Mathematical Analysis Of A Modular Network Coordinating The Cell Cycle And Apoptosis

  • Received: 01 January 2005 Accepted: 29 June 2018 Published: 01 August 2005
  • MSC : 92C37.

  • The cell-division cycle and apoptosis are key cellular processes deregulated during carcinogenesis. Recent work of Aguda and Algar suggests a modular organization of regulatory molecular pathways linking the cellular processes of division and apoptosis. We carry out a detailed mathematical analysis of the Aguda-Algar model to unravel the dynamics implicit in the model structure. In addition, we further explore model parameters that control the bifurcations corresponding to the aforementioned cellular state transitions. We show that this simple model predicts interesting behavior, such as hysteretic oscillations and different conditions in which apoptosis is triggered.

    Citation: Gheorghe Craciun, Baltazar Aguda, Avner Friedman. Mathematical Analysis Of A Modular Network Coordinating The Cell Cycle And Apoptosis[J]. Mathematical Biosciences and Engineering, 2005, 2(3): 473-485. doi: 10.3934/mbe.2005.2.473

    Related Papers:

    [1] Floriane Lignet, Vincent Calvez, Emmanuel Grenier, Benjamin Ribba . A structural model of the VEGF signalling pathway: Emergence of robustness and redundancy properties. Mathematical Biosciences and Engineering, 2013, 10(1): 167-184. doi: 10.3934/mbe.2013.10.167
    [2] Bojie Yang, Zhuoqin Yang . Deterministic and stochastic approaches to a minimal model for the transition from autophagy to apoptosis. Mathematical Biosciences and Engineering, 2024, 21(2): 3207-3228. doi: 10.3934/mbe.2024142
    [3] Ying Jiang, Min Luo, Jianfeng Jiao, Ruiqi Wang . Study on cell apoptosis based on bifurcation and sensitivity analysis. Mathematical Biosciences and Engineering, 2019, 16(5): 3235-3250. doi: 10.3934/mbe.2019161
    [4] Orit Lavi, Doron Ginsberg, Yoram Louzoun . Regulation of modular Cyclin and CDK feedback loops by an E2F transcription oscillator in the mammalian cell cycle. Mathematical Biosciences and Engineering, 2011, 8(2): 445-461. doi: 10.3934/mbe.2011.8.445
    [5] Alexis B. Cook, Daniel R. Ziazadeh, Jianfeng Lu, Trachette L. Jackson . An integrated cellular and sub-cellular model of cancer chemotherapy and therapies that target cell survival. Mathematical Biosciences and Engineering, 2015, 12(6): 1219-1235. doi: 10.3934/mbe.2015.12.1219
    [6] Cicely K. Macnamara, Mark A. J. Chaplain . Spatio-temporal models of synthetic genetic oscillators. Mathematical Biosciences and Engineering, 2017, 14(1): 249-262. doi: 10.3934/mbe.2017016
    [7] Moxuan Zhang, Quan Zhang, Jilin Bai, Zhiming Zhao, Jian Zhang . Transcriptome analysis revealed CENPF associated with glioma prognosis. Mathematical Biosciences and Engineering, 2021, 18(3): 2077-2096. doi: 10.3934/mbe.2021107
    [8] Elena Izquierdo-Kulich, Margarita Amigó de Quesada, Carlos Manuel Pérez-Amor, Magda Lopes Texeira, José Manuel Nieto-Villar . The dynamics of tumor growth and cells pattern morphology. Mathematical Biosciences and Engineering, 2009, 6(3): 547-559. doi: 10.3934/mbe.2009.6.547
    [9] Ronald Lai, Trachette L. Jackson . A Mathematical Model of Receptor-Mediated Apoptosis: Dying to Know Why FasL is a Trimer. Mathematical Biosciences and Engineering, 2004, 1(2): 325-338. doi: 10.3934/mbe.2004.1.325
    [10] Kewei Ni, Gaozhong Sun . The identification of key biomarkers in patients with lung adenocarcinoma based on bioinformatics. Mathematical Biosciences and Engineering, 2019, 16(6): 7671-7687. doi: 10.3934/mbe.2019384
  • The cell-division cycle and apoptosis are key cellular processes deregulated during carcinogenesis. Recent work of Aguda and Algar suggests a modular organization of regulatory molecular pathways linking the cellular processes of division and apoptosis. We carry out a detailed mathematical analysis of the Aguda-Algar model to unravel the dynamics implicit in the model structure. In addition, we further explore model parameters that control the bifurcations corresponding to the aforementioned cellular state transitions. We show that this simple model predicts interesting behavior, such as hysteretic oscillations and different conditions in which apoptosis is triggered.


  • This article has been cited by:

    1. M. Mincheva, G. Craciun, Multigraph Conditions for Multistability, Oscillations and Pattern Formation in Biochemical Reaction Networks, 2008, 96, 0018-9219, 1281, 10.1109/JPROC.2008.925474
    2. B. D. Aguda, Y. Kim, M. G. Piper-Hunter, A. Friedman, C. B. Marsh, MicroRNA regulation of a cancer network: Consequences of the feedback loops involving miR-17-92, E2F, and Myc, 2008, 105, 0027-8424, 19678, 10.1073/pnas.0811166106
    3. Baltazar D. Aguda, Yangjin Kim, Hong Sug Kim, Avner Friedman, Howard A. Fine, Qualitative Network Modeling of the Myc-p53 Control System of Cell Proliferation and Differentiation, 2011, 101, 00063495, 2082, 10.1016/j.bpj.2011.09.052
    4. Faiz M. Khan, Ulf Schmitz, Svetoslav Nikolov, David Engelmann, Brigitte M. Pützer, Olaf Wolkenhauer, Julio Vera, Hybrid modeling of the crosstalk between signaling and transcriptional networks using ordinary differential equations and multi-valued logic, 2014, 1844, 15709639, 289, 10.1016/j.bbapap.2013.05.007
    5. Marios Kyriazis, The Impracticality of Biomedical Rejuvenation Therapies: Translational and Pharmacological Barriers, 2014, 17, 1549-1684, 390, 10.1089/rej.2014.1588
    6. Mirosław Lachowicz, Martin Parisot, Zuzanna Szymańska, Intracellular protein dynamics as a mathematical problem, 2016, 21, 1531-3492, 2551, 10.3934/dcdsb.2016060
    7. Dola Sengupta, Vinodhini Govindaraj, Sandip Kar, Alteration in microRNA-17-92 dynamics accounts for differential nature of cellular proliferation, 2018, 592, 00145793, 446, 10.1002/1873-3468.12974
    8. Urszula Ledzewicz, Heinz Schättler, Analysis of a mathematical model for low-grade gliomas under chemotherapy as a dynamical system, 2025, 85, 14681218, 104344, 10.1016/j.nonrwa.2025.104344
  • Reader Comments
  • © 2005 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2905) PDF downloads(459) Cited by(8)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog