A reaction-diffusion system modeling the spread of resistance to an antimalarial drug

  • Received: 01 July 2004 Accepted: 29 June 2018 Published: 01 March 2005
  • MSC : 92D30, 35K57.

  • A mathematical model representing the diffusion of resistance to an antimalarial drug is developed. Resistance can spread only when the basic reproduction number of the resistant parasites is bigger than the basic reproduction number of the sensitive parasites (which depends on the fraction of infected people treated with the antimalarial drug). Based on a linearization study and on numerical simulations, an expression for the speed at which resistance spreads is conjectured. It depends on the ratio of the two basic reproduction numbers, on a coefficient representing the diffusion of mosquitoes, on the death rate of mosquitoes infected by resistant parasites, and on the recovery rate of nonimmune humans infected by resistant parasites.

    Citation: Nicolas Bacaër, Cheikh Sokhna. A reaction-diffusion system modeling the spread of resistance to an antimalarial drug[J]. Mathematical Biosciences and Engineering, 2005, 2(2): 227-238. doi: 10.3934/mbe.2005.2.227

    Related Papers:

    [1] Meng Zhao, Wan-Tong Li, Yang Zhang . Dynamics of an epidemic model with advection and free boundaries. Mathematical Biosciences and Engineering, 2019, 16(5): 5991-6014. doi: 10.3934/mbe.2019300
    [2] Hengki Tasman, Edy Soewono, Kuntjoro Adji Sidarto, Din Syafruddin, William Oscar Rogers . A model for transmission of partial resistance to anti-malarial drugs. Mathematical Biosciences and Engineering, 2009, 6(3): 649-661. doi: 10.3934/mbe.2009.6.649
    [3] Lin Zhao, Haifeng Huo . Spatial propagation for a reaction-diffusion SI epidemic model with vertical transmission. Mathematical Biosciences and Engineering, 2021, 18(5): 6012-6033. doi: 10.3934/mbe.2021301
    [4] Christopher E. Elmer . The stability of stationary fronts for a discrete nerve axon model. Mathematical Biosciences and Engineering, 2007, 4(1): 113-129. doi: 10.3934/mbe.2007.4.113
    [5] Aníbal Coronel, Fernando Huancas, Ian Hess, Alex Tello . The diffusion identification in a SIS reaction-diffusion system. Mathematical Biosciences and Engineering, 2024, 21(1): 562-581. doi: 10.3934/mbe.2024024
    [6] Tiberiu Harko, Man Kwong Mak . Travelling wave solutions of the reaction-diffusion mathematical model of glioblastoma growth: An Abel equation based approach. Mathematical Biosciences and Engineering, 2015, 12(1): 41-69. doi: 10.3934/mbe.2015.12.41
    [7] Nicolas Ratto, Martine Marion, Vitaly Volpert . Existence of pulses for a reaction-diffusion system of blood coagulation in flow. Mathematical Biosciences and Engineering, 2019, 16(5): 4196-4212. doi: 10.3934/mbe.2019209
    [8] Ali Moussaoui, Vitaly Volpert . The impact of immune cell interactions on virus quasi-species formation. Mathematical Biosciences and Engineering, 2024, 21(11): 7530-7553. doi: 10.3934/mbe.2024331
    [9] Hongyong Zhao, Yangyang Shi, Xuebing Zhang . Dynamic analysis of a malaria reaction-diffusion model with periodic delays and vector bias. Mathematical Biosciences and Engineering, 2022, 19(3): 2538-2574. doi: 10.3934/mbe.2022117
    [10] Tianqi Song, Chuncheng Wang, Boping Tian . Mathematical models for within-host competition of malaria parasites. Mathematical Biosciences and Engineering, 2019, 16(6): 6623-6653. doi: 10.3934/mbe.2019330
  • A mathematical model representing the diffusion of resistance to an antimalarial drug is developed. Resistance can spread only when the basic reproduction number of the resistant parasites is bigger than the basic reproduction number of the sensitive parasites (which depends on the fraction of infected people treated with the antimalarial drug). Based on a linearization study and on numerical simulations, an expression for the speed at which resistance spreads is conjectured. It depends on the ratio of the two basic reproduction numbers, on a coefficient representing the diffusion of mosquitoes, on the death rate of mosquitoes infected by resistant parasites, and on the recovery rate of nonimmune humans infected by resistant parasites.


