-layer model for intervention of online rumors spreading, Phys. A., 427 (2015), 181-191. https://doi.org/10.1016/j.physa.2015.02.008 |
[49] | Z. Qian, S. Tang, X. Zhang, Z. Zheng, The independent spreaders involved SIR rumor model in complex networks, Phys. A., 429 (2015), 95-102. https://doi.org/10.1016/j.physa.2015.02.022 |
[50] | N. Song, Dynamical interplay between the dissemination of scientific knowledge and rumor spreading in emergency, Phys. A., 461(2016), 73-84. https://doi.org/10.1016/j.physa.2016.05.028 |
[51] | Z. J. Zhao, Y. M. Liu, K. X. Wang, An analysis of rumor propagation based on propagation force, Phys. A., 443 (2016), 263-271. https://doi.org/10.1016/j.physa.2015.09.060 |
[52] | R. Jie, J. Qiao, G. Xu, Y. Meng, A study on the interaction between two rumors in homogeneous complex networks under symmetric conditions, Phys. A., 454 (2016), 129-142. https://doi.org/10.1016/j.physa.2016.02.048 |
[53] |
S. Hosseini, M. A. Azgomi, A model for malware propagation in scale-free networks based on rumor spreading process. Comput. Netw., 108 (2016), 97-107. doi: 10.1016/j.comnet.2016.08.010 doi: 10.1016/j.comnet.2016.08.010
![]() |
[54] | X. Qiu, L. Zhao, J. Wang, X. Wang, Q. Wang, Effects of time-dependent diffusion behaviors on the rumor spreading in social networks. Phys. Lett. A, 380 (2016), 2054-2063. https://doi.org/10.1016/j.physleta.2016.04.025 |
[55] | Q. Liu, T. Li, M. Sun, The analysis of an SEIR rumor propagation model on heterogeneous network, Phys. A., 469 (2017), 372-380. https://doi.org/10.1016/j.physa.2016.11.067 |
[56] | Y. Zhang, Y. Su, L. Weigang, , H. Liu, Rumor and authoritative information propagation model considering super spreading in complex social networks, Phys. A., 506 (2018), 395-411. https://doi.org/10.1016/j.physa.2018.04.082 |
[57] | Y. Zan, DSIR double-rumors spreading model in complex networks, Phys. A., 110 (2018), 191-202. https://doi.org/10.1016/j.chaos.2018.03.021 |
[58] | Y. Cheng, C. Liu, F. Ding, Dynamic analysis of rumor spreading model for considering active network nodes and nonlinear spreading rate, Phys. A., 506 (2018), 24-35. https://doi.org/10.1016/j.physa.2018.03.063 |
[59] | O. Oh, P. Gupta, M. Agrawal, H. R. Rao, ICT mediated rumor beliefs and resulting user actions during a community crisis, Gov. Inform. Q., 35 (2018), 243-258. https://doi.org/10.1016/j.giq.2018.03.006 |
[60] | W. Chen, Y. Zhang, C. K. Yeo, C. T. Lau, B. S. Lee, Unsupervised rumor detection based on users' behaviors using neural networks, Pattern Recogn. Lett., 105 (2017), 226-233. https://doi.org/10.1016/j.patrec.2017.10.014 |
[61] | F. Jia, G. Lv, Dynamic analysis of a stochastic rumor propagation model, Phys. A., 490 (2018), 613-623. https://doi.org/10.1016/j.physa.2017.08.125 |
[62] | J. Jia, W. Wu, A rumor transmission model with incubation in social networks, Phys. A., 491 (2018), 453-462. https://doi.org/10.1016/j.physa.2017.09.063 |
[63] | H. L. Liu, C. Ma, B. B. Xiang, M. Tang, H. F. Zhang, Identifying multiple influential spreaders based on generalized closeness centrality, Phys. A., 492 (2018), 2237-2248. https://doi.org/10.1016/j.physa.2017.11.138 |
[64] | Y. Zhang, J. Zhu, Stability analysis of I2S2R rumor spreading model in complex networks, Phys. A., 503 (2018), 862-881. https://doi.org/10.1016/j.physa.2018.02.087 |
[65] | S. Dong, F. H. Fan, Y. C. Huang, Studies on the population dynamics of a rumor-spreading model in online social networks, Phys. A., 492 (2018), 10-20. https://doi.org/10.1016/j.physa.2017.09.077 |
[66] | A. Zubiaga, E. Kochkina, M. Liakata, R. Procter, M. Lukasik, K. Bontcheva, et al., Discourse-aware rumour stance classification in social media using sequential classifiers, Inf. Process. Manage., 54 (2018), 273-290. https://doi.org/10.1016/j.ipm.2017.11.009 |
