Citation: Windarto, Muhammad Altaf Khan, Fatmawati. Parameter estimation and fractional derivatives of dengue transmission model[J]. AIMS Mathematics, 2020, 5(3): 2758-2779. doi: 10.3934/math.2020178
[1] | Ancheng Deng, Xiaoqiang Sun . Dynamic gene regulatory network reconstruction and analysis based on clinical transcriptomic data of colorectal cancer. Mathematical Biosciences and Engineering, 2020, 17(4): 3224-3239. doi: 10.3934/mbe.2020183 |
[2] | Qian Li, Minawaer Hujiaaihemaiti, Jie Wang, Md. Nazim Uddin, Ming-Yuan Li, Alidan Aierken, Yun Wu . Identifying key transcription factors and miRNAs coregulatory networks associated with immune infiltrations and drug interactions in idiopathic pulmonary arterial hypertension. Mathematical Biosciences and Engineering, 2023, 20(2): 4153-4177. doi: 10.3934/mbe.2023194 |
[3] | Jiaxin Luo, Lin Wu, Dinghui Liu, Zhaojun Xiong, Linli Wang, Xiaoxian Qian, Xiaoqiang Sun . Gene regulatory network analysis identifies key genes and regulatory mechanisms involved in acute myocardial infarction using bulk and single cell RNA-seq data. Mathematical Biosciences and Engineering, 2021, 18(6): 7774-7789. doi: 10.3934/mbe.2021386 |
[4] | Youlong Lv, Jie Zhang . A genetic regulatory network based method for multi-objective sequencing problem in mixed-model assembly lines. Mathematical Biosciences and Engineering, 2019, 16(3): 1228-1243. doi: 10.3934/mbe.2019059 |
[5] | Changxiang Huan, Jiaxin Gao . Insight into the potential pathogenesis of human osteoarthritis via single-cell RNA sequencing data on osteoblasts. Mathematical Biosciences and Engineering, 2022, 19(6): 6344-6361. doi: 10.3934/mbe.2022297 |
[6] | Ming-Xi Zhu, Tian-Yang Zhao, Yan Li . Insight into the mechanism of DNA methylation and miRNA-mRNA regulatory network in ischemic stroke. Mathematical Biosciences and Engineering, 2023, 20(6): 10264-10283. doi: 10.3934/mbe.2023450 |
[7] | Cicely K. Macnamara, Mark A. J. Chaplain . Spatio-temporal models of synthetic genetic oscillators. Mathematical Biosciences and Engineering, 2017, 14(1): 249-262. doi: 10.3934/mbe.2017016 |
[8] | Ignacio Alvarez-Castro, Jarad Niemi . Fully Bayesian analysis of allele-specific RNA-seq data. Mathematical Biosciences and Engineering, 2019, 16(6): 7751-7770. doi: 10.3934/mbe.2019389 |
[9] | David Iron, Adeela Syed, Heidi Theisen, Tamas Lukacsovich, Mehrangiz Naghibi, Lawrence J. Marsh, Frederic Y. M. Wan, Qing Nie . The role of feedback in the formation of morphogen territories. Mathematical Biosciences and Engineering, 2008, 5(2): 277-298. doi: 10.3934/mbe.2008.5.277 |
[10] | Shengjue Xiao, Yufei Zhou, Ailin Liu, Qi Wu, Yue Hu, Jie Liu, Hong Zhu, Ting Yin, Defeng Pan . Uncovering potential novel biomarkers and immune infiltration characteristics in persistent atrial fibrillation using integrated bioinformatics analysis. Mathematical Biosciences and Engineering, 2021, 18(4): 4696-4712. doi: 10.3934/mbe.2021238 |
[1] | World Health Organization, Fact sheet on the Dengue and severe dengue, WHO, 2017. Available from: http://www.who.int/mediacentre/factsheets/fs117/en/. |
[2] | World Health Organization, Global strategy for dengue prevention and control 2012-2020, WHO, 2012. Available from: http://www.who.int/denguecontrol/9789241504034/en/. |
[3] | Health Office (Dinas Kesehatan) of the East Java, Dinas Kesehatan Provinsi Jawa Timur, Surabaya, Indonesia, 2009. |
[4] | Ministry of Health Republic of Indonesia, Kementerian Kesehatan Republik Indonesia Jakarta, 2014. |
[5] |
D. Aldila, T. Gotz, E. Soewono, An optimal control problem arising from a dengue disease transmission model, Math. Biosci., 242 (2013), 9-16. doi: 10.1016/j.mbs.2012.11.014
![]() |
[6] | H. Tasman, A. K. Supriatna, N. Nuraini, et al. A dengue vaccination model for immigrants in a two-age-class population, Int. J. Math., 2012 (2012), 1-15. |
[7] |
J. P. Chavez, T. Gotz, S. Siegmund, et al. An SIR-Dengue transmission model with seasonal effects and impulsive control, Math. Biosci., 289 (2017), 29-39. doi: 10.1016/j.mbs.2017.04.005
![]() |
[8] |
A. Pandey, A. Mubayi, J. Medlock, Comparing vector-host and SIR models for dengue transmission, Math. Biosci., 246 (2013), 252-259. doi: 10.1016/j.mbs.2013.10.007
![]() |
[9] |
T. Gotz, N. Altmeier, W. Bock, et al. Modeling dengue data from Semarang, Indonesia, Ecol. Complex., 30 (2017), 57-62. doi: 10.1016/j.ecocom.2016.12.010
![]() |
[10] |
F. B. Agusto, M. A. Khan, Optimal control strategies for dengue transmission in pakistan, Math. Biosci., 305 (2018), 102-121. doi: 10.1016/j.mbs.2018.09.007
![]() |
[11] |
N. Tutkun, Parameter estimation in mathematical models using the real coded genetic algorithms, Expert Syst. Appl., 36 (2009), 3342-3345. doi: 10.1016/j.eswa.2008.01.060
![]() |
[12] | R. L. Haupt, S. E. Haupt, Practical Genetic Algorithms, Second Edition, John Wiley & Sons, 2004. |
[13] |
W. B. Roush, S. L. Branton, A Comparison of fitting growth models with a genetic algorithm and nonlinear regression, Poultry Sci., 84 (2005), 494-502. doi: 10.1093/ps/84.3.494
![]() |
[14] | W. S. W. Indratno, N. Nuraini, E. Soewono, A comparison of binary and continuous genetic algorithm in parameter estimation of a logistic growth model, American Institute of Physics Conference Series, 1587 (2014), 139-142. |
[15] | Windarto, An Implementation of continuous genetic algorithm in parameter estimation of predator-prey model, AIP Conference Proceedings, 2016. |
[16] | D. Akman, O. Akman, E. Schaefer, Parameter Estimation in Ordinary Differential Equations Modeling via Particle Swarm Optimization, J. Appl. Math., 2018 (2018), 1-9. |
[17] | Windarto, Eridani, U. D. Purwati, A comparison of continuous genetic algorithm and particle swarm optimization in parameter estimation of Gompertz growth model, AIP Conference Proceedings, 2084 (2019), 020017. |
[18] | R. Eberhart, J. Kennedy, A new optimizer using particle swarm theory, Proceedings of the Sixth International Symposium on Micro Machine and Human Science, 1995. |
[19] |
K. Diethelm, A fractional calculus based model for the simulation of an outbreak of dengue fever, Nonlinear Dyn., 71 (2013), 613-619. doi: 10.1007/s11071-012-0475-2
![]() |
[20] |
T. Sardar, S. Rana, J. Chattopadhyay, A mathematical model of dengue transmission with memory, Commun. Nonlinear Sci., 22 (2015), 511-525. doi: 10.1016/j.cnsns.2014.08.009
![]() |
[21] | M. A. Khan, S. Ullah, M. Farooq, A new fractional model for tuberculosis with relapse via Atangana-Baleanu derivative, Chaos, Solitons & Fractals, 116 (2018), 227-238. |
[22] | S. Ullah, M. A. Khan, M. Farooq, Modeling and analysis of the fractional HBV model with Atangana-Baleanu derivative, The European Physical Journal Plus, 133 (2018), 313. |
[23] | E. O. Alzahrani, M. A. Khan, Modeling the dynamics of Hepatitis E with optimal control, Chaos, Solitons & Fractals, 116 (2018), 287-301. |
[24] | Fatmawati, E. M. Shaiful, M. I. Utoyo, A fractional order model for HIV dynamics in a two-sex population, Int. J. Math., 2018 (2018), 1-11. |
[25] | Fatmawati, M. A. Khan, M. Azizah, et al. A fractional model for the dynamics of competition between commercial and rural banks in Indonesia, Chaos, Solitons & Fractals, 122 (2019), 32-46. |
[26] |
A. Atangana, D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model, Therm. Sci., 20 (2016), 763-769. doi: 10.2298/TSCI160111018A
![]() |
[27] | S. Qureshi, A. Atangana, Mathematical analysis of dengue fever outbreak by novel fractional operators with field data, Physica A, 526 (2019), 121127. |
[28] | O. Diekmann, J. A. P. Heesterbeek, J. A. J. Metz, On the definition and the computation of the basic reproduction ratio R0 in models for infectious diseases in heterogenous populations, J. Math. Biol., 28 (1990), 362-382. |
[29] | O. Diekmann, J. A. P. Heesterbeek, Mathematical Epidemiology of Infectious Diseases, Model Building, Analysis and Interpretation, John Wiley & Son, 2000. |
[30] |
P. van den Driessche, J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmition, Math. Biosci., 180 (2002), 29-48. doi: 10.1016/S0025-5564(02)00108-6
![]() |
[31] | Wikipedia contributors: East Java, Wikipedia. Available from: https://en.wikipedia.org/wiki/East-Java. |
[32] | M. Toufik, A. Atangana, New numerical approximation of fractional derivative with non-local and non-singular kernel: application to chaotic models, Eur. Phys. J. Plus, 132 (2017), 444. |
1. | William Chad Young, Ka Yee Yeung, Adrian E Raftery, Identifying dynamical time series model parameters from equilibrium samples, with application to gene regulatory networks, 2019, 19, 1471-082X, 444, 10.1177/1471082X18776577 | |
2. | Feng Liu, Qicheng Mei, Fenglan Sun, Xinmei Wang, Hua O Wang, 2018, Stability and Neimark-Sacker Bifurcation Analysis for Single Gene Discrete System with Delay, 978-988-15639-5-8, 961, 10.23919/ChiCC.2018.8483728 | |
3. | Xiao Liang, William Chad Young, Ling-Hong Hung, Adrian E. Raftery, Ka Yee Yeung, Integration of Multiple Data Sources for Gene Network Inference Using Genetic Perturbation Data, 2019, 26, 1557-8666, 1113, 10.1089/cmb.2019.0036 | |
4. | Xiao Liang, William Chad Young, Ling-Hong Hung, Adrian E. Raftery, Ka Yee Yeung, 2018, Integration of Multiple Data Sources for Gene Network Inference using Genetic Perturbation Data, 9781450357944, 601, 10.1145/3233547.3233692 | |
5. | Sanrong Liu, Haifeng Wang, 2019, Chapter 15, 978-981-15-0120-3, 186, 10.1007/978-981-15-0121-0_15 | |
6. | Bei Yang, Yaohui Xu, Andrew Maxwell, Wonryull Koh, Ping Gong, Chaoyang Zhang, MICRAT: a novel algorithm for inferring gene regulatory networks using time series gene expression data, 2018, 12, 1752-0509, 10.1186/s12918-018-0635-1 | |
7. | William Chad Young, Adrian E. Raftery, Ka Yee Yeung, Model-based clustering with data correction for removing artifacts in gene expression data, 2017, 11, 1932-6157, 10.1214/17-AOAS1051 | |
8. | Nimrita Koul, Sunilkumar S Manvi, 2020, A Perturbation based Algorithm for Inference of Gene Regulatory Networks for Multiple Myeloma, 978-1-7281-4108-4, 862, 10.1109/ICESC48915.2020.9155886 | |
9. | Clémence Réda, Emilie Kaufmann, Andrée Delahaye-Duriez, Machine learning applications in drug development, 2020, 18, 20010370, 241, 10.1016/j.csbj.2019.12.006 | |
10. | Chengye Zou, Xiaopeng Wei, Qiang Zhang, Changjun Zhou, Passivity of Reaction–Diffusion Genetic Regulatory Networks with Time-Varying Delays, 2018, 47, 1370-4621, 1115, 10.1007/s11063-017-9682-7 | |
11. | Wenxia Zhou, Xuejun Li, Lu Han, Shengjun Fan, 2021, Chapter 2, 978-981-16-0752-3, 35, 10.1007/978-981-16-0753-0_2 |