  • This article has been cited by:

    1. A. Ducrot, S. B. Sirima, B. Somé, P. Zongo, A mathematical model for malaria involving differential susceptibility, exposedness and infectivity of human host, 2009, 3, 1751-3758, 574, 10.1080/17513750902829393
    2. Le Thi Thanh An, Willi Jäger, A quantitative model of population dynamics in malaria with drug treatment, 2014, 69, 0303-6812, 659, 10.1007/s00285-013-0716-0
    3. Maoxing Liu, Guiquan Sun, Zhen Jin, Tao Zhou, An analysis of transmission dynamics of drug-resistant disease on scale-free networks, 2013, 222, 00963003, 177, 10.1016/j.amc.2013.07.023
    4. Boyuan Zhang, Yongshan Zhou, Chunli Liu, Monier Alhadi Abdelrahman Mohammed, Zhangjun Chen, Zhenbin Chen, Immobilized penicillin G acylase with enhanced activity and stability using glutaraldehyde‐modified polydopamine‐coated Fe 3 O 4 nanoparticles , 2021, 0885-4513, 10.1002/bab.2138
    5. Lourdes Esteva, Abba B. Gumel, Cruz Vargas de León, Qualitative study of transmission dynamics of drug-resistant malaria, 2009, 50, 08957177, 611, 10.1016/j.mcm.2009.02.012
    6. Aleisha Brock, Carole Gibbs, Joshua Ross, Adrian Esterman, The Impact of Antimalarial Use on the Emergence and Transmission of Plasmodium falciparum Resistance: A Scoping Review of Mathematical Models, 2017, 2, 2414-6366, 54, 10.3390/tropicalmed2040054
    7. Nakul Chitnis, J. M. Cushing, J. M. Hyman, Bifurcation Analysis of a Mathematical Model for Malaria Transmission, 2006, 67, 0036-1399, 24, 10.1137/050638941
    8. C. Chiyaka, J.M. Tchuenche, W. Garira, S. Dube, A mathematical analysis of the effects of control strategies on the transmission dynamics of malaria, 2008, 195, 00963003, 641, 10.1016/j.amc.2007.05.016
    9. Nakul Chitnis, Thomas Smith, Richard Steketee, A mathematical model for the dynamics of malaria in mosquitoes feeding on a heterogeneous host population, 2008, 2, 1751-3758, 259, 10.1080/17513750701769857
    10. F. B. AGUSTO, A. B. GUMEL, P. E. PARHAM, QUALITATIVE ASSESSMENT OF THE ROLE OF TEMPERATURE VARIATIONS ON MALARIA TRANSMISSION DYNAMICS, 2015, 23, 0218-3390, 1550030, 10.1142/S0218339015500308
    11. E.Y. Klein, Antimalarial drug resistance: a review of the biology and strategies to delay emergence and spread, 2013, 41, 09248579, 311, 10.1016/j.ijantimicag.2012.12.007
    12. Ke Li, Xiao Ting Liu, Yun Fei Zhang, Donglei Liu, Xin Yu Zhang, Song Mei Ma, Juan M. Ruso, Zhenghua Tang, Zhen Bin Chen, Zhen Liu, The engineering and immobilization of penicillin G acylase onto thermo-sensitive tri-block copolymer system, 2019, 30, 10427147, 86, 10.1002/pat.4446
    13. Geoffrey R. Hosack, Philippe A. Rossignol, P. van den Driessche, The control of vector-borne disease epidemics, 2008, 255, 00225193, 16, 10.1016/j.jtbi.2008.07.033
    14. Saminu Bala, Bello Gimba, Global Sensitivity Analysis to Study the Impacts of Bed-Nets, Drug Treatment, and Their Efficacies on a Two-Strain Malaria Model, 2019, 24, 2297-8747, 32, 10.3390/mca24010032
    15. Rashad Abdul-Ghani, Hoda F. Farag, Amal F. Allam, Ahmed A. Azazy, Measuring resistant-genotype transmission of malaria parasites: challenges and prospects, 2014, 113, 0932-0113, 1481, 10.1007/s00436-014-3789-9
    16. Daozhou Gao, Shigui Ruan, 2015, 9781118630013, 109, 10.1002/9781118630013.ch6
    17. Aleisha R. Brock, Joshua V. Ross, Sunil Parikh, Adrian Esterman, The role of antimalarial quality in the emergence and transmission of resistance, 2018, 111, 03069877, 49, 10.1016/j.mehy.2017.12.018
    18. Michael te Vrugt, Jens Bickmann, Raphael Wittkowski, Effects of social distancing and isolation on epidemic spreading modeled via dynamical density functional theory, 2020, 11, 2041-1723, 10.1038/s41467-020-19024-0
    19. Christinah Chiyaka, Winston Garira, Shadreck Dube, Effects of treatment and drug resistance on the transmission dynamics of malaria in endemic areas, 2009, 75, 00405809, 14, 10.1016/j.tpb.2008.10.002
    20. Farinaz Forouzannia, A. Gumel, Dynamics of an age-structured two-strain model for malaria transmission, 2015, 250, 00963003, 860, 10.1016/j.amc.2014.09.117
    21. Sebastian Aniţa, Vincenzo Capasso, Regional Control for Spatially Structured Mosquito Borne Epidemics, 2020, 2305-221X, 10.1007/s10013-020-00395-2
    22. Sebastian Aniţa, Vincenzo Capasso, Stabilization of a reaction-diffusion system modelling malaria transmission, 2012, 17, 1531-3492, 1673, 10.3934/dcdsb.2012.17.1673
    23. F. B. Agusto, Malaria Drug Resistance: The Impact of Human Movement and Spatial Heterogeneity, 2014, 76, 0092-8240, 1607, 10.1007/s11538-014-9970-6
    24. Sebastian Aniţa, Vincenzo Capasso, Gabriel Dimitriu, Regional control for a spatially structured malaria model, 2019, 42, 0170-4214, 2909, 10.1002/mma.5560
    25. Fan Yi, Yaxiong Xie, Kyle Jamieson, 2021, Invited Paper: The Case for Small-Scale, Mobile-Enhanced COVID-19 Epidemiology, 978-3-903176-37-9, 1, 10.23919/WiOpt52861.2021.9589290
    26. Le Thi Thanh An, Willi Jäger, Maria Neuss-Radu, Modeling and analysis of structured population in malaria, 2022, 507, 0022247X, 125816, 10.1016/j.jmaa.2021.125816
    27. The Effects of Classical Trapping on the Control of Malaria Transmission, 2016, 12, 1927-5129, 434, 10.6000/1927-5129.2016.12.67
    28. Yun‐Zhu Wang, Zhen Wang, Kai‐Ning Wu, Chen‐Xu Wang, Spatio‐temporal sampled‐data control for delay reaction‐diffusion systems, 2022, 32, 1049-8923, 600, 10.1002/rnc.5839
    29. Ruchi Singh Parihar, Vaibhav Kumar, Abhishek Anand, Prasanta Kumar Bal, Ashish Thapliyal, Relative importance of VECTRI model parameters in the malaria disease transmission and prevalence, 2023, 0020-7128, 10.1007/s00484-023-02607-z
    30. Sebastian Aniţa, Vincenzo Capasso, Simone Scacchi, 2024, Chapter 2, 978-3-031-49970-8, 41, 10.1007/978-3-031-49971-5_2
    31. Monier Alhadi Abdelrahman Mohammed, Nan Wang, Zhenbin Chen, Pen Jin, Xueyan Du, Bin Li, Study of the poly (butylene adipate-co-terephthalate)/poly (vinyl alcohol) coated recycled Fe 3 O 4 magnetic particle carriers for immobilization penicillin G acylase , 2024, 0920-5063, 1, 10.1080/09205063.2024.2432142
  • Reader Comments
  • © 2005 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3160) PDF downloads(579) Cited by(30)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog