Research article

Identification of coagulation-associated subtypes of lung adenocarcinoma and establishment of prognostic models

  • Received: 31 January 2023 Revised: 15 March 2023 Accepted: 24 March 2023 Published: 13 April 2023
  • Lung adenocarcinoma (LUAD), the most common subtype of lung cancer, is a global health challenge with high recurrence and mortality rates. The coagulation cascade plays an essential role in tumor disease progression and leads to death in LUAD. We differentiated two coagulation-related subtypes in LUAD patients in this study based on coagulation pathways collected from the KEGG database. We then demonstrated significant differences between the two coagulation-associated subtypes regarding immune characteristics and prognostic stratification. For risk stratification and prognostic prediction, we developed a coagulation-related risk score prognostic model in the Cancer Genome Atlas (TCGA) cohort. The GEO cohort also validated the predictive value of the coagulation-related risk score in terms of prognosis and immunotherapy. Based on these results, we identified coagulation-related prognostic factors in LUAD, which may serve as a robust prognostic biomarker for therapeutic and immunotherapeutic efficacy. It may contribute to clinical decision-making in patients with LUAD.

    Citation: Mengyang Han, Xiaoli Wang, Yaqi Li, Jianjun Tan, Chunhua Li, Wang Sheng. Identification of coagulation-associated subtypes of lung adenocarcinoma and establishment of prognostic models[J]. Mathematical Biosciences and Engineering, 2023, 20(6): 10626-10658. doi: 10.3934/mbe.2023470

    Related Papers:

    [1] Mostafa Adimy, Abdennasser Chekroun, Claudia Pio Ferreira . Global dynamics of a differential-difference system: a case of Kermack-McKendrick SIR model with age-structured protection phase. Mathematical Biosciences and Engineering, 2020, 17(2): 1329-1354. doi: 10.3934/mbe.2020067
    [2] C. Connell McCluskey . Global stability for an SEI model of infectious disease with age structure and immigration of infecteds. Mathematical Biosciences and Engineering, 2016, 13(2): 381-400. doi: 10.3934/mbe.2015008
    [3] Gang Huang, Edoardo Beretta, Yasuhiro Takeuchi . Global stability for epidemic model with constant latency and infectious periods. Mathematical Biosciences and Engineering, 2012, 9(2): 297-312. doi: 10.3934/mbe.2012.9.297
    [4] Maria Guadalupe Vazquez-Peña, Cruz Vargas-De-León, Jorge Velázquez-Castro . Global stability for a mosquito-borne disease model with continuous-time age structure in the susceptible and relapsed host classes. Mathematical Biosciences and Engineering, 2024, 21(11): 7582-7600. doi: 10.3934/mbe.2024333
    [5] Pengyan Liu, Hong-Xu Li . Global behavior of a multi-group SEIR epidemic model with age structure and spatial diffusion. Mathematical Biosciences and Engineering, 2020, 17(6): 7248-7273. doi: 10.3934/mbe.2020372
    [6] Jinliang Wang, Ran Zhang, Toshikazu Kuniya . A note on dynamics of an age-of-infection cholera model. Mathematical Biosciences and Engineering, 2016, 13(1): 227-247. doi: 10.3934/mbe.2016.13.227
    [7] Qiuyi Su, Jianhong Wu . Impact of variability of reproductive ageing and rate on childhood infectious disease prevention and control: insights from stage-structured population models. Mathematical Biosciences and Engineering, 2020, 17(6): 7671-7691. doi: 10.3934/mbe.2020390
    [8] Zhisheng Shuai, P. van den Driessche . Impact of heterogeneity on the dynamics of an SEIR epidemic model. Mathematical Biosciences and Engineering, 2012, 9(2): 393-411. doi: 10.3934/mbe.2012.9.393
    [9] Abdennasser Chekroun, Mohammed Nor Frioui, Toshikazu Kuniya, Tarik Mohammed Touaoula . Global stability of an age-structured epidemic model with general Lyapunov functional. Mathematical Biosciences and Engineering, 2019, 16(3): 1525-1553. doi: 10.3934/mbe.2019073
    [10] Andrey V. Melnik, Andrei Korobeinikov . Global asymptotic properties of staged models with multiple progression pathways for infectious diseases. Mathematical Biosciences and Engineering, 2011, 8(4): 1019-1034. doi: 10.3934/mbe.2011.8.1019
  • Lung adenocarcinoma (LUAD), the most common subtype of lung cancer, is a global health challenge with high recurrence and mortality rates. The coagulation cascade plays an essential role in tumor disease progression and leads to death in LUAD. We differentiated two coagulation-related subtypes in LUAD patients in this study based on coagulation pathways collected from the KEGG database. We then demonstrated significant differences between the two coagulation-associated subtypes regarding immune characteristics and prognostic stratification. For risk stratification and prognostic prediction, we developed a coagulation-related risk score prognostic model in the Cancer Genome Atlas (TCGA) cohort. The GEO cohort also validated the predictive value of the coagulation-related risk score in terms of prognosis and immunotherapy. Based on these results, we identified coagulation-related prognostic factors in LUAD, which may serve as a robust prognostic biomarker for therapeutic and immunotherapeutic efficacy. It may contribute to clinical decision-making in patients with LUAD.





    [1] F. Bray, J. Ferlay, I. Soerjomataram, R. L. Siegel, L. A. Torre, A. Jemal, Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries, CA Cancer J. Clin., 68 (2018), 394–424. https://doi.org/10.3322/caac.21492 doi: 10.3322/caac.21492
    [2] W. Chen, R. Zheng, P. D. Baade, S. Zhang, H. Zeng, F. Bray, et al., Cancer statistics in China, 2015, CA Cancer J. Clin., 66 (2016), 115–132. https://doi.org/10.3322/caac.21338 doi: 10.3322/caac.21338
    [3] D. Yang, Y. Liu, C. Bai, X. Wang, C. A. Powell, Epidemiology of lung cancer and lung cancer screening programs in China and the United States, Cancer Lett., 468 (2020), 82–87. https://doi.org/10.1016/j.canlet.2019.10.009 doi: 10.1016/j.canlet.2019.10.009
    [4] R. Ruiz-Cordero, W. P. Devine, Targeted therapy and checkpoint immunotherapy in lung cancer, Surg. Pathol. Clin., 13 (2020), 17–33. https://doi.org/10.1016/j.path.2019.11.002 doi: 10.1016/j.path.2019.11.002
    [5] J. Vansteenkiste, L. Crinò, C. Dooms, J. Y. Douillard, C. Faivre-Finn, E. Lim, et al., 2nd ESMO consensus conference on lung cancer: early-stage non-small-cell lung cancer consensus on diagnosis, treatment and follow-up, Ann. Oncol. Off. J. Eur. Soc. Med. Oncol., 25 (2014), 1462–1474. https://doi.org/10.1093/annonc/mdu089 doi: 10.1093/annonc/mdu089
    [6] F. R. Hirsch, P. A. Bunn Jr, Adjuvant TKIs in NSCLC: what can we learn from RADIANT, Nat. Rev. Clin. Oncol., 12 (2015), 689–690. https://doi.org/10.1038/nrclinonc.2015.202 doi: 10.1038/nrclinonc.2015.202
    [7] S. Sampath, Treatment: Radiation therapy, in Lung Cancer, Springer, 170 (2016), 105–118. https://doi.org/10.1007/978-3-319-40389-2_5
    [8] M. Ahn, J. M. Sun, S. H. Lee, J. S. Ahn, K. Park, EGFR TKI combination with immunotherapy in non-small cell lung cancer, Expert Opin. Drug Saf., 16 (2017), 465–469. https://doi.org/10.1080/14740338.2017.1300656 doi: 10.1080/14740338.2017.1300656
    [9] J. F. Gainor, A. M. Varghese, S. H. Ignatius Ou, S. Kabraji, M. M. Awad, R. Katayama, et al., ALK rearrangements are mutually exclusive with mutations in EGFR or KRAS: an analysis of 1683 patients with non-small cell lung cancer, Clin. Cancer Res., 19 (2013), 4273–4281. https://doi.org/10.1158/1078-0432.CCR-13-0318 doi: 10.1158/1078-0432.CCR-13-0318
    [10] Z. Wang, K. S. Embaye, Q. Yang, L. Qin, C. Zhang, L. Liu, et al., Establishment and validation of a prognostic signature for lung adenocarcinoma based on metabolism-related genes, Cancer Cell Int., 21 (2021). https://doi.org/10.1186/s12935-021-01915-x doi: 10.1186/s12935-021-01915-x
    [11] P. E. Serrano, S. Parpia, L. A. Linkins, L. Elit, M. Simunovic, L. Ruo, et al., Venous thromboembolic events following major pelvic and abdominal surgeries for cancer: A prospective cohort study, Ann. Surg. Oncol., 25 (2018), 3214–3221. https://doi.org/10.1245/s10434-018-6671-7 doi: 10.1245/s10434-018-6671-7
    [12] A. Falanga, M. Marchetti, L. Russo, The mechanisms of cancer-associated thrombosis, Thromb. Res., 135 (2015), 8–11. https://doi.org/10.1016/S0049-3848(15)50432-5 doi: 10.1016/S0049-3848(15)50432-5
    [13] L. Bao, S. Zhang, X. Gong, G. Cui, Trousseau syndrome related cerebral infarction: Clinical manifestations, laboratory findings and radiological features, J. Stroke Cerebrovasc. Dis., 29 (2020), 104891. https://doi.org/10.1016/j.jstrokecerebrovasdis.2020.104891 doi: 10.1016/j.jstrokecerebrovasdis.2020.104891
    [14] Y. Li, S. Wei, J. Wang, L. Hong, L. Cui, C. Wang, Analysis of the factors associated with abnormal coagulation and prognosis in patients with non-small cell lung cancer (in Chinese), Zhongguo fei ai za zhi, 17 (2014), 789–796. https://doi.org/10.3779/j.issn.1009-3419.2014.11.04 doi: 10.3779/j.issn.1009-3419.2014.11.04
    [15] M. J. Goldman, M. J. Craft, M. Hastie, K. Repečka, F. McDade, A. Kamath, et al., Visualizing and interpreting cancer genomics data via the Xena platform, Nat. Biotechnol., 38 (2020), 675–678. https://doi.org/10.1038/s41587-020-0546-8 doi: 10.1038/s41587-020-0546-8
    [16] Q. He, J. Yang, Y. Jin, Immune infiltration and clinical significance analyses of the coagulation-related genes in hepatocellular carcinoma, Briefings Bioinf., 23 (2022). https://doi.org/10.1093/bib/bbac291 doi: 10.1093/bib/bbac291
    [17] C. Ren, J. Li, Y. Zhou, S. Zhang, Q. Wang, Typical tumor immune microenvironment status determine prognosis in lung adenocarcinoma, Transl. Oncol., 18 (2022), 101367. https://doi.org/10.1016/j.tranon.2022.101367 doi: 10.1016/j.tranon.2022.101367
    [18] A. Mayakonda, D. C. Lin, Y. Assenov, C. Plass, H. P. Koeffler, Maftools: efficient and comprehensive analysis of somatic variants in cancer, Genome Res., 28 (2018), 1747–1756. https://doi.org/10.1101/gr.239244.118 doi: 10.1101/gr.239244.118
    [19] Y. Zhou, T. O. Sharpee, Using global t-SNE to preserve intercluster data structure, Neural Comput., 34 (2022), 1637–1651. https://doi.org/10.1162/neco_a_01504 doi: 10.1162/neco_a_01504
    [20] M. I. Love, W. Huber, S. Anders, Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2, Genome Biol., 15 (2014), 550. https://doi.org/10.1186/s13059-014-0550-8 doi: 10.1186/s13059-014-0550-8
    [21] The Gene Ontology Consortium, Gene Ontology Consortium: going forward, Nucleic Acids Res., 43 (2015), 1049–1056. https://doi.org/10.1093/nar/gku1179 doi: 10.1093/nar/gku1179
    [22] G. Yu, L. G. Wang, Y. Han, Q. Y. He, clusterProfiler: an R package for comparing biological themes among gene clusters, OMICS: J. Integr. Biol., 16 (2012), 284–287. https://doi.org/10.1089/omi.2011.0118 doi: 10.1089/omi.2011.0118
    [23] J. Friedman, T. Hastie, R. Tibshirani, Regularization paths for generalized linear models via coordinate descent, J. Stat. Software, 33 (2010), 1–22.
    [24] P. J. Heagerty, T. Lumley, M. S. Pepe, Time-dependent ROC curves for censored survival data and a diagnostic marker, Biometrics, 56 (2000), 337–344. https://doi.org/10.1111/j.0006-341x.2000.00337.x doi: 10.1111/j.0006-341x.2000.00337.x
    [25] Z. Gu, R. Eils, M. Schlesner, Complex heatmaps reveal patterns and correlations in multidimensional genomic data, Bioinformatics, 32 (2016), 2847–2849. https://doi.org/10.1093/bioinformatics/btw313 doi: 10.1093/bioinformatics/btw313
    [26] B. Chen, M. S. Khodadoust, C. L. Liu, A. M. Newman, A. A. Alizadeh, Profiling tumor infiltrating immune cells with CIBERSORT, in Cancer Systems Biology, Springer Nature, 1711 (2018), 243–259. https://doi.org/10.1007/978-1-4939-7493-1_12
    [27] H. T. Sørensen, L. Mellemkjaer, J. H. Olsen, J. A. Baron, Prognosis of cancers associated with venous thromboembolism, N. Engl. J. Med., 343 (2000), 1846–1850. https://doi.org/10.1056/NEJM200012213432504 doi: 10.1056/NEJM200012213432504
    [28] Y. B. Yu, J. P. Gau, C. Y. Liu, M. Yang, S. Chiang, H. Hsu, et al., A nation-wide analysis of venous thromboembolism in 497,180 cancer patients with the development and validation of a risk-stratification scoring system, Thromb. Haemostasis, 108 (2012), 225–235. https://doi.org/10.1160/TH12-01-0010 doi: 10.1160/TH12-01-0010
    [29] N. S. Kwon, K. J. Baek, D. S. Kim, H. Y. Yun, Leucine-rich glioma inactivated 3: Integrative analyses reveal its potential prognostic role in cancer, Mol. Med. Rep., 17 (2018), 3993–4002. https://doi.org/10.3892/mmr.2017.8279 doi: 10.3892/mmr.2017.8279
    [30] A. P. Wolffe, Architectural transcription factors, Science, 264 (1994), 1100–1101. https://doi.org/10.1126/science.8178167 doi: 10.1126/science.8178167
    [31] Z. Shang, X. Niu, K. Zhang, Z. Qiao, S. Liu, X. Jiang, et al., FGA isoform as an indicator of targeted therapy for EGFR mutated lung adenocarcinoma, J. Mol. Med., 97 (2019), 1657–1668. https://doi.org/10.1007/s00109-019-01848-z doi: 10.1007/s00109-019-01848-z
    [32] M. Majesky, Vascular development, Arterioscler. Thromb. Vasc. Biol., 38 (2018), 17–24. https://doi.org/10.1161/ATVBAHA.118.310223 doi: 10.1161/ATVBAHA.118.310223
  • This article has been cited by:

    1. Xia Wang, Yuming Chen, Shengqiang Liu, Global dynamics of a vector-borne disease model with infection ages and general incidence rates, 2018, 37, 0101-8205, 4055, 10.1007/s40314-017-0560-8
    2. Cruz Vargas-De-León, Global stability properties of age-dependent epidemic models with varying rates of recurrence, 2016, 39, 01704214, 2057, 10.1002/mma.3621
    3. Edwin Setiawan Nugraha, Janson Naiborhu, Nuning Nuraini, 2017, 1825, 0094-243X, 020015, 10.1063/1.4978984
    4. Gang Huang, Chenguang Nie, Yueping Dong, Global stability for an SEI model of infectious diseases with immigration and age structure in susceptibility, 2019, 12, 1793-5245, 1950042, 10.1142/S1793524519500426
    5. Xia Wang, Ying Zhang, Xinyu Song, An age-structured epidemic model with waning immunity and general nonlinear incidence rate, 2018, 11, 1793-5245, 1850069, 10.1142/S1793524518500699
    6. Rui Xu, Zhili Wang, Fengqin Zhang, Global stability and Hopf bifurcations of an SEIR epidemiological model with logistic growth and time delay, 2015, 269, 00963003, 332, 10.1016/j.amc.2015.07.084
    7. Danga Duplex Elvis Houpa, Tagne Eric Miamdjo, Tchaptchie Yannick Kouakep, A General Model for Hepatitis B Disease with Age-Dependent Susceptibility and Transmission Probabilities, 2014, 05, 2152-7385, 707, 10.4236/am.2014.54068
    8. Lili Liu, Xianning Liu, Mathematical Analysis for an Age-Structured Heroin Epidemic Model, 2019, 164, 0167-8019, 193, 10.1007/s10440-018-00234-0
    9. Carles Barril, Andrei Korobeinikov, 2014, Chapter 18, 978-3-319-08137-3, 99, 10.1007/978-3-319-08138-0_18
    10. Jinliang Wang, Ran Zhang, Toshikazu Kuniya, Global dynamics for a class of age-infection HIV models with nonlinear infection rate, 2015, 432, 0022247X, 289, 10.1016/j.jmaa.2015.06.040
    11. Suxia Zhang, Hongbin Guo, Global analysis of age-structured multi-stage epidemic models for infectious diseases, 2018, 337, 00963003, 214, 10.1016/j.amc.2018.05.020
    12. Kosaku Kitagawa, Toshikazu Kuniya, Shinji Nakaoka, Yusuke Asai, Koichi Watashi, Shingo Iwami, Mathematical Analysis of a Transformed ODE from a PDE Multiscale Model of Hepatitis C Virus Infection, 2019, 81, 0092-8240, 1427, 10.1007/s11538-018-00564-y
    13. Chuncheng Wang, Dejun Fan, Ling Xia, Xiaoyu Yi, Global stability for a multi-group SVIR model with age of vaccination, 2018, 11, 1793-5245, 1850068, 10.1142/S1793524518500687
    14. Toshikazu Kuniya, Jinliang Wang, Hisashi Inaba, A multi-group SIR epidemic model with age structure, 2016, 21, 1531-3492, 3515, 10.3934/dcdsb.2016109
    15. Xia Wang, Yijun Lou, Xinyu Song, Age-Structured Within-Host HIV Dynamics with Multiple Target Cells, 2017, 138, 00222526, 43, 10.1111/sapm.12135
    16. Jinliang Wang, Min Guo, Shengqiang Liu, SVIR epidemic model with age structure in susceptibility, vaccination effects and relapse, 2017, 82, 0272-4960, 945, 10.1093/imamat/hxx020
    17. Cruz Vargas-De-León, Lourdes Esteva, Andrei Korobeinikov, Age-dependency in host-vector models: The global analysis, 2014, 243, 00963003, 969, 10.1016/j.amc.2014.06.042
    18. Xia Wang, Yuming Chen, Xinyu Song, Global dynamics of a cholera model with age structures and multiple transmission modes, 2019, 12, 1793-5245, 1950051, 10.1142/S1793524519500517
    19. Leonid Shaikhet, Andrei Korobeinikov, Stability of a stochastic model for HIV-1 dynamics within a host, 2016, 95, 0003-6811, 1228, 10.1080/00036811.2015.1058363
    20. Xia Wang, Yuming Chen, Shengqiang Liu, Dynamics of an age‐structured host‐vector model for malaria transmission, 2018, 41, 0170-4214, 1966, 10.1002/mma.4723
    21. Raúl Peralta, Cruz Vargas-De-León, Pedro Miramontes, Global Stability Results in a SVIR Epidemic Model with Immunity Loss Rate Depending on the Vaccine-Age, 2015, 2015, 1085-3375, 1, 10.1155/2015/341854
    22. Shengfu Wang, Lin-Fei Nie, Global Dynamics for a Vector-Borne Disease Model with Class-Age-Dependent Vaccination, Latency and General Incidence Rate, 2020, 19, 1575-5460, 10.1007/s12346-020-00407-z
    23. Jinliang Wang, Xianning Liu, Toshikazu Kuniya, Jingmei Pang, Global stability for multi-group SIR and SEIR epidemic models with age-dependent susceptibility, 2017, 22, 1553-524X, 2795, 10.3934/dcdsb.2017151
    24. Toshikazu Kuniya, Existence of a nontrivial periodic solution in an age-structured SIR epidemic model with time periodic coefficients, 2014, 27, 08939659, 15, 10.1016/j.aml.2013.08.008
    25. Toshikazu Kuniya, Global Behavior of a Multi-Group SIR Epidemic Model with Age Structure and an Application to the Chlamydia Epidemic in Japan, 2019, 79, 0036-1399, 321, 10.1137/18M1205947
    26. Hisashi Inaba, 2017, Chapter 6, 978-981-10-0187-1, 287, 10.1007/978-981-10-0188-8_6
    27. Toshikazu Kuniya, Hopf bifurcation in an age-structured SIR epidemic model, 2019, 92, 08939659, 22, 10.1016/j.aml.2018.12.010
    28. Xia Wang, Yuming Chen, Maia Martcheva, Libin Rong, Asymptotic analysis of a vector-borne disease model with the age of infection, 2020, 14, 1751-3758, 332, 10.1080/17513758.2020.1745912
    29. Faïçal Ndaïrou, Delfim F. M. Torres, Mathematical Analysis of a Fractional COVID-19 Model Applied to Wuhan, Spain and Portugal, 2021, 10, 2075-1680, 135, 10.3390/axioms10030135
    30. Suxia Zhang, Yanna Liu, Hui Cao, Bifurcation analysis of an age‐structured epidemic model with two staged‐progressions, 2021, 44, 0170-4214, 11482, 10.1002/mma.7508
    31. Manoj Kumar, Syed Abbas, Age-Structured SIR Model for the Spread of Infectious Diseases Through Indirect Contacts, 2022, 19, 1660-5446, 10.1007/s00009-021-01925-z
    32. Jiaji Pan, Zhongxiang Chen, Yixuan He, Tongliang Liu, Xi Cheng, Jun Xiao, Hao Feng, Why Controlling the Asymptomatic Infection Is Important: A Modelling Study with Stability and Sensitivity Analysis, 2022, 6, 2504-3110, 197, 10.3390/fractalfract6040197
    33. Ruyan Su, Wensheng Yang, Global stability of a diffusive HCV infections epidemic model with nonlinear incidence, 2022, 68, 1598-5865, 2685, 10.1007/s12190-021-01637-3
    34. Xin Jiang, Global Dynamics for an Age-Structured Cholera Infection Model with General Infection Rates, 2021, 9, 2227-7390, 2993, 10.3390/math9232993
    35. Chunrong Xue, Xin Ning, Study on the Global Stability for a Generalized SEIR Epidemic Model, 2022, 2022, 1687-5273, 1, 10.1155/2022/8215214
    36. Xiaogang Liu, Yuming Chen, Xiaomin Li, Jianquan Li, Global stability of latency-age/stage-structured epidemic models with differential infectivity, 2023, 86, 0303-6812, 10.1007/s00285-023-01918-4
    37. Yi Chen, Lianwen Wang, Jinhui Zhang, Global asymptotic stability of an age-structured tuberculosis model: An analytical method to determine kernel coefficients in Lyapunov functional, 2024, 181, 09600779, 114649, 10.1016/j.chaos.2024.114649
    38. Abderrazak NABTi, Dynamical analysis of an age-structured SEIR model with relapse, 2024, 75, 0044-2275, 10.1007/s00033-024-02227-6
    39. Qian Jiang, Zhijun Liu, Lianwen Wang, Global threshold dynamics of an HIV/AIDS model with multi-class-age structure, 2024, 0, 1531-3492, 0, 10.3934/dcdsb.2024068
    40. Kailong Zhao, Zhijun Liu, Caihong Guo, Huili Xiang, Lili Liu, Lianwen Wang, Modeling and analysis of transmission dynamics of tuberculosis with preventive treatment and vaccination strategies in China, 2025, 138, 0307904X, 115779, 10.1016/j.apm.2024.115779
    41. Abderrazak Nabti, Salih Djilali, Malek Belghit, Dynamics of a Double Age-Structured SEIRI Epidemic Model, 2025, 196, 0167-8019, 10.1007/s10440-025-00723-z
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2757) PDF downloads(107) Cited by(0)

Article outline

Figures and Tables

Figures(25)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog