Formulating mathematical models that estimate tumor growth under therapy is vital for improving patient-specific treatment plans. In this context, we present our recent work on simulating non-small-scale cell lung cancer (NSCLC) in a simple, deterministic setting for two different patients receiving an immunotherapeutic treatment. At its core, our model consists of a Cahn-Hilliard-based phase-field model describing the evolution of proliferative and necrotic tumor cells. These are coupled to a simplified nutrient model that drives the growth of the proliferative cells and their decay into necrotic cells. The applied immunotherapy decreases the proliferative cell concentration. Here, we model the immunotherapeutic agent concentration in the entire lung over time by an ordinary differential equation (ODE). Finally, reaction terms provide a coupling between all these equations. By assuming spherical, symmetric tumor growth and constant nutrient inflow, we simplify this full 3D cancer simulation model to a reduced 1D model. We can then resort to patient data gathered from computed tomography (CT) scans over several years to calibrate our model. Our model covers the case in which the immunotherapy is successful and limits the tumor size, as well as the case predicting a sudden relapse, leading to exponential tumor growth. Finally, we move from the reduced model back to the full 3D cancer simulation in the lung tissue. Thereby, we demonstrate the predictive benefits that a more detailed patient-specific simulation including spatial information as a possible generalization within our framework could yield in the future.
Citation: Andreas Wagner, Pirmin Schlicke, Marvin Fritz, Christina Kuttler, J. Tinsley Oden, Christian Schumann, Barbara Wohlmuth. A phase-field model for non-small cell lung cancer under the effects of immunotherapy[J]. Mathematical Biosciences and Engineering, 2023, 20(10): 18670-18694. doi: 10.3934/mbe.2023828
[1] | Muhammad Uzair Awan, Nousheen Akhtar, Artion Kashuri, Muhammad Aslam Noor, Yu-Ming Chu . 2D approximately reciprocal ρ-convex functions and associated integral inequalities. AIMS Mathematics, 2020, 5(5): 4662-4680. doi: 10.3934/math.2020299 |
[2] | Yousaf Khurshid, Muhammad Adil Khan, Yu-Ming Chu . Conformable fractional integral inequalities for GG- and GA-convex functions. AIMS Mathematics, 2020, 5(5): 5012-5030. doi: 10.3934/math.2020322 |
[3] | Hengxiao Qi, Muhammad Yussouf, Sajid Mehmood, Yu-Ming Chu, Ghulam Farid . Fractional integral versions of Hermite-Hadamard type inequality for generalized exponentially convexity. AIMS Mathematics, 2020, 5(6): 6030-6042. doi: 10.3934/math.2020386 |
[4] | Mehmet Eyüp Kiriş, Miguel Vivas-Cortez, Gözde Bayrak, Tuğba Çınar, Hüseyin Budak . On Hermite-Hadamard type inequalities for co-ordinated convex function via conformable fractional integrals. AIMS Mathematics, 2024, 9(4): 10267-10288. doi: 10.3934/math.2024502 |
[5] | Ghulam Farid, Saira Bano Akbar, Shafiq Ur Rehman, Josip Pečarić . Boundedness of fractional integral operators containing Mittag-Leffler functions via (s,m)-convexity. AIMS Mathematics, 2020, 5(2): 966-978. doi: 10.3934/math.2020067 |
[6] | Yousaf Khurshid, Muhammad Adil Khan, Yu-Ming Chu . Conformable integral version of Hermite-Hadamard-Fejér inequalities via η-convex functions. AIMS Mathematics, 2020, 5(5): 5106-5120. doi: 10.3934/math.2020328 |
[7] | Yue Wang, Ghulam Farid, Babar Khan Bangash, Weiwei Wang . Generalized inequalities for integral operators via several kinds of convex functions. AIMS Mathematics, 2020, 5(5): 4624-4643. doi: 10.3934/math.2020297 |
[8] | M. Emin Özdemir, Saad I. Butt, Bahtiyar Bayraktar, Jamshed Nasir . Several integral inequalities for (α, s,m)-convex functions. AIMS Mathematics, 2020, 5(4): 3906-3921. doi: 10.3934/math.2020253 |
[9] | Muhammad Zakria Javed, Muhammad Uzair Awan, Loredana Ciurdariu, Omar Mutab Alsalami . Pseudo-ordering and δ1-level mappings: A study in fuzzy interval convex analysis. AIMS Mathematics, 2025, 10(3): 7154-7190. doi: 10.3934/math.2025327 |
[10] | Xiuzhi Yang, G. Farid, Waqas Nazeer, Muhammad Yussouf, Yu-Ming Chu, Chunfa Dong . Fractional generalized Hadamard and Fejér-Hadamard inequalities for m-convex functions. AIMS Mathematics, 2020, 5(6): 6325-6340. doi: 10.3934/math.2020407 |
Formulating mathematical models that estimate tumor growth under therapy is vital for improving patient-specific treatment plans. In this context, we present our recent work on simulating non-small-scale cell lung cancer (NSCLC) in a simple, deterministic setting for two different patients receiving an immunotherapeutic treatment. At its core, our model consists of a Cahn-Hilliard-based phase-field model describing the evolution of proliferative and necrotic tumor cells. These are coupled to a simplified nutrient model that drives the growth of the proliferative cells and their decay into necrotic cells. The applied immunotherapy decreases the proliferative cell concentration. Here, we model the immunotherapeutic agent concentration in the entire lung over time by an ordinary differential equation (ODE). Finally, reaction terms provide a coupling between all these equations. By assuming spherical, symmetric tumor growth and constant nutrient inflow, we simplify this full 3D cancer simulation model to a reduced 1D model. We can then resort to patient data gathered from computed tomography (CT) scans over several years to calibrate our model. Our model covers the case in which the immunotherapy is successful and limits the tumor size, as well as the case predicting a sudden relapse, leading to exponential tumor growth. Finally, we move from the reduced model back to the full 3D cancer simulation in the lung tissue. Thereby, we demonstrate the predictive benefits that a more detailed patient-specific simulation including spatial information as a possible generalization within our framework could yield in the future.
