Research article Special Issues

Parameter estimation and fractional derivatives of dengue transmission model

  • Received: 05 November 2019 Accepted: 12 March 2020 Published: 17 March 2020
  • MSC : 34A08, 92B05

  • In this paper, we propose a parameter estimation of dengue fever transmission model using a particle swarm optimization method. This method is applied to estimate the parameters of the host-vector and SIR type dengue transmission models by using cumulative data of dengue patient in East Java province, Indonesia. Based on the parameter values, the basic reproduction number of both models are greater than one and obtained their value for SIR is R0=1.4159 and for vector host is R0=1.1474. We then formulate the models in fractional Atangana-Baleanu derivative that possess the property of nonlocal and nonsingular kernel that has been remained effective to many real-life problems. A numerical procedure for the solution of the model SIR model is shown. Some specific numerical values are considered to obtain the graphical results for both the SIR and Vector Host model. We show that the model vector host provide good results for data fitting than that of the SIR model.

    Citation: Windarto, Muhammad Altaf Khan, Fatmawati. Parameter estimation and fractional derivatives of dengue transmission model[J]. AIMS Mathematics, 2020, 5(3): 2758-2779. doi: 10.3934/math.2020178

    Related Papers:

    [1] Ancheng Deng, Xiaoqiang Sun . Dynamic gene regulatory network reconstruction and analysis based on clinical transcriptomic data of colorectal cancer. Mathematical Biosciences and Engineering, 2020, 17(4): 3224-3239. doi: 10.3934/mbe.2020183
    [2] Qian Li, Minawaer Hujiaaihemaiti, Jie Wang, Md. Nazim Uddin, Ming-Yuan Li, Alidan Aierken, Yun Wu . Identifying key transcription factors and miRNAs coregulatory networks associated with immune infiltrations and drug interactions in idiopathic pulmonary arterial hypertension. Mathematical Biosciences and Engineering, 2023, 20(2): 4153-4177. doi: 10.3934/mbe.2023194
    [3] Jiaxin Luo, Lin Wu, Dinghui Liu, Zhaojun Xiong, Linli Wang, Xiaoxian Qian, Xiaoqiang Sun . Gene regulatory network analysis identifies key genes and regulatory mechanisms involved in acute myocardial infarction using bulk and single cell RNA-seq data. Mathematical Biosciences and Engineering, 2021, 18(6): 7774-7789. doi: 10.3934/mbe.2021386
    [4] Youlong Lv, Jie Zhang . A genetic regulatory network based method for multi-objective sequencing problem in mixed-model assembly lines. Mathematical Biosciences and Engineering, 2019, 16(3): 1228-1243. doi: 10.3934/mbe.2019059
    [5] Changxiang Huan, Jiaxin Gao . Insight into the potential pathogenesis of human osteoarthritis via single-cell RNA sequencing data on osteoblasts. Mathematical Biosciences and Engineering, 2022, 19(6): 6344-6361. doi: 10.3934/mbe.2022297
    [6] Ming-Xi Zhu, Tian-Yang Zhao, Yan Li . Insight into the mechanism of DNA methylation and miRNA-mRNA regulatory network in ischemic stroke. Mathematical Biosciences and Engineering, 2023, 20(6): 10264-10283. doi: 10.3934/mbe.2023450
    [7] Cicely K. Macnamara, Mark A. J. Chaplain . Spatio-temporal models of synthetic genetic oscillators. Mathematical Biosciences and Engineering, 2017, 14(1): 249-262. doi: 10.3934/mbe.2017016
    [8] Ignacio Alvarez-Castro, Jarad Niemi . Fully Bayesian analysis of allele-specific RNA-seq data. Mathematical Biosciences and Engineering, 2019, 16(6): 7751-7770. doi: 10.3934/mbe.2019389
    [9] David Iron, Adeela Syed, Heidi Theisen, Tamas Lukacsovich, Mehrangiz Naghibi, Lawrence J. Marsh, Frederic Y. M. Wan, Qing Nie . The role of feedback in the formation of morphogen territories. Mathematical Biosciences and Engineering, 2008, 5(2): 277-298. doi: 10.3934/mbe.2008.5.277
    [10] Shengjue Xiao, Yufei Zhou, Ailin Liu, Qi Wu, Yue Hu, Jie Liu, Hong Zhu, Ting Yin, Defeng Pan . Uncovering potential novel biomarkers and immune infiltration characteristics in persistent atrial fibrillation using integrated bioinformatics analysis. Mathematical Biosciences and Engineering, 2021, 18(4): 4696-4712. doi: 10.3934/mbe.2021238
  • In this paper, we propose a parameter estimation of dengue fever transmission model using a particle swarm optimization method. This method is applied to estimate the parameters of the host-vector and SIR type dengue transmission models by using cumulative data of dengue patient in East Java province, Indonesia. Based on the parameter values, the basic reproduction number of both models are greater than one and obtained their value for SIR is R0=1.4159 and for vector host is R0=1.1474. We then formulate the models in fractional Atangana-Baleanu derivative that possess the property of nonlocal and nonsingular kernel that has been remained effective to many real-life problems. A numerical procedure for the solution of the model SIR model is shown. Some specific numerical values are considered to obtain the graphical results for both the SIR and Vector Host model. We show that the model vector host provide good results for data fitting than that of the SIR model.




    [1] World Health Organization, Fact sheet on the Dengue and severe dengue, WHO, 2017. Available from: http://www.who.int/mediacentre/factsheets/fs117/en/.
    [2] World Health Organization, Global strategy for dengue prevention and control 2012-2020, WHO, 2012. Available from: http://www.who.int/denguecontrol/9789241504034/en/.
    [3] Health Office (Dinas Kesehatan) of the East Java, Dinas Kesehatan Provinsi Jawa Timur, Surabaya, Indonesia, 2009.
    [4] Ministry of Health Republic of Indonesia, Kementerian Kesehatan Republik Indonesia Jakarta, 2014.
    [5] D. Aldila, T. Gotz, E. Soewono, An optimal control problem arising from a dengue disease transmission model, Math. Biosci., 242 (2013), 9-16. doi: 10.1016/j.mbs.2012.11.014
    [6] H. Tasman, A. K. Supriatna, N. Nuraini, et al. A dengue vaccination model for immigrants in a two-age-class population, Int. J. Math., 2012 (2012), 1-15.
    [7] J. P. Chavez, T. Gotz, S. Siegmund, et al. An SIR-Dengue transmission model with seasonal effects and impulsive control, Math. Biosci., 289 (2017), 29-39. doi: 10.1016/j.mbs.2017.04.005
    [8] A. Pandey, A. Mubayi, J. Medlock, Comparing vector-host and SIR models for dengue transmission, Math. Biosci., 246 (2013), 252-259. doi: 10.1016/j.mbs.2013.10.007
    [9] T. Gotz, N. Altmeier, W. Bock, et al. Modeling dengue data from Semarang, Indonesia, Ecol. Complex., 30 (2017), 57-62. doi: 10.1016/j.ecocom.2016.12.010
    [10] F. B. Agusto, M. A. Khan, Optimal control strategies for dengue transmission in pakistan, Math. Biosci., 305 (2018), 102-121. doi: 10.1016/j.mbs.2018.09.007
    [11] N. Tutkun, Parameter estimation in mathematical models using the real coded genetic algorithms, Expert Syst. Appl., 36 (2009), 3342-3345. doi: 10.1016/j.eswa.2008.01.060
    [12] R. L. Haupt, S. E. Haupt, Practical Genetic Algorithms, Second Edition, John Wiley & Sons, 2004.
    [13] W. B. Roush, S. L. Branton, A Comparison of fitting growth models with a genetic algorithm and nonlinear regression, Poultry Sci., 84 (2005), 494-502. doi: 10.1093/ps/84.3.494
    [14] W. S. W. Indratno, N. Nuraini, E. Soewono, A comparison of binary and continuous genetic algorithm in parameter estimation of a logistic growth model, American Institute of Physics Conference Series, 1587 (2014), 139-142.
    [15] Windarto, An Implementation of continuous genetic algorithm in parameter estimation of predator-prey model, AIP Conference Proceedings, 2016.
    [16] D. Akman, O. Akman, E. Schaefer, Parameter Estimation in Ordinary Differential Equations Modeling via Particle Swarm Optimization, J. Appl. Math., 2018 (2018), 1-9.
    [17] Windarto, Eridani, U. D. Purwati, A comparison of continuous genetic algorithm and particle swarm optimization in parameter estimation of Gompertz growth model, AIP Conference Proceedings, 2084 (2019), 020017.
    [18] R. Eberhart, J. Kennedy, A new optimizer using particle swarm theory, Proceedings of the Sixth International Symposium on Micro Machine and Human Science, 1995.
    [19] K. Diethelm, A fractional calculus based model for the simulation of an outbreak of dengue fever, Nonlinear Dyn., 71 (2013), 613-619. doi: 10.1007/s11071-012-0475-2
    [20] T. Sardar, S. Rana, J. Chattopadhyay, A mathematical model of dengue transmission with memory, Commun. Nonlinear Sci., 22 (2015), 511-525. doi: 10.1016/j.cnsns.2014.08.009
    [21] M. A. Khan, S. Ullah, M. Farooq, A new fractional model for tuberculosis with relapse via Atangana-Baleanu derivative, Chaos, Solitons & Fractals, 116 (2018), 227-238.
    [22] S. Ullah, M. A. Khan, M. Farooq, Modeling and analysis of the fractional HBV model with Atangana-Baleanu derivative, The European Physical Journal Plus, 133 (2018), 313.
    [23] E. O. Alzahrani, M. A. Khan, Modeling the dynamics of Hepatitis E with optimal control, Chaos, Solitons & Fractals, 116 (2018), 287-301.
    [24] Fatmawati, E. M. Shaiful, M. I. Utoyo, A fractional order model for HIV dynamics in a two-sex population, Int. J. Math., 2018 (2018), 1-11.
    [25] Fatmawati, M. A. Khan, M. Azizah, et al. A fractional model for the dynamics of competition between commercial and rural banks in Indonesia, Chaos, Solitons & Fractals, 122 (2019), 32-46.
    [26] A. Atangana, D. Baleanu, New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model, Therm. Sci., 20 (2016), 763-769. doi: 10.2298/TSCI160111018A
    [27] S. Qureshi, A. Atangana, Mathematical analysis of dengue fever outbreak by novel fractional operators with field data, Physica A, 526 (2019), 121127.
    [28] O. Diekmann, J. A. P. Heesterbeek, J. A. J. Metz, On the definition and the computation of the basic reproduction ratio R0 in models for infectious diseases in heterogenous populations, J. Math. Biol., 28 (1990), 362-382.
    [29] O. Diekmann, J. A. P. Heesterbeek, Mathematical Epidemiology of Infectious Diseases, Model Building, Analysis and Interpretation, John Wiley & Son, 2000.
    [30] P. van den Driessche, J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmition, Math. Biosci., 180 (2002), 29-48. doi: 10.1016/S0025-5564(02)00108-6
    [31] Wikipedia contributors: East Java, Wikipedia. Available from: https://en.wikipedia.org/wiki/East-Java.
    [32] M. Toufik, A. Atangana, New numerical approximation of fractional derivative with non-local and non-singular kernel: application to chaotic models, Eur. Phys. J. Plus, 132 (2017), 444.
  • This article has been cited by:

    1. William Chad Young, Ka Yee Yeung, Adrian E Raftery, Identifying dynamical time series model parameters from equilibrium samples, with application to gene regulatory networks, 2019, 19, 1471-082X, 444, 10.1177/1471082X18776577
    2. Feng Liu, Qicheng Mei, Fenglan Sun, Xinmei Wang, Hua O Wang, 2018, Stability and Neimark-Sacker Bifurcation Analysis for Single Gene Discrete System with Delay, 978-988-15639-5-8, 961, 10.23919/ChiCC.2018.8483728
    3. Xiao Liang, William Chad Young, Ling-Hong Hung, Adrian E. Raftery, Ka Yee Yeung, Integration of Multiple Data Sources for Gene Network Inference Using Genetic Perturbation Data, 2019, 26, 1557-8666, 1113, 10.1089/cmb.2019.0036
    4. Xiao Liang, William Chad Young, Ling-Hong Hung, Adrian E. Raftery, Ka Yee Yeung, 2018, Integration of Multiple Data Sources for Gene Network Inference using Genetic Perturbation Data, 9781450357944, 601, 10.1145/3233547.3233692
    5. Sanrong Liu, Haifeng Wang, 2019, Chapter 15, 978-981-15-0120-3, 186, 10.1007/978-981-15-0121-0_15
    6. Bei Yang, Yaohui Xu, Andrew Maxwell, Wonryull Koh, Ping Gong, Chaoyang Zhang, MICRAT: a novel algorithm for inferring gene regulatory networks using time series gene expression data, 2018, 12, 1752-0509, 10.1186/s12918-018-0635-1
    7. William Chad Young, Adrian E. Raftery, Ka Yee Yeung, Model-based clustering with data correction for removing artifacts in gene expression data, 2017, 11, 1932-6157, 10.1214/17-AOAS1051
    8. Nimrita Koul, Sunilkumar S Manvi, 2020, A Perturbation based Algorithm for Inference of Gene Regulatory Networks for Multiple Myeloma, 978-1-7281-4108-4, 862, 10.1109/ICESC48915.2020.9155886
    9. Clémence Réda, Emilie Kaufmann, Andrée Delahaye-Duriez, Machine learning applications in drug development, 2020, 18, 20010370, 241, 10.1016/j.csbj.2019.12.006
    10. Chengye Zou, Xiaopeng Wei, Qiang Zhang, Changjun Zhou, Passivity of Reaction–Diffusion Genetic Regulatory Networks with Time-Varying Delays, 2018, 47, 1370-4621, 1115, 10.1007/s11063-017-9682-7
    11. Wenxia Zhou, Xuejun Li, Lu Han, Shengjun Fan, 2021, Chapter 2, 978-981-16-0752-3, 35, 10.1007/978-981-16-0753-0_2
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(6571) PDF downloads(571) Cited by(27)

Article outline

Figures and Tables

Figures(12)  /  Tables(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog