Time Delay In Necrotic Core Formation

  • Received: 01 January 2005 Accepted: 29 June 2018 Published: 01 August 2005
  • MSC : 34D05, 34K20, 34K60.

  • A simple model of avascular solid tumor dynamics is studied in the paper. The model is derived on the basis of reaction-diffusion dynamics and mass conservation law. We introduce time delay in a cell proliferation process. In the case studied in this paper, the model reduces to one ordinary functional-differential equation of the form that depends on the existence of necrotic core. We focus on the process of this necrotic core formation and the possible influence of delay on it. Basic mathematical properties of the model are studied. The existence, uniqueness and stability of steady state are discussed. Results of numerical simulations are presented.

    Citation: Marek Bodnar, Urszula Foryś. Time Delay In Necrotic Core Formation[J]. Mathematical Biosciences and Engineering, 2005, 2(3): 461-472. doi: 10.3934/mbe.2005.2.461

    Related Papers:

    [1] Lifeng Han, Steffen Eikenberry, Changhan He, Lauren Johnson, Mark C. Preul, Eric J. Kostelich, Yang Kuang . Patient-specific parameter estimates of glioblastoma multiforme growth dynamics from a model with explicit birth and death rates. Mathematical Biosciences and Engineering, 2019, 16(5): 5307-5323. doi: 10.3934/mbe.2019265
    [2] Antonio Fasano, Marco Gabrielli, Alberto Gandolfi . Investigating the steady state of multicellular spheroids by revisiting the two-fluid model. Mathematical Biosciences and Engineering, 2011, 8(2): 239-252. doi: 10.3934/mbe.2011.8.239
    [3] Alessandro Bertuzzi, Antonio Fasano, Alberto Gandolfi, Carmela Sinisgalli . Interstitial Pressure And Fluid Motion In Tumor Cords. Mathematical Biosciences and Engineering, 2005, 2(3): 445-460. doi: 10.3934/mbe.2005.2.445
    [4] Andreas Wagner, Pirmin Schlicke, Marvin Fritz, Christina Kuttler, J. Tinsley Oden, Christian Schumann, Barbara Wohlmuth . A phase-field model for non-small cell lung cancer under the effects of immunotherapy. Mathematical Biosciences and Engineering, 2023, 20(10): 18670-18694. doi: 10.3934/mbe.2023828
    [5] Marek Bodnar, Monika Joanna Piotrowska, Urszula Foryś . Gompertz model with delays and treatment: Mathematical analysis. Mathematical Biosciences and Engineering, 2013, 10(3): 551-563. doi: 10.3934/mbe.2013.10.551
    [6] Juan Wang, Chunyang Qin, Yuming Chen, Xia Wang . Hopf bifurcation in a CTL-inclusive HIV-1 infection model with two time delays. Mathematical Biosciences and Engineering, 2019, 16(4): 2587-2612. doi: 10.3934/mbe.2019130
    [7] Mostafa Adimy, Abdennasser Chekroun, Claudia Pio Ferreira . Global dynamics of a differential-difference system: a case of Kermack-McKendrick SIR model with age-structured protection phase. Mathematical Biosciences and Engineering, 2020, 17(2): 1329-1354. doi: 10.3934/mbe.2020067
    [8] Paolo Fergola, Marianna Cerasuolo, Edoardo Beretta . An allelopathic competition model with quorum sensing and delayed toxicant production. Mathematical Biosciences and Engineering, 2006, 3(1): 37-50. doi: 10.3934/mbe.2006.3.37
    [9] Emad Attia, Marek Bodnar, Urszula Foryś . Angiogenesis model with Erlang distributed delays. Mathematical Biosciences and Engineering, 2017, 14(1): 1-15. doi: 10.3934/mbe.2017001
    [10] Fabien Crauste . Global Asymptotic Stability and Hopf Bifurcation for a Blood Cell Production Model. Mathematical Biosciences and Engineering, 2006, 3(2): 325-346. doi: 10.3934/mbe.2006.3.325
  • A simple model of avascular solid tumor dynamics is studied in the paper. The model is derived on the basis of reaction-diffusion dynamics and mass conservation law. We introduce time delay in a cell proliferation process. In the case studied in this paper, the model reduces to one ordinary functional-differential equation of the form that depends on the existence of necrotic core. We focus on the process of this necrotic core formation and the possible influence of delay on it. Basic mathematical properties of the model are studied. The existence, uniqueness and stability of steady state are discussed. Results of numerical simulations are presented.


  • This article has been cited by:

    1. Shihe Xu, Meng Bai, Zhong Wang, Fangwei Zhang, Qualitative analysis of a free boundary problem for tumor growth under the action of periodic external inhibitors, 2018, 11, 1793-5245, 1850008, 10.1142/S1793524518500080
    2. Shihe Xu, Xiangqing Wei, Fangwei Zhang, A Time-Delayed Mathematical Model for Tumor Growth with the Effect of a Periodic Therapy, 2016, 2016, 1748-670X, 1, 10.1155/2016/3643019
    3. Urszula Ledzewicz, Heinz Schättler, AntiAngiogenic Therapy in Cancer Treatment as an Optimal Control Problem, 2007, 46, 0363-0129, 1052, 10.1137/060665294
    4. U. Ledzewicz, H. Schättler, Analysis of optimal controls for a mathematical model of tumour anti-angiogenesis, 2008, 29, 01432087, 41, 10.1002/oca.814
    5. Shihe Xu, Analysis of a delayed free boundary problem for tumor growth, 2011, 15, 1553-524X, 293, 10.3934/dcdsb.2011.15.293
    6. Shihe Xu, Dan Su, Analysis of necrotic core formation in angiogenic tumor growth, 2020, 51, 14681218, 103016, 10.1016/j.nonrwa.2019.103016
    7. Shihe Xu, Global stability of solutions to a free boundary problem of ductal carcinoma in situ, 2016, 27, 14681218, 238, 10.1016/j.nonrwa.2015.08.003
    8. Shihe Xu, Meng Bai, Fangwei Zhang, Analysis of a time-delayed mathematical model for tumour growth with an almost periodic supply of external nutrients, 2017, 11, 1751-3758, 504, 10.1080/17513758.2017.1386804
    9. Shihe Xu, Analysis of a free boundary problem for tumor growth in a periodic external environment, 2015, 2015, 1687-2770, 10.1186/s13661-015-0399-0
    10. Bao Shi, Fangwei Zhang, Shihe Xu, Hopf Bifurcation of a Mathematical Model for Growth of Tumors with an Action of Inhibitor and Two Time Delays, 2011, 2011, 1085-3375, 1, 10.1155/2011/980686
    11. Alberto d’Onofrio, Rapidly acting antitumoral antiangiogenic therapies, 2007, 76, 1539-3755, 10.1103/PhysRevE.76.031920
    12. Shihe Xu, Minhai Huang, Global Existence and Uniqueness of Solutions for a Free Boundary Problem Modeling the Growth of Tumors with a Necrotic Core and a Time Delay in Process of Proliferation, 2014, 2014, 1024-123X, 1, 10.1155/2014/480147
    13. Shihe Xu, Yinhui Chen, Meng Bai, Analysis of a time-delayed mathematical model for solid avascular tumor growth under the action of external inhibitors, 2016, 52, 1598-5865, 403, 10.1007/s12190-015-0947-x
    14. Andrzej Świerniak, Marek Kimmel, Jaroslaw Smieja, Krzysztof Puszynski, Krzysztof Psiuk-Maksymowicz, 2016, Chapter 3, 978-3-319-28093-6, 55, 10.1007/978-3-319-28095-0_3
    15. Urszula Ledzewicz, Heinz Schättler, 2014, Chapter 10, 978-1-4939-0457-0, 295, 10.1007/978-1-4939-0458-7_10
    16. Shihe Xu, Stability of Solutions to a Free Boundary Problem for Tumor Growth, 2014, 2014, 1687-9643, 1, 10.1155/2014/427547
    17. MONIKA JOANNA PIOTROWSKA, MAREK BODNAR, URSZULA FORYŚ, Tractable Model of Malignant Gliomas Immunotherapy with Discrete Time Delays, 2014, 21, 0889-8480, 127, 10.1080/08898480.2013.804690
    18. Shihe Xu, Qinghua Zhou, Meng Bai, Qualitative analysis of a time-delayed free boundary problem for tumor growth under the action of external inhibitors, 2015, 38, 01704214, 4187, 10.1002/mma.3357
    19. Shihe Xu, Meng Bai, Stability of solutions to a mathematical model for necrotic tumor growth with time delays in proliferation, 2015, 421, 0022247X, 955, 10.1016/j.jmaa.2014.07.029
    20. Shihe Xu, Fangwei Zhang, Global asymptotic stability of positive steady states of a solid avascular tumor growth model with time delays, 2018, 48, 0035-7596, 10.1216/RMJ-2018-48-5-1685
    21. Shihe Xu, Meng Bai, Fangwei Zhang, Analysis of a free boundary problem for tumor growth with Gibbs-Thomson relation and time delays, 2018, 23, 1553-524X, 3535, 10.3934/dcdsb.2017213
    22. Zvia Agur, From the evolution of toxin resistance to virtual clinical trials: the role of mathematical models in oncology, 2010, 6, 1479-6694, 917, 10.2217/fon.10.61
    23. Huijuan Song, Wentao Hu, Zejia Wang, Analysis of a nonlinear free-boundary tumor model with angiogenesis and a connection between the nonnecrotic and necrotic phases, 2021, 59, 14681218, 103270, 10.1016/j.nonrwa.2020.103270
    24. J.M. Chrobak, M. Bodnar, H. Herrero, About a generalized model of lymphoma, 2012, 386, 0022247X, 813, 10.1016/j.jmaa.2011.08.043
    25. Shihe Xu, Meng Bai, Xiangqing Zhao, Analysis of a solid avascular tumor growth model with time delays in proliferation process, 2012, 391, 0022247X, 38, 10.1016/j.jmaa.2012.02.034
    26. Shihe Xu, Xiao Wu, Meng Bai, Xiangqing Zhao, Analysis of a time-delayed mathematical model for tumour growth with inhibitors, 2013, 92, 0003-6811, 703, 10.1080/00036811.2011.633901
    27. Shihe Xu, Dan Su, Analysis of a time-delayed free boundary problem for solid tumor growth with angiogenesis and direct influence of inhibitors, 2020, 2020, 1687-2770, 10.1186/s13661-020-01350-3
    28. Shihe Xu, Zhaoyong Feng, Analysis of a mathematical model for tumor growth under indirect effect of inhibitors with time delay in proliferation, 2011, 374, 0022247X, 178, 10.1016/j.jmaa.2010.08.043
    29. Shihe Xu, Fangwei Zhang, Analysis of a Delayed Free Boundary Problem with Application to a Model for Tumor Growth of Angiogenesis, 2020, 2020, 1076-2787, 1, 10.1155/2020/9683982
    30. Heinz Schättler, Urszula Ledzewicz, 2015, Chapter 5, 978-1-4939-2971-9, 171, 10.1007/978-1-4939-2972-6_5
    31. Fangwei Zhang, Shihe Xu, Steady-State Analysis of Necrotic Core Formation for Solid Avascular Tumors with Time Delays in Regulatory Apoptosis, 2014, 2014, 1748-670X, 1, 10.1155/2014/467158
    32. Shihe Xu, Meng Bai, Time delays in proliferation process for solid avascular tumor under the action of external inhibitors, 2015, 08, 1793-5245, 1550018, 10.1142/S1793524515500187
    33. Shihe Xu, Analysis of a free boundary problem for tumor growth with angiogenesis and time delays in proliferation, 2020, 51, 14681218, 103005, 10.1016/j.nonrwa.2019.103005
    34. Shihe Xu, Yinhui Chen, Meng Bai, Analysis of a free boundary problem for avascular tumor growth with a periodic supply of nutrients, 2016, 21, 1531-3492, 997, 10.3934/dcdsb.2016.21.997
    35. Shangbin Cui, Shihe Xu, Analysis of mathematical models for the growth of tumors with time delays in cell proliferation, 2007, 336, 0022247X, 523, 10.1016/j.jmaa.2007.02.047
    36. Shihe Xu, Analysis of a free boundary problem modeling the growth of nonnecrotic tumors with time delays in proliferation, 2011, 12, 14681218, 2225, 10.1016/j.nonrwa.2011.01.004
    37. Monika Joanna Piotrowska, Hopf bifurcation in a solid avascular tumour growth model with two discrete delays, 2008, 47, 08957177, 597, 10.1016/j.mcm.2007.02.030
    38. Monika Joanna Piotrowska, Simon D. Angus, A quantitative cellular automaton model of in vitro multicellular spheroid tumour growth, 2009, 258, 00225193, 165, 10.1016/j.jtbi.2009.02.008
    39. Alberto d’Onofrio, Alberto Gandolfi, Resistance to antitumor chemotherapy due to bounded-noise-induced transitions, 2010, 82, 1539-3755, 10.1103/PhysRevE.82.061901
    40. Shihe Xu, Analysis of a delayed mathematical model for tumor growth, 2010, 11, 14681218, 4121, 10.1016/j.nonrwa.2010.04.001
    41. Xiaohong Zhang, Bei Hu, Zhengce Zhang, A three-dimensional angiogenesis model with time-delay, 2023, 28, 1531-3492, 1823, 10.3934/dcdsb.2022149
    42. Shihe Xu, Fangwei Zhang, Qinghua Zhou, A free boundary problem for necrotic tumor growth with angiogenesis, 2021, 0003-6811, 1, 10.1080/00036811.2021.1969013
    43. Shihe Xu, Zuxing Xuan, Analysis of a free boundary problem for vascularized tumor growth with a necrotic core and time delays, 2023, 72, 14681218, 103855, 10.1016/j.nonrwa.2023.103855
    44. Shihe Xu, Meng Bai, Analysis of a free boundary problem modeling spherically symmetric tumor growth with angiogenesis and a periodic supply of nutrients, 2023, 2023, 1687-2770, 10.1186/s13661-023-01742-1
    45. 梦琳 盖, Free Boundary Problem for a Vascularized Tumor Growth Model with Two Time Delays, 2024, 14, 2160-7583, 759, 10.12677/PM.2024.142074
  • Reader Comments
  • © 2005 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2995) PDF downloads(569) Cited by(43)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog