
We formulate an SEIR model for information propagation with the effect of a hot search in complex networks. Mathematical analysis is conducted in both a homogeneous network and heterogenous network. The results reveal that the dynamics are completely determined by the basic propagation number if the effect of a hot search is absent. On the other hand, when the effect of a hot search is taken into account, there exists no information-free equilibrium, and the information-propagating equilibrium is stable if the threshold is greater than 1. Numerical simulations were performed to examine the sensitivity of the parameters to the basic propagation number and the propagable nodes. Furthermore, the proposed model has been applied to fit the collected data for two types of information spreading in Sina Weibo, which confirmed the validity of our model and simulated the dynamical behaviors of information propagation.
Citation: Xiaonan Chen, Suxia Zhang. An SEIR model for information propagation with a hot search effect in complex networks[J]. Mathematical Biosciences and Engineering, 2023, 20(1): 1251-1273. doi: 10.3934/mbe.2023057
[1] | Mario Coccia, Igor Benati . Negative effects of high public debt on health systems facing pandemic crisis: Lessons from COVID-19 in Europe to prepare for future emergencies. AIMS Public Health, 2024, 11(2): 477-498. doi: 10.3934/publichealth.2024024 |
[2] | Pamila Sadeeka Adikari, KGRV Pathirathna, WKWS Kumarawansa, PD Koggalage . Role of MOH as a grassroots public health manager in preparedness and response for COVID-19 pandemic in Sri Lanka. AIMS Public Health, 2020, 7(3): 606-619. doi: 10.3934/publichealth.2020048 |
[3] | Boris G Andryukov, Natalya N Besednova . Older adults: panoramic view on the COVID-19 vaccination. AIMS Public Health, 2021, 8(3): 388-415. doi: 10.3934/publichealth.2021030 |
[4] | Abdulqadir J. Nashwan, Rejo G. Mathew, Reni Anil, Nabeel F. Allobaney, Sindhumole Krishnan Nair, Ahmed S. Mohamed, Ahmad A. Abujaber, Abbas Balouchi, Evangelos C. Fradelos . The safety, health, and well-being of healthcare workers during COVID-19: A scoping review. AIMS Public Health, 2023, 10(3): 593-609. doi: 10.3934/publichealth.2023042 |
[5] | Jennifer L Lemacks, Laurie S Abbott, Cali Navarro, Stephanie McCoy, Tammy Greer, Sermin Aras, Michael B Madson, Jacqueline Reese-Smith, Chelsey Lawrick, June Gipson, Byron K Buck, Marcus Johnson . Passive recruitment reach of a lifestyle management program to address obesity in the deep south during the COVID-19 pandemic. AIMS Public Health, 2023, 10(1): 116-128. doi: 10.3934/publichealth.2023010 |
[6] | Maria Mercedes Ferreira Caceres, Juan Pablo Sosa, Jannel A Lawrence, Cristina Sestacovschi, Atiyah Tidd-Johnson, Muhammad Haseeb UI Rasool, Vinay Kumar Gadamidi, Saleha Ozair, Krunal Pandav, Claudia Cuevas-Lou, Matthew Parrish, Ivan Rodriguez, Javier Perez Fernandez . The impact of misinformation on the COVID-19 pandemic. AIMS Public Health, 2022, 9(2): 262-277. doi: 10.3934/publichealth.2022018 |
[7] | Safaa Badi, Loai Abdelgadir Babiker, Abdullah Yasseen Aldow, Almigdad Badr Aldeen Abas, Mazen Abdelhafiez Eisa, Mohamed Nour Abu-Ali, Wagass Abdelrhman Abdella, Mohamed Elsir Marzouq, Musaab Ahmed, Abubakr Ali M Omer, Mohamed H Ahmed . Knowledge and attitudes toward COVID-19 vaccination in Sudan: A cross-sectional study. AIMS Public Health, 2023, 10(2): 310-323. doi: 10.3934/publichealth.2023023 |
[8] | Sushant K Singh . COVID-19: A master stroke of Nature. AIMS Public Health, 2020, 7(2): 393-402. doi: 10.3934/publichealth.2020033 |
[9] | Sameer Badri Al-Mhanna, Alexios Batrakoulis, Abdulrahman M. Sheikh, Abdulaziz A. Aldayel, Abdulwali Sabo, Mahaneem Mohamed, Hafeez Abiola Afolabi, Abdirizak Yusuf Ahmed, Sahra Isse Mohamed, Mehmet Gülü, Wan Syaheedah Wan Ghazali . Impact of COVID-19 lockdown on physical activity behavior among students in Somalia. AIMS Public Health, 2024, 11(2): 459-476. doi: 10.3934/publichealth.2024023 |
[10] | Vasiliki Georgousopoulou, Panagiota Pervanidou, Pantelis Perdikaris, Efrosyni Vlachioti, Vaia Zagana, Georgios Kourtis, Ioanna Pavlopoulou, Vasiliki Matziou . Covid-19 pandemic? Mental health implications among nurses and Proposed interventions. AIMS Public Health, 2024, 11(1): 273-293. doi: 10.3934/publichealth.2024014 |
We formulate an SEIR model for information propagation with the effect of a hot search in complex networks. Mathematical analysis is conducted in both a homogeneous network and heterogenous network. The results reveal that the dynamics are completely determined by the basic propagation number if the effect of a hot search is absent. On the other hand, when the effect of a hot search is taken into account, there exists no information-free equilibrium, and the information-propagating equilibrium is stable if the threshold is greater than 1. Numerical simulations were performed to examine the sensitivity of the parameters to the basic propagation number and the propagable nodes. Furthermore, the proposed model has been applied to fit the collected data for two types of information spreading in Sina Weibo, which confirmed the validity of our model and simulated the dynamical behaviors of information propagation.
A molecular graph in chemical graph theory is the graphical representation of the structural formula of a chemical compound in which the vertices represent atoms and edges represent chemical bond between those atoms. A topological index of a molecular graph G is a real number which characterizes the topology of G. Also it is invariant under graph automorphism. Topological indices have been widely used in Quantitative Structure-Activity Relationship (QSAR) and Quantitative Structure-Property Relationship (QSPR) studies. It has application in many folds, to name a few areas, biochemistry, nanotechnology, pharmacology. Bond energy is a measure of bond strength of a chemical compound. The distance between two atoms is considered as the bond length between them. The higher the bond energy, the smaller is the bond length between those atoms. The recently introduced 2-degree based topological invariants, analogous to novel graph invariants (Zagreb indices), namely leap Zagreb indices, may be applied in studying such bond energy between atoms in a molecular graph of a chemical compound.
Throughout this paper, G=(V,E) represents a connected molecular graph with the vertex set V(G) and the edge set E(G). Let the number of vertices and edges of G be n and m respectively. The degree of a vertex v in G is the number of vertices adjacent to v in G and denoted by deg(v:G). The 2-degree (or the second-degree) of a vertex v in G is the number of vertices which are at distance two from v in G and denoted by d2(v:G). The Zagreb indices, namely, the first and second Zagreb indices, are the most important and oldest molecular structure descriptors. These indices have been studied extensively in the field of Mathematical Chemistry [3,4,5]. Recently, the concept of Forgotten topological index also known as F-index have attracted many researchers which results in over 100 research articles related to F-index. A.M.Naji et al. [13] have recently introduced and studied some properties of a new topological invariant called Leap Zagreb indices. They are defined as follows:
Definition 1. (ⅰ) The first leap Zagreb index LM1(G) of a graph G is equal to the sum of squares of the second degrees of the vertices, LM1(G)=∑u∈V(G)d2(u)2.
(ⅱ) The second leap Zagreb index LM2(G) of a graph G is equal to the sum of the products of the second degrees of pairs of adjacent vertices, LM2(G)=∑uv∈E(G)d2(u)d2(v).
(ⅲ) The third leap Zagreb index LM3(G) of a graph G is equal to the sum of the products of the degree with the second degree of every vertex in G, LM3(G)=∑u∈V(G)deg(u)d2(u)
Subsequently, Z. Shao et al. [18] generalized the results of Naji et al.[13] for trees and unicyclic graphs and determined upper and lower bounds on leap Zagreb indices and characterized extremal graphs. Basavanagoud et al.[2] computed exact values for first and second leap hyper Zagreb indices of some nano structures. V. R. Kulli [7,8,9] introduced and studied various leap indices. Shiladhar et al.[17] computed leap Zagreb indices of wind mill graphs. Most recently, Naji et al.[14] have studied some properties of leap graphs.
Azari et al.[1] found formulae for first and second Zagreb indices of bridge and chain graphs. Nilanjan De [15,16] computed F-index and hyper Zagreb index of bridge and chain graphs. Jerline et al. [6] obtained exact values for harmonic index of bridge and chain graphs. E. Litta et al. [10] worked on modified Zagreb indices of bridge graphs. Mohanad Ali et al. [11] computed F-leap index of some special classes of bridge and chain graphs. Zhang et al.[12] worked on Edge-Version Atom-Bond Connectivity and Geometric Arithmetic Indices of generalized bridge molecular graphs. Motivated by their results, we compute exact values for the first and third leap Zagreb indices of bridges and chain graphs. Also we discuss some applications related to these indices in the last section of this paper. First, we recall the definitions of bridge and chain graphs from [1] as follows:
Definition 2. Let {Gi}di=1 be a set of finite pairwise disjoint graphs with distinct vertices vi∈V(Gi). The bridge graph B1=B1(G1,G2,…,Gd;v1,v2,v3,…,vd) of {Gi}di=1 with respect to the vertices {vi}di=1 as shown in Figure 1, is the graph obtained from the graphs G1,G2,…,Gd by connecting the vertices vi and vi+1 by an edge for all i=1,2,…,d−1.
Definition 3. The bridge graph B2=B2(G1,G2,…,Gd;v1,w1,v2,w2,…,vd,wd) of {Gi}di=1 with respect to the vertices {vi,wi}di=1 as shown in Figure 2, is the graph obtained from the graphs G1,G2,G3,…,Gd by connecting the vertices wi and vi+1 by an edge for all i=1,2,…,d−1.
Definition 4. The chain graph C=C(G1,G2,…,Gd;v1,w1,v2,w2,…,vd,wd) of {Gi}di=1 with respect to the vertices {vi,wi}di=1 as shown in Figure 3, is the graph obtained from the graphs G1,G2,…,Gd by identifying the vertices wi and vi+1 for all i=1,2,…,d−1.
The following lemma gives the 2-degree of any arbitrary vertex in the bridge graph B1.
Lemma 5. Let G1,G2,⋯,Gd be d≥5 connected graphs. Then the 2-degree of any arbitrary vertex u in the bridge graph B1 formed by these graphs is as follows:
d2(u:B1)={ν1+μ2+1,ifu=v1νd+μd−1+1,ifu=vdν2+μ1+μ3+1,ifu=v2νd−1+μd+μd−2+1,ifu=vd−1νi+μi−1+μi+1+2,,ifu=vi,3≤i≤d−2d2(u:G1)+1,ifu∈NG1(v1)d2(u:Gd)+1,ifu∈NGd(vd)d2(u:Gi)+2,ifu∈NGi(vi),2≤i≤d−1d2(u:Gi),ifu∈V(Gi)∖NGi[vi],1≤i≤d, | (2.1) |
where νi=d2(vi:Gi) and μi=deg(vi:Gi),1≤i≤d.
Next, we compute the first leap Zagreb index of the type-Ⅰ bridge graph B1.
Let Si=∑u∈NGi(vi)d2(u:Gi), 1≤i≤d.
Theorem 6. LM1(B1)=d∑i=1LM1(Gi)+d−1∑i=2[(μi−1+μi+1+1)2+2νi(μi−1+μi+1+1)+4Si+8μi]+2d−2∑i=3νi+2(S1+Sd)+(μ1+μd−2μ3−2μd−2)+(μ2+1)(μ2+2ν1+1)+(μd−1+1)(μd−1+2νd+1)+3d−12.
Proof. By virtue of Lemma 5
LM1(B1)=∑u∈V(B1)d2(u:B1)2=(ν1+μ2+1)2+(νd+μd−1+1)2+(ν2+μ1+μ3+1)2+(νd−1+μd+μd−2+1)2+d−2∑i=3(νi+μi−1+μi+1+2)2+∑u∈NG1(v1)(d2(u:G1)+1)2+∑u∈NGd(vd)(d2(u:Gd)+1)2+d−1∑i=2∑u∈NGi(vi)(d2(u:Gi)+2)2+d∑i=1∑u∈V(Gi)∖NGi[vi]d2(u:Gi)2 |
=ν21+(μ2+1)2+2ν1(μ2+1)+ν2d+(μd−1+1)2+2νd(μd−1+1)+ν22+(μ1+μ3+1)2+2ν2(μ1+μ3+1)+ν2d−1+(μd+μd−2+1)2+2νd−1(μd+μd−2+1)+d−2∑i=3[(νi+1)2+2(νi+1)(μi−1+μi+1+1)+(μi−1+μi+1+1)2]+∑u∈NG1(v1)[d2(u:G1)2+2d2(u:G1)]+μ1+∑u∈NGd(vd)[d2(u:Gd)2+2d2(u:Gd)]+μd+d−1∑i=2∑u∈NGi(vi)[d2(u:Gi)2+4d2(u:Gi)]+4d−1∑i=2μi+d∑i=1∑u∈V(Gi)∖NGi[vi]d2(u:Gi)2 |
=d∑i=1LM1(Gi)+d−1∑i=2[(μi−1+μi+1+1)2+2νi(μi−1+μi+1+1)+4Si+8μi]+2d−2∑i=3νi+2(S1+Sd)+(μ1+μd−2μ2−2μ3−2μd−2−2μd−1)+(μ2+1)(μ2+2ν1+1)+(μd−1+1)(μd−1+2νd+1)+3d−12. |
Thus the result follows.
Corollary 7. If G1=G2=⋯=Gd=G in a bridge graph B1, then LM1(B1)=dLM1(G)+(4d−6)μ2+(4d−8)ν+(12d−26)μ+(4d−4)(νμ+S)+4d−12, where S=∑u∈NG(v)d2(u:G).
Lemma 8. [1] The degree of an arbitrary vertex u of the bridge graph B1,d≥5 is given by:
deg(u:B1)={μ1+1,ifu=v1μd+1,ifu=vdμi+2,ifu=vi,2≤i≤d−1deg(u:Gi),ifu∈V(Gi)∖{vi},1≤i≤d, | (2.2) |
where μi=deg(vi:Gi),1≤i≤d.
Next, we compute the third leap Zagreb index of the type-Ⅰ bridge graph B1 Let us denote si=∑u∈NGi(vi)deg(u:Gi), 1≤i≤d.
Theorem 9. LM3(B1)=d∑i=1LM3(Gi)+(s1+sd)+2d−1∑i=2si+d∑i=1(2νi+6μi)+2d∑i=2(μi−1μi)−2(μ2+μd−1)−(ν1+νd)−3(μ1+μd)+4d−10.
Proof. By virtue of Lemma 5 and 8
LM3(B1)=∑u∈v(B1)d2(u)deg(u)=(ν1+μ2+1)(μ1+1)+(ν2+μ1+μ3+1)(μ2+2)+(νd+μd−1+1)(μd+1)+(νd−1+μd+μd−2+1)(μd−1+2)+d−2∑i=3(νi+μi−1+μi+1+2)(μi+2)+∑u∈NG1(v1)(d2(u:G1)+1)(deg(u:G1))+∑u∈NGd(vd)(d2(u:Gd)+1)(deg(u:Gd))+d−1∑i=2∑u∈NGi(vi)(d2(u:Gi)+2)(deg(u:Gi))+d∑i=1∑u∈V(Gi)∖NGi[vi](d2(u:Gi))(deg(u:Gi)) |
=(ν1μ1+ν1+μ2μ1+μ2+μ1+1)+(ν2μ2+2ν2+μ1μ2+2μ1+μ3μ2+2μ3+μ2+2)+(νdμd+νd+μd−1μd+μd−1+μd+1)+(νd−1μd−1+2νd−1+μdμd−1+2μd+μd−2μd−1+2μd−2+μd−1+2)+d−2∑i=3(νiμi+2νi+μi−1μi+2μi−1+μi+1μi+2μi+1+2μi+4)+∑u∈NG1(v1)(d2(u:G1)deg(u:G1)+deg(u:G1))+∑u∈NGd(vd)(d2(u:Gd)deg(u:Gd)+deg(u:Gd))+d−1∑i=2∑u∈NGi(vi)(d2(u:Gi)deg(u:Gi)+2deg(u:Gi))+d∑i=1∑u∈V(Gi)∖NGi[vi]d2(u:Gi)deg(u:Gi) |
Thus the result follows.
Corollary 10. If G1=G2=⋯=Gd=G in a bridge graph B1, then LM3(B1)=dLM3(G)+2(d−1)(s+ν+μ2)+2μ(3d−5)+4d−10, where s=∑u∈NG(v)deg(u:G).
For any two nonempty sets A and B, AΔB denotes the symmetric difference of A and B and defined as AΔB=(A∖B)∪(B∖A)=(A∪B)∖(A∩B). First, we obtain the 2-degree of any arbitrary vertex in the type-Ⅱ bridge graph B2 as follows:
Lemma 11. Let G1,G2,⋯,Gd be d≥5 triangle free connected graphs. Then 2-degree of any arbitrary vertex u in the bridge graph B2 formed by these graphs is as follows:
d2(u:B2)={d2(u:G1),ifu∈V(G1)∖NG1[w1]d2(u:G1)+1,ifu∈NG1(w1)d2(u:Gi),ifu∈V(Gi)∖{NGi[vi]∪NGi[wi]},2≤i≤d−1d2(u:Gd),ifu∈V(Gd)∖NGd[vd]d2(u:Gd)+1,ifu∈NGd(vd)d2(u:Gi)+1,ifu∈(NGi(vi)ΔNGi(wi)),2≤i≤d−1d2(u:Gi)+2,ifu∈NGi(vi)∩NGi(wi),2≤i≤d−1δi+μi+1,ifu=wi,1≤i≤d−1νi+λi−1,ifu=vi,2≤i≤d. | (2.3) |
where νi=d2(vi:Gi),μi=deg(vi:Gi);2≤i≤d,δi=d2(wi:Gi),λi=deg(wi:Gi);1≤i≤d−1.
Next, we compute the first leap Zagreb index of type-Ⅱ bridge graph B2.
Let us denote S′1=∑u∈NG1(w1)d2(u:G1) and Sd=∑u∈NGd(vd)d2(u:Gd)
Theorem 12. LM1(B2)=d∑i=1LM1(Gi)+2(S′1+Sd)+(λ1+μd)+d−1∑i=2∑u∈NGi(vi)ΔNGi(wi)[2d2(u:Gi)+1]+4d−1∑i=2∑u∈NGi(vi)∩NGi(wi)[d2(u:Gi)+1]+d−1∑i=1(μ2i+1+2δiμi+1)+d∑i=2(λ2i−1+2νiλi−1).
Proof.
LM1(B2)=∑u∈V(B2)d2(u:B2)2=∑u∈V(G1)∖NG1[w1]d2(u:G1)2+d−1∑i=2 ∑u∈V(Gi)∖{NGi[vi]∪NGi[wi]}d2(u:Gi)2+∑u∈V(Gd)∖NGd[vd]d2(u:Gd)2+∑u∈NG1(w1)(d2(u:G1)+1)2+d−1∑i=2∑u∈NGi(vi)ΔNGi(wi)(d2(u:Gi)+1)2+∑u∈NGd(vd)(d2(u:Gd)+1)2+d−1∑i=2∑u∈NGi(vi)∩NGi(wi)(d2(u:Gi)+2)2+d−1∑i=1(δi+μi+1)2+d∑i=2(νi+λi−1)2 |
=LM1(G1)−δ21−∑u∈NG1(w1)d2(u:G1)2+d−1∑i=2[∑u∈V(Gi)d2(u:Gi)2−∑u∈N(vi)∪N(wi)d2(u:Gi)2−ν2i−δ2i]+LM1(Gd)−ν2d−∑u∈NGd(vd)d2(u:Gd)2+∑u∈NG1(w1)d2(u:G1)2+2∑u∈NG1(w1)d2(u:G1)+λ1+d−1∑i=2[∑u∈NGi(vi)ΔNGi(wi)[d2(u:Gi)2+2d2(u:Gi)+1]]+∑u∈NGd(vd)[d2(u:Gd)2+2d2(u:Gd)+1]+d−1∑i=2[∑u∈NGi(vi)∩NGi(wi)[d2(u:Gi)2+4d2(u:Gi)+4]]+d−1∑i=1[δ2i+2δiμi+1+μ2i+1]+d∑i=2[ν2i+2νiλi−1+λ2i−1] |
Thus,
LM1(B2)=d∑i=1LM1(Gi)+2(S′1+Sd)+(λ1+μd)+d−1∑i=2∑u∈NGi(vi)ΔNGi(wi)[2d2(u:Gi)+1]+4d−1∑i=2∑u∈NGi(vi)∩NGi(wi)[d2(u:Gi)+1]+d−1∑i=1(μ2i+1+2δiμi+1)+d∑i=2(λ2i−1+2νiλi−1). |
Corollary 13. If G1=G2=⋯,Gd=G, in a bridge graph B2, then LM1(B2)=dLM1(G)+λ+μ+2(S+S′)+(d−2)∑u∈NG(v)ΔNG(w)(2d2(u:G)+1)+4(d−2)∑u∈NG(v)∩NG(w)(d2(u:G)+1)+(d−1)[μ2+λ2]+2(d−1)[δμ+νλ], where S=∑u∈NG(w)d2(u:G) and S′=∑u∈NG(v)d2(u:G).
In what follows next, we compute the third leap Zagreb index of B2.
Lemma 14. The degree of an arbitrary vertex u of the bridge graph B2, d≥5 is given by:
deg(u:B2)={deg(u:G1),ifu∈V(G1)∖{w1}deg(u:Gd),ifu∈V(Gd)∖{vd}deg(u:Gi),ifu∈V(Gi)∖{vi,wi},2≤i≤d−1λi+1,ifu=wi,1≤i≤d−1μi+1,ifu=vi,2≤i≤d. | (2.4) |
where μi=deg(vi:Gi);2≤i≤d,λi=deg(wi:Gi);1≤i≤d−1.
Theorem 15. LM3(B2)=d∑i=1LM3(Gi)+∑u∈NG1(w1)deg(u:G1)+∑u∈NGd(vd)deg(u:Gd)+d−1∑i=2∑u∈NGi(wi)∖NGi(vi)deg(u:Gi)+d−1∑i=2∑u∈NGi(vi)∖NGi(wi)deg(u:Gi)+d−1∑i=2∑u∈NGi(vi)∩NGi(wi)2deg(u:Gi)+d−1∑i=12μi+1λi+d−1∑i=1μi+1+d∑i=2λi−1+d∑i=1(δi+νi)−ν1−δd.
Proof. By virtue of Lemma 2.7 and 2.10
LM3(B2)=∑u∈V(B2)d2(u)deg(u)=∑u∈V(G1)∖NG1[w1]d2(u:G1)deg(u:G1)+d−1∑i=2∑u∈V(Gi)∖{NGi[vi]∪NGi[wi]}d2(u:Gi)deg(u:Gi)+∑u∈V(Gd)∖NGd[vd]d2(u:Gd)deg(u:Gd)+∑u∈NG1(w1)(d2(u:G1)+1)(deg(u:G1))+d−1∑i=2∑u∈NGi(wi)∖NGi(vi)(d2(u:Gi)+1)(deg(u:Gi))+d−1∑i=2∑u∈NGi(vi)∖NGi(wi)(d2(u:Gi)+1)(deg(u:Gi))+∑u∈NGd(vd)(d2(u:Gd)+1)(deg(u:Gd))+d−1∑i=2∑u∈NGi(vi)∩NGi(wi)(d2(u:Gi)+2)(deg(u:Gi))+d−1∑i=1(δi+μi+1)(λi+1)+d∑i=2(νi+λi−1)(μi+1) |
Thus the result follows.
Corollary 16. If G1=G2=⋯=Gd=G in a bridge graph B2, then LM3(B2)=dLM3(G)+∑u∈NG(w)deg(u:G)+∑u∈NG(v)deg(u:G)+(d−2)(∑u∈NG(w)∖NG(v)deg(u:G)+∑u∈NG(v)∖NG(w)deg(u:G)+∑u∈NG(v)∩NG(w)2deg(u:G))+(d−1)(2μλ+μ+λ)+d(δ+ν)−(ν+δ).
In the following lemma, we obtain the 2-degree of any vertex in the chain graph C.
Lemma 17. Let G1,G2,⋯,Gd, d≥5 be C3-free connected graphs and let C=C(G1,G2,⋯,Gd;w1,v2,w2,v3,⋯,wd−1,vd) be the chain graph formed using these graphs. Then the 2-degree of any vertex u in C is given as follows:
d2(u:C)={d2(u:G1),ifu∈V(G1)∖NG1[w1]d2(u:G1)+μ2,ifu∈NG1(w1)d2(u:Gd),ifu∈V(Gd)∖NGd[vd]d2(u:Gd)+λd−1,ifu∈NGd(vd)d2(u:Gi),ifu∈V(Gi)∖{NGi[wi]∪NGi[vi]},2≤i≤d−1d2(u:Gi)+μi+1,ifu∈NGi(wi)∖NGi(vi),2≤i≤d−1d2(u:Gi)+λi−1,ifu∈NGi(vi)∖NGi(wi),2≤i≤d−1d2(u:Gi)+λi−1+μi+1,ifu∈NGi(vi)∩NGi(wi),2≤i≤d−1δi+νi+1,ifu=wi=vi+1,1≤i≤d−1, | (2.5) |
where νi=d2(vi:Gi),μi=deg(vi:Gi),λi=deg(wi:Gi) and δi=d2(wi:Gi) for all 1≤i≤d.
Now, we compute the first leap Zagreb index of the chain graph C by applying Lemma 17.
Theorem 18. For the chain graph C,
LM1(C)=d∑i=1LM1(Gi)+∑u∈NG1(w1)[2μ2d2(u:G1)+μ22]+∑u∈NGd(vd)[2λd−1d2(u:Gd)+λ2d−1]+d−1∑i=2 ∑u∈NGi(wi)∖NGi(vi)[2μi+1d2(u:Gi)+μ2i+1]+d−1∑i=2 ∑u∈NGi(vi)∖NGi(wi)[2λi−1d2(u:Gi)+λ2i−1]+2d−1∑i=2 ∑u∈NGi(vi)∩NGi(wi)[λi−1d2(u:Gi)+μi+1d2(u:Gi)+λi−1μi+1]+d−1∑i=2 ∑u∈NGi(vi)∩NGi(wi)(λ2i−1+μ2i+1)+2d−1∑i=1δiνi+1. |
Proof. By Lemma 17, we have
LM1(C)=∑u∈V(C)d2(u:C)2=∑u∈V(G1)∖NG1[w1]d2(u:G1)2+∑u∈NG1(w1)[d2(u:G1)+μ2]2+∑u∈V(Gd)∖NGd[vd]d2(u:Gd)2+∑u∈NGd(vd)[d2(u:Gd)+λd−1]2+d−1∑i=2 ∑u∈V(Gi)∖{NGi[vi]∪NGi[wi]}d2(u:Gi)2+d−1∑i=2 ∑u∈NGi(wi)∖NGi(vi)[d2(u:Gi)+μi+1]2+d−1∑i=2 ∑u∈NGi(vi)∖NGi(wi)[d2(u:Gi)+λi−1]2+d−1∑i=2 ∑u∈NGi(vi)∩NGi(wi)[d2(u:Gi)+λi−1+μi+1]2+d−1∑i=1[δi+νi+1]2 |
=LM1(G1)−∑u∈NG1(w1)[d2(u:G1)2]−δ21+∑u∈NG1(w1)[d2(u:G1)2+2d2(u:G1)μ2+μ22]+LM1(Gd)−∑u∈NGd(vd)d2(u:Gd)2−ν2d+∑u∈NGd(vd)[d2(u:Gd)2+2λd−1d2(u:Gd)+λ2d−1]+d−1∑i=2∑u∈V(Gi)d2(u:Gi)2−d−1∑i=2 ∑u∈NGi[vi]∪NGi[wi]d2(u:Gi)2+d−1∑i=2 ∑u∈NGi(wi)∖NGi(vi)[d2(u:Gi)2+2μi+1d2(u:Gi)+μ2i+1]+d−1∑i=2 ∑u∈NGi(vi)∖NGi(wi)[d2(u:Gi)2+2λi−1d2(u:Gi)+λ2i−1]+d−1∑i=2∑u∈NGi(vi)∩NGi(wi)[d2(u:Gi)2+2λi−1d2(u:Gi)+2μi+1d2(u:Gi)+2λi−1μi+1+λ2i−1+μ2i+1]+d−1∑i=1[δ2i+ν2i+1]+2d−1∑i=1δiνi+1 |
=d∑i=1LM1(Gi)+∑u∈NG1(w1)[2μ2d2(u:G1)+μ22]+∑u∈NGd(vd)[2λd−1d2(u:Gd)+λ2d−1]+d−1∑i=2 ∑u∈NGi(wi)∖NGi(vi)[2μi+1d2(u:Gi)+μ2i+1]+d−1∑i=2 ∑u∈NGi(vi)∖NGi(wi)[2λi−1d2(u:Gi)+λ2i−1]+2d−1∑i=2 ∑u∈NGi(vi)∩NGi(wi)[λi−1d2(u:Gi)+μi+1d2(u:Gi)+λi−1μi+1]+d−1∑i=2 ∑u∈NGi(vi)∩NGi(wi)(λ2i−1+μ2i+1)+2d−1∑i=1δiνi+1. |
Corollary 19. In a chain graph C, if G1=G2=⋯=Gd=G, then LM1(C)=dLM1(G)+∑u∈NG(w)[2μd2(u:G)+μ2]+∑u∈NG(v)[2λd2(u:G)+λ2]+(d−2)∑u∈NG(w)∖NG(v)[2μd2(u:G)+μ2]+(d−2)∑u∈NG(v)∖NG(w)[2λd2(u:G)+λ2]+2(d−2)∑u∈NG(v)∩NG(w)[λd2(u:G)+μd2(u:G)+λμ]+(d−2)∑u∈NG(v)∩NG(w)(λ2+μ2)+2(d−1)δν.
Lemma 20. Let G1,G2,⋯,Gd, d≥5 be C3-free connected graphs and let C=C(G1,G2,⋯,Gd;w1,v2,w2,v3,⋯,wd−1,vd) be the chain graph formed using these graphs. Then the degree of any vertex u in C is given as follows:
deg(u:C)={deg(u:G1),ifu∈V(G1)∖{w1}deg(u:Gd),ifu∈V(Gd)∖{vd}deg(u:Gi),ifu∈V(Gi)∖{vi,wi},2≤i≤d−1λi+μi+1,ifu=wi=vi+1,1≤i≤d−1, | (2.6) |
where μi=deg(vi:Gi),λi=deg(wi:Gi) for all 1≤i≤d
Finally, we compute the third leap Zagreb index of the chain graph C by applying Lemma 17 and 2.16.
Theorem 21. LM3(C)=d∑i=1LM3(Gi)+∑u∈NG1(w1)μ2deg(u:G1)+∑u∈NGd(vd)λd−1deg(u:Gd)+d−1∑i=2∑u∈NGi(wi)∖NGi(vi)μi+1deg(u:Gi)+d−1∑i=2∑u∈NGi(vi)∖NGi(wi)λi−1deg(u:Gi)+d−1∑i=2∑u∈NGi(vi)∩NGi(wi)(λi−1deg(u:Gi)+μi+1deg(u:Gi))+d−1∑i=1(δiμi+1+νi+1λi).
Proof. By virtue of Lemma 17 and 20
LM3(C)=∑u∈V(C)d2(u)deg(u)=∑u∈V(G1)∖NG1[w1]d2(u:G1)deg(u:G1)+∑u∈NG1(w1)(d2(u:G1)+μ2)deg(u:G1)+∑u∈V(Gd)∖NGd[vd]d2(u:Gd)deg(u:Gd)+∑u∈NGd(vd)(d2(u:Gd)+λd−1)deg(u:Gd)+d−1∑i=2∑u∈V(Gi)∖{NGi[wi]∪NGi[vi]}d2(u:Gi)deg(u:Gi)+d−1∑i=2∑u∈NGi(wi)∖NGi(vi)(d2(u:Gi)+μi+1)deg(u:Gi)+d−1∑i=2∑u∈NGi(vi)∖NGi(wi)(d2(u:Gi)+λi−1)deg(u:Gi)+d−1∑i=2∑u∈NGi(vi)∩NGi(wi)(d2(u:Gi)+λi−1+μi+1)deg(u:Gi)+d−1∑i=1(δi+νi+1)(λi+μi+1). |
Thus the result follows.
Corollary 22. In a chain graph C, if G1=G2=⋯=Gd=G, then LM3(C)=dLM3(G)+∑u∈NG(w)μdeg(u:G)+∑u∈NG(v)λdeg(u:G)+(d−2)(∑u∈NG(w)∖NG(v)μdeg(u:G)+∑u∈NG(v)∖NG(w)λdeg(u:G)+∑u∈NG(v)∩NG(w)(λ+μ)deg(u:G))+(d−1)(δμ+νλ).
In this section, we determine the first and third leap Zagreb indices of some molecular graph structures. Two vertices v and w of a hexagon H (C6) (please refer Figure 4) are said to be in
(ⅰ) ortho-position, if they are adjacent in H
(ⅱ) meta-position, if they are distance two in H
(ⅲ) para-position, if they are distance three in H.
We connect h≥5 ortho-hexagons to form a polyphenyl chain denoted by Oh as follows:
One can observe that the Polyphenyl chain Oh shown in Figure 5 is a B1 type bridge graph. Therefore, from Corollary 7, we get
LM1(Oh)=hLM1(G)+(4h−6)μ2+(4h−8)ν+(12h−26)μ+(4h−4)[νμ+∑u∈NG(v)d2(u:G)]+4h−12=24h+(4h−6)(4)+(4h−8)(2)+(12h−26)(2)+(4h−4)(4)+(4h−4)(4)+4h−12=108h−136. |
Similarly,
From Corollary 10, we get
LM3(Oh)=24h+(2h−2)(2)+(2h−2)(2)+2(2)(3h−5)+2(h−1)(2+4)+4h−10=60h−50 |
The polyphenyl chain Mh is formed by connecting h≥5 meta-hexagons as shown in Figure 6.
The polyphenyl chain Ph is formed by connecting h≥5 para-hexagons as shown in the following Figure 7.
It is clear that the Polyphenyl chains Mh and Ph are type-Ⅱ bridge graphs B2.
Using Corollary 2.9, we get
LM1(Mh)=hLM1(G)+λ+μ+2∑u∈NG(w)d2(u:G)+(h−2)[∑u∈NG(w)∖NG(v)(2d2(u:G)+1)]+(h−2)∑u∈NG(v)∖NG(w)(2d2(u:G)+1)+4(h−2)∑u∈NG(v)∩NG(w)(d2(u:G)+1)+2∑u∈NG(v)d2(u:G)+(h−1)μ2+2(h−1)δμ+2(h−1)νλ+(h−1)λ2=24h+4+2(4)+(h−2)[2(2)+1]+(h−2)[2(2)+1]+4(h−2)(2+1)+2(4)+(h−1)(4)+4(h−1)(4)+(h−1)(4) |
Thus LM1(Mh)=70h−48.
Similarly, by Corollary 13, we have
LM1(Ph)=24h+4+2(4)+(h−2)[2(4)+2]+(h−2)(8+2)+4(h−2)(0)+2(4)+(h−1)(4)+8(h−1)+8(h−1)+(h−1)(4) |
Therefore, LM1(Ph)=68h−44.
Using Corollary 2.12, we get
LM3(Mh)=24h+8+(h−2)8+(h−1)12+h(4)−4=48h−24 |
LM3(Ph)=24h+8+(h−2)8+(h−1)12+4h−4=48h−24. |
Next, we shall see an application related to the chain graph C. The spiro-chain SPC4(d,3) is a chain graph formed using d≥5 copies of the cycle C4.
Here the number 3 in the construction denotes the position of the vertices v and w in the spiro-chain (refer Figure 8).
The spiro-chain SPC6(d,4) is a chain graph formed using d≥5 copies of the cycle C6 or hexagon where the vertices v and w are connected in the 4th position (refer Figure 9).
By applying Corollary 19, we get
LM1(SPC4(d,3))=dLM1(G)+∑u∈NG(w)[2μd2(u:G)+μ2]+∑u∈NG(v)[2λd2(u:G)+λ2]+(d−2)∑u∈NG(w)∖NG(v)[2μd2(u:G)+μ2]+(d−2)∑u∈NG(v)∖NG(w)[2λd2(u:G)+λ2]+2(d−2)∑u∈NG(v)∩NG(w)[λd2(u:G)+μd2(u:G)+λμ]+(d−2)∑u∈NG(v)∩NG(w)(λ2+μ2)+2(d−1)δν=54d−66. |
Similarly, from Corollary 19, we have LM1(SPC6(d,4))=80d−56.
By applying Corollary 22, we get
LM3(SPC4(d,3))=8d+2(2+2)+2(2+2)+(d−2)(16)+(d−1)(4)=28d−20 |
Similarly, from Corollary 22, we have LM3(SPC6(d,4))=48d−24.
We have computed exact values of one of the recent topological invariants namely first and third leap Zagreb indices for bridge and chain graphs. It is worth mentioning that computing second leap Zagreb index of bridges and chain graphs has not yet addressed and interested researchers may work on it. Also these indices need to be explored for several other interesting graph structures arising from mathematical chemistry and other branches of science.
The authors wish to thank the referees for their careful reading of the manuscript and valuable suggestions. This work was supported in part by the National Key Technologies R & D Program of China under Grant 2017YFB0802300, 2018YFB0904205, in part by the Key Laboratory of Pattern Recognition and Intelligent Information Processing, Institutions of Higher Education of Sichuan Province under Grant MSSB-2020-12.
The authors declare that no competing interests exist.
[1] |
A. DeLegge, H. Wangler, Is this the end for Facebook? A mathematical analysis, Appl. Math. Comput., 305 (2017), 364–380. https://doi.org/10.1016/j.amc.2017.02.014 doi: 10.1016/j.amc.2017.02.014
![]() |
[2] |
E. Stai, E. Milaiou, V. Karyotis, S. Papavassilion, Temporal dynamics of information diffusion in twitter: Modeling and experimentation, IEEE Trans. Comput. Soc. Syst., 5 (2018), 256–264. https://doi.org/10.1109/TCSS.2017.2784184 doi: 10.1109/TCSS.2017.2784184
![]() |
[3] | Q. Gao, F. Abel, G. J. Houben, Y. Yu, A comparative study of users' microblogging behavior on Sina Weibo and Twitter, in User Modeling, Adaptation, and Personalization, Springer, Berlin Heidelberg, 7379 (2012), 88–101. https://doi.org/10.1007/978-3-642-31454-4-8 |
[4] |
Y. Li, M. Qian, D. Jin, P. Hui, A. Vasilakos, Revealing the effificiency of information diffusion in online social networks of microblog, Inf. Sci., 293 (2015), 383–389. https://doi.org/10.1016/j.ins.2014.09.019 doi: 10.1016/j.ins.2014.09.019
![]() |
[5] |
C. Lei, Z. Lin, H. Wang, The free boundary problem describing information diffusion in online social networks, J. Differ. Equations, 254 (2013), 1326–1341. https://doi.org/10.1016/j.jde.2012.10.021 doi: 10.1016/j.jde.2012.10.021
![]() |
[6] |
F. Nian, Y. Shi, J. Cao, Modeling information propagation in high-order networks based on explicit-implicit relationship, J. Comput. Sci., 55 (2021), 101438. https://doi.org/10.1016/j.jocs.2021.101438 doi: 10.1016/j.jocs.2021.101438
![]() |
[7] |
D. Zhao, J. Sun, Y. Tan, J. Wu, Y. Dou, An extended SEIR model considering homepage effect for the information propagation of online social networks, Phys. A., 512 (2018), 1019–1031. https://doi.org/10.1016/j.physa.2018.08.006 doi: 10.1016/j.physa.2018.08.006
![]() |
[8] |
M. Fu, J. Feng, D. Lande, O. Dmytrenko, D. Manko, R. Prakapovich, Dynamic model with super spreaders and lurker users for preferential information propagation analysis, Phys. A., 561 (2021), 125266. https://doi.org/10.1016/j.physa.2020.125266 doi: 10.1016/j.physa.2020.125266
![]() |
[9] | S. Abdullah, X. Wu, An epidemic model for news spreading on twitter, in 2011 IEEE 23rd International Conferenc on Tools with Artificial Intelligence, (2011), 163–169. https://doi.org/10.1109/ICTAI.2011.33 |
[10] |
F. Yin, X. Zhu, X. Shao, X. Xia, Y. Pan, J. Wu, Modeling and quantifying the influence of opinion involving opinion leaders on delayed information propagation dynamics, Appl. Math. Lett., 121 (2021), 107356. https://doi.org/10.1016/J.AML.2021.107356 doi: 10.1016/J.AML.2021.107356
![]() |
[11] |
G. Guan, Z. Guo, Bifurcation and stability of a delayed SIS epidemic model with saturated incidence and treatment rates in heterogeneous networks, Appl. Math. Model., 101 (2022), 55–75. https://doi.org/10.1016/J.APM.2021.08.024 doi: 10.1016/J.APM.2021.08.024
![]() |
[12] |
L. Huo, L. Wang, N. Song, C. Ma, B. He, Rumor spreading model considering the activity of spreaders in the homogeneous network, Phys. A., 468 (2016), 855–865. https://doi.org/10.1016/j.physa.2016.11.039 doi: 10.1016/j.physa.2016.11.039
![]() |
[13] |
R. Jie, J. Qiao, G. Xu, Y. Meng, A study on the interaction between two rumors in homogeneous complex networks under symmetric conditions, Phys. A., 454 (2016), 129–142. https://doi.org/10.1016/j.physa.2016.02.048 doi: 10.1016/j.physa.2016.02.048
![]() |
[14] |
A. Jain, J. Dhar, V. Gupta, Rumor model on homogeneous social network incorporating delay in expert intervention and government action, Commun. Nonlinear Sci. Numer. Simul., 84 (2020), 105189. https://doi.org/10.1016/j.cnsns.2020.105189 doi: 10.1016/j.cnsns.2020.105189
![]() |
[15] |
Y. Zan, DSIR double-rumors spreading model in complex networks, Chaos Solitons Fractals, 110 (2018), 191–202. https://doi.org/10.1016/j.chaos.2018.03.021 doi: 10.1016/j.chaos.2018.03.021
![]() |
[16] |
Q. Liu, T. Li, M. Sun, The analysis of an SEIR rumor propagation model on heterogeneous network, Phys. A., 469 (2017), 372–380. https://doi.org/10.1016/j.physa.2016.11.067 doi: 10.1016/j.physa.2016.11.067
![]() |
[17] |
C. Wan, T. Li, Z. Sun, Global stability of a SEIR rumor spreading model with demographics on scale-free networks, Adv. Differ. Equations, 2017 (2017), 253. https://doi.org/10.1186/s13662-017-1315-y doi: 10.1186/s13662-017-1315-y
![]() |
[18] |
S. Yu, Z. Yu, H. Jiang, J. Li, Dynamical study and event-triggered impulsive control of rumor propagation model on heterogeneous social network incorporating delay, Chaos Solitons Fractals, 145 (2021), 110806. https://doi.org/10.1016/J.CHAOS.2021.110806 doi: 10.1016/J.CHAOS.2021.110806
![]() |
[19] |
S. Chen, H. Jiang, L. Li, J. Li, Dynamical behaviors and optimal control of rumor propagation model with saturation incidence on heterogeneous networks, Chaos Solitons Fractals, 140 (2020), 110206. https://doi.org/10.1016/j.chaos.2020.110206 doi: 10.1016/j.chaos.2020.110206
![]() |
[20] |
L. Zhu, W. Liu, Z. Zhang, Delay differential equations modeling of rumor propagation in both homogeneous and heterogeneous networks with a forced silence function, Appl. Math. Comput., 370 (2020), 124925. https://doi.org/10.1016/j.amc.2019.124925 doi: 10.1016/j.amc.2019.124925
![]() |
[21] |
L. Zhu, G. Guan, Dynamical analysis of a rumor spreading model with self-discrimination and time delay in complex networks, Phys. A., 533 (2019), 121953. https://doi.org/10.1016/j.physa.2019.121953 doi: 10.1016/j.physa.2019.121953
![]() |
[22] |
F. Yin, X. Shao, B. Tang, X. Xia, J. Wu, Modeling and analyzing cross-transmission dynamics of related information co-propagation, Sci. Rep., 11 (2021), 1–20. https://doi.org/10.1038/S41598-020-79503-8 doi: 10.1038/S41598-020-79503-8
![]() |
[23] |
T. Li, Y. Xiao, Linking the disease transmission to information dissemination dynamics: An insight from a multi-scals model study, J. Theor. Biol., 526 (2021), 110796. https://doi.org/10.1016/j.jtbi.2021.110796 doi: 10.1016/j.jtbi.2021.110796
![]() |
[24] |
P. van den Driessche, J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29–48. https://doi.org/10.1016/S0025-5564(02)00108-6 doi: 10.1016/S0025-5564(02)00108-6
![]() |
[25] | R. C. Robinson, An Introduction to Dynamical Systems: Continuous and Discrete, 2nd edition, New York, 2012. |
[26] | J. Lasalle, The stability of dynamical systems, Philadelphia, SIAM, 1976. |
[27] |
G. Liu, Z. Liu, Z. Jin, Dynamics analysis of epidemic and information spreading in overlay networks, J. Theor. Biol., 444 (2018), 28–37. https://doi.org/10.1016/j.jtbi.2018.02.010 doi: 10.1016/j.jtbi.2018.02.010
![]() |
[28] | X. Zhao, Z. Jing, Global asymptotic behavior in some cooperative systems of functional differential equations, Canad. Appl. Math. Quart., 4 (1996), 421–444. |
1. | Mamo Solomon Emire, Bisrat Zeleke Shiferaw, Srikanth Umakanthan, Attitudes towards receiving COVID-19 vaccine and its associated factors among Southwest Ethiopian adults, 2021, 2023, 18, 1932-6203, e0280633, 10.1371/journal.pone.0280633 | |
2. | Malik Sallam, Mariam Al-Sanafi, Mohammed Sallam, A Global Map of COVID-19 Vaccine Acceptance Rates per Country: An Updated Concise Narrative Review, 2022, Volume 15, 1178-2390, 21, 10.2147/JMDH.S347669 | |
3. | Gizaw Sisay, Bahru Mantefardo, Aster Beyene, Time from symptom onset to severe COVID-19 and risk factors among patients in Southern Ethiopia: a survival analysis, 2022, 50, 0300-0605, 030006052211193, 10.1177/03000605221119366 | |
4. | Bedasa Taye Merga, Galana Mamo Ayana, Belay Negash, Addisu Alemu, Mohammed Abdurke, Ahmedmenewer Abdu, Bikila Balis, Miressa Bekana, Gelana Fekadu, Temam Beshir Raru, Health-care Workers’ Willingness to Pay for COVID-19 Vaccines in Eastern Ethiopia: Using Contingent Valuation Method, 2022, Volume 14, 1178-6981, 395, 10.2147/CEOR.S361199 | |
5. | Hsuan-Wei Lee, Cheng-Han Leng, Ta-Chien Chan, Srikanth Umakanthan, Determinants of personal vaccination hesitancy before and after the mid-2021 COVID-19 outbreak in Taiwan, 2022, 17, 1932-6203, e0270349, 10.1371/journal.pone.0270349 | |
6. | Cathy Bulley, Vaibhav Tyagi, Eleanor Curnow, Kath Nicol, Lisa Salisbury, Kim Stuart, Brendan McCormack, Ruth Magowan, Olivia Sagan, Jan Dewing, Support after COVID-19 study: a mixed-methods cross-sectional study to develop recommendations for practice, 2022, 12, 2044-6055, e056568, 10.1136/bmjopen-2021-056568 | |
7. | Huong Thi Le, Thao Thi Phuong Nguyen, Corey Jacinto, Cuong Tat Nguyen, Linh Gia Vu, Hien Thu Nguyen, Minh Le Vu, Xuan Thi Thanh Le, Thao Thanh Nguyen, Quan Thi Pham, Nhung Ta, Quynh Thi Nguyen, Carl A Latkin, Cyrus SH Ho, Roger CM Ho, Factors Associated with Community Awareness on COVID-19 in a Developing Country: Implications for Optimal Risk Communication, 2022, Volume 15, 1179-1594, 415, 10.2147/RMHP.S356690 | |
8. | Srikanth Umakanthan, Sam Lawrence, Predictors of COVID-19 vaccine hesitancy in Germany: a cross-sectional, population-based study, 2022, 98, 0032-5473, 756, 10.1136/postgradmedj-2021-141365 | |
9. | Srikanth Umakanthan, Maryann M. Bukelo, Somu Sekhar Gajula, The Commonwealth Caribbean COVID-19: Regions Resilient Pathway During Pandemic, 2022, 10, 2296-2565, 10.3389/fpubh.2022.844333 | |
10. | Walid Al-Qerem, Anan Jarab, Alaa Hammad, Alaa Hussein Alsajri, Shadan Waleed Al-Hishma, Jonathan Ling, Asal Saad Alabdullah, Ali Salama, Rami Mosleh, Knowledge, Attitudes, and Practices of Adult Iraqi Population Towards COVID-19 Booster Dose: A Cross-Sectional Study, 2022, Volume 16, 1177-889X, 1525, 10.2147/PPA.S370124 | |
11. | Tilahun Beyene Handiso, Markos Selamu Jifar, Shemsu Nuriye Hagisso, Coronavirus’s (SARS-CoV-2) airborne transmission: A review, 2022, 10, 2050-3121, 205031212210941, 10.1177/20503121221094185 | |
12. | Rukiye Çelik, Birgül Erdoğan, Gizem Çakır, Naime Altay, Ebru Kılıçarslan Törüner, Impact of the COVID-19 Pandemic on the Emotional State of School Children, 2025, 15, 2459-1459, 182, 10.33808/clinexphealthsci.1542187 | |
13. | Marshall Kerr Tulloch-Reid, Jacqueline Duncan, Keri-Ann Facey, Akil Williams, Marsha Ivey, Shelly-Ann Hunte, Eden Agustus, Simon Anderson, Maria Jackson, Using data systems to conduct health research in the Caribbean: challenges during the COVID-19 pandemic, 2025, 49, 1020-4989, 1, 10.26633/RPSP.2025.29 |