[67] | J. Wang, L. Zhao, R. Huang, 2SI2R rumor spreading model in homogeneous networks, Phys. A., 413 (2014), 153-161. https://doi.org/10.1016/j.physa.2014.06.053 |
[68] | R. Escalante, M. Odehnal, . Prediction of trending topics using ANFIS and deterministic models, preprint, arXiv: 1709.07535. |
[69] |
S. Tarrow, National politics and collective action: Recent theory and research in Western Europe and the United States, Annu. Rev. Sociol., 14 (1988), 421-440. doi: 10.1146/annurev.so.14.080188.002225 doi: 10.1146/annurev.so.14.080188.002225
![]() |
[70] | X. Zhao, J. Wang, Dynamical model about rumor spreading with medium, Discrete Dyn. Nat. Soc., 2013 (2013). https://doi.org/10.1155/2013/586867 |
[71] | D. Trpevski, W. K. Tang, L. Kocarev, Model for rumor spreading over networks. Phys. Rev. E Stat. Nonlinear Soft Matter Phys., 81 (2010), 056102. https://doi.org/10.1103/PhysRevE.81.056102 |
[72] | W. Ruigrok, W. Amann, H. Wagner, The internationalization-performance relationship at swiss firms: a test of the s-shape and extreme degrees of internationalization, Manage. Int. Rev., 47 (2007), 349-368. https://doi.org/10.1007/s11575-007-0020-6 |
[73] | A. Flache, M. W. Macy, Stochastic collusion and the power law of learning: a general reinforcement learning model of cooperation, J. Conflict Resolut., 46 (2002), 629-653. https://doi.org/10.1177/002200202236167 |
[74] | M. W. Macy, Learning theory and the logic of critical mass, Am. Sociol. Rev., 55 (1990), 809-826. https://doi.org/10.2307/2095747 |
[75] | Y. H. Guan, L. Lv, R. Duan, Y. H. Ji, The brain image segmentation by markov field and normal distribution curve, in International Congress on Image and Signal Processing, IEEE, (2009), 1-5. https://doi.org/10.1109/CISP.2009.5303479 |
[76] | M. Granovetter, Threshold models of collective behavior, Am. J. Sociol., 83 (1978), 1420-1443. |
[77] | H. J. Li, L. Wang, Multi-scale asynchronous belief percolation model on multiplex networks, New J. Phys., 21 (2019). |
[78] | Z. L. Hu, L. Wang, C. B. Tang, Locating the source node of diffusion process in cyber-physical networks via minimum observers, Chaos An Interdiscip. J. Nonlinear Sci., 29 (2019), 063117. https://doi.org/10.1063/1.5092772 |
[79] | L. Wang, J. T. Wu, Characterizing the dynamics underlying global spread of epidemics, Nat. Commun., 9 (2018), 1-11. https://doi.org/10.1038/s41467-017-02344-z |
[80] | J. Wang, L.Wang, X. Li, Identifying spatial invasion of pandemics on metapopulation networks via anatomizing arrival history, IEEE T. Cybernetics, 46 (2015), 2782-2795. https://doi.org/10.1109/tcyb.2015.2489702 |
[81] | Z. Wang, L. Wang, A. Szolnoki, M. Perc, Evolutionary games on multilayer networks: a colloquium, Eur. Phys. J. B., 88 (2015), 1-15. https://doi.org/10.1140/epjb/e2015-60270-7 |
[82] | Z. Wang, D. W. Zhao, L. Wang, G. Q. Sun, Z. Jin, Immunity of multiplex networks via acquaintance vaccination, Epl, 112 (2015), 6. https://doi.org/10.1209/0295-5075/112/48002 |
[83] | D. He, R. Lui, L. Wang, C. K. Tse, L.Yang, L. Stone, Global spatio-temporal patterns of influenza in the post-pandemic era, Sci. Rep., 5 (2015), 11013. https://doi.org/10.1038/srep11013 |
[84] | Z.Wang, M. A. Andrews, Z. X. Wu, L. Wang, C. T. Bauch, Coupled disease-behavior dynamics on complex networks: A review, Phys. Life Rev., 15 (2015), 1-29. https://doi.org/10.1016/j.plrev.2015.07.006 |
[85] | D. Zhao, L.Wang, S. Li, Z. Wang, L. Wang, B. Gao, Immunization of epidemics in multiplex networks, Plos One, 9 (2014). https://doi.org/10.1371/journal.pone.0112018 |
[86] | L. Wang, X. Li, Spatial epidemiology of networked metapopulation: an overview, Chin. Sci. Bull., 59 (2014), 3511-3522. https://doi.org/10.1007/s11434-014-0499-8 |
[87] | Z. Wang, Y. Liu, L. Wang, Y. Zhang, Z. Wang, Freezing period strongly impacts the emergence of a global consensus in the voter model, Sci. Rep., 4 (2014). https://doi.org/10.1038/srep03597 |
[88] | L. Wang, Y. Zhang, Z. Wang, X. Li, The impact of human location-specific contact pattern on the sir epidemic transmission between populations, Int. J. Bifurcat. Chaos, 23 (2013). https://doi.org/10.1142/s0218127413500958 |
[89] | L. Wang, Z. Wang, Y. Zhang, X. Li, How human location-specific contact patterns impact spatial transmission between populations?, Sci. Rep., 3 (2013), 1-10. https://doi.org/10.1038/srep01468 |
[90] | H. F. Zhang, Z. X. Wu, X. K. Xu, M. Small, L. Wang, B. H. Wang, Impacts of subsidy policies on vaccination decisions in contact networks, Phys. Rev. E, 88 (2013). https://doi.org/10.1103/PhysRevE.88.012813 |
[91] | G. Q. Zhang, Q. B. Sun, L. Wang, Noise-induced enhancement of network reciprocity in social dilemmas. Chaos Solitons Fractals, 51 (2013), 31-35. https://doi.org/10.1016/j.chaos.2013.03.003 |
[92] | L. Wang, Y. Zhang, T. Y. Huang, X. Li, Estimating the value of containment strategies in delaying the arrival time of an influenza pandemic: A case study of travel restriction and patient isolatio, Phys. Rev. E, 86 (2012), 5. https://doi.org/10.1103/PhysRevE.86.032901 |
[93] | Y. Zhang, L.Wang, Y. Q. Zhang, X. Li, Towards a temporal network analysis of interactive WiFi users, Epl, 98(2012), 6. https://doi.org/10.1209/0295-5075/98/68002 |
[94] | L. Wang, X. Li, Y. Q. Zhang, Y. Zhang, K. Zhang, Evolution of scaling emergence in large-scale spatial epidemic spreading, Plos One, 6 (2011), 11. https://doi.org/10.1371/journal.pone.0021197 |
[95] | Y. Q. Wang, X. Y. Yang, Y. L. Han, X. A. Wang, Rumor spreading model with trust mechanism in complex social networks, Commun. Theor. Phys., 59 (2013), 510-516. https://doi.org/10.1088/0253-6102/59/4/21 |
[96] | H. Huang, A war of (mis) information: The political effects of rumors and rumor rebuttals in an authoritarian country, Brit. J Polit. Sci., 47 (2017), 283-311. https://doi.org/10.1017/S0007123415000253 |
[97] | A. J. Berinsky, Rumors and health care reform: experiments in political misinformation, Brit. J. Polit. Sci., 47 (2017), 241-262. https://doi.org/10.1017/s0007123415000186 |
[98] | S. Tisue, U. Wilensky, NetLogo: Design and implementation of a multi-agent modeling environment, Proc. Agent, 2004 (2004), 7-9 |
[99] | U. Wilensky, W. Rand, An introduction to agent-based modeling: modeling natural, social, and engineered complex systems with NetLogo, Mit Press, 2015. |
[100] | Q. Wang, H. Wang, Z. Zhang, Y. Li, Y. Liu, M. Perc, Heterogeneous investments promote cooperation in evolutionary public goods games, Phys. A., 502 (2018), 570-575. https://doi.org/10.1016/j.physa.2018.02.140 |
[101] | M. A. Amaral, L. Wardil, M. Perc, J. K. L. D. Silva, Evolutionary mixed games in structured populations: cooperation and the benefits of heterogeneity, Phys. Rev. E, 93 (2016), 042304. https://doi.org/10.1103/PhysRevE.93.042304 |
[102] | M. Perc, Does strong heterogeneity promote cooperation by group interactions?, New J. Phys., 13 (2011), 123027-123037. https://doi.org/10.1088/1367-2630/13/12/123027 |
[103] | Z. Wang, Heterogeneous aspirations promote cooperation in the prisoner's dilemma game, Plos One, 5 (2010), e15117. https://doi.org/10.1371/journal.pone.0015117 |
[104] | V. Mahadevan, W. Li, V. Bhalodia, N. Vasconcelos, Anomaly detection in crowded scenes, in 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2010. https://doi.org/10.1109/CVPR.2010.5539872 |
[105] | T. Wang, Z. Miao, Yuxin Chen, Y. Zhou, G. C. Shan, H. Snoussi., AED-net: An abnormal event detection network, Engineering, 5 (2019), 930-939. https://doi.org10.1016/j.eng.2019.02.008 |
1. | Shuhua Wang, Convergence of online learning algorithm with a parameterized loss, 2022, 7, 2473-6988, 20066, 10.3934/math.20221098 |