The inequalities discovered by C. Hermite and J. Hadamard for convex functions are considerable significant in the literature (see, e.g., [9], [18], [27,p.137]). These inequalities state that if f:I→R is a convex function on the interval I of real numbers and a,b∈I with a<b, then
f(a+b2)≤1b−ab∫af(x)dx≤f(a)+f(b)2. | (1.1) |
Both inequalities hold in the reversed direction if f is concave.
The Hermite-Hadamard inequality, which is the first fundamental result for convex mappings with a natural geometrical interpretation and many applications, has drawn attention much interest in elementary mathematics. A number of mathematicians have devoted their efforts.
The most well-known inequalities related to the integral mean of a convex function are the Hermite Hadamard inequalities or its weighted versions, the so-called Hermite-Hadamard-Fejér inequalities. In [17], Fejer gave a weighted generalization of the inequalities (1.1) as the following:
Theorem 1. f:[a,b]→R, be a convex function, then the inequality
f(a+b2)b∫ag(x)dx≤b∫af(x)g(x)dx≤f(a)+f(b)2b∫ag(x)dx | (1.2) |
holds, where g:[a,b]→R is nonnegative, integrable, and symmetric about x=a+b2 (i.e. g(x)=g(a+b−x)).
In this paper we will establish some new Fejér type inequalities for the new concept of co-ordinated hyperbolic ρ-convex functions.
The overall structure of the paper takes the form of four sections including introduction. The paper is organized as follows: we first give the definition of co-ordinated convex functions, the definition of fractional integrals and related Hermite-Hadamard inequality in Section 1. We also recall the concept of hyperbolic ρ-convex functions and co-ordinated hyperbolic ρ-convex functions introduced by Özçelik et. al in [23]. Moreover, we give a lemma and a theorem which will be frequently used in the next section. Some Hermite-Hadamard-Fejer type inequalities for co-ordinated hyperbolic ρ-convex functions are obtained and some special cases of the results are also given in Section 2. Then, we also apply the inequalities obtained in Section 2 to establish some fractional Fejer type inequalities in Section 3. Finally, in Section 4, some conclusions and further directions of research are discussed.
A formal definition for co-ordinated convex function may be stated as follows:
Definition 1. A function f:Δ:=[a,b]×[c,d]→R is called co-ordinated convex on Δ, for all (x,u),(y,v)∈Δ and t,s∈[0,1], if it satisfies the following inequality:
f(tx+(1−t) y,su+(1−s) v)≤ts f(x,u)+t(1−s)f(x,v)+s(1−t)f(y,u)+(1−t)(1−s)f(y,v). | (1.3) |
The mapping f is a co-ordinated concave on Δ if the inequality (1.3) holds in reversed direction for all t,s∈[0,1] and (x,u),(y,v)∈Δ.
In [11], Dragomir proved the following inequalities which is Hermite-Hadamard type inequalities for co-ordinated convex functions on the rectangle from the plane R2.
Theorem 2. Suppose that f:Δ:=[a,b]×[c,d]→R is co-ordinated convex, then we have the following inequalities:
f(a+b2,c+d2)≤12[1b−ab∫af(x,c+d2)dx+1d−cd∫cf(a+b2,y)dy]≤1(b−a)(d−c)b∫ad∫cf(x,y)dydx≤14[1b−ab∫af(x,c)dx+1b−ab∫af(x,d)dx+1d−cd∫cf(a,y)dy+1d−cd∫cf(b,y)dy]≤f(a,c)+f(a,d)+f(b,c)+f(b,d)4. | (1.4) |
The above inequalities are sharp. The inequalities in (1.4) hold in reverse direction if the mapping f is a co-ordinated concave mapping.
Over the years, the numerous studies have focused on to establish generalization of the inequality (1.1) and (1.4). For some of them, please see ([1,2,3,4,5,6,7,8], [19,20,21,22,23,24,25,26], [28,29,30,31,32,33,34,35,36]).
Definition 2. [29] Let f∈L1(Δ).The Riemann-Lioville integrals Jα,βa+,c+,Jα,βa+,d−,+Jα,βb−,c+ and Jα,βb−,d−of order α,β>0 with a,c≥0 are defined by
Jα,βa+,c+f(x,y)=1Γ(α)Γ(β)x∫ay∫c(x−t)α−1(y−s)β−1f(t,s)dsdt, x>a, y>c,Jα,βa+,d−f(x,y)=1Γ(α)Γ(β)x∫ad∫y(x−t)α−1(s−y)β−1f(t,s)dsdt, x>a, y>d,Jα,βb−,c+f(x,y)=1Γ(α)Γ(β)b∫xy∫c(t−x)α−1(y−s)β−1f(t,s)dsdt, x<b, y>c,Jα,βb−,d−f(x,y)=1Γ(α)Γ(β)b∫xd∫y(t−x)α−1(s−y)β−1f(t,s)dsdt, x<b, y<d, |
respectively. Here, Γ is the Gamma funtion,
J0,0a+,c+f(x,y)=J0,0a+,d−f(x,y)=J0,0b−,c+f(x,y)=J0,0b−,d−f(x,y) |
and
J1,1a+,c+f(x,y)=x∫ay∫cf(t,s)dsdt. |
First, we give the definition of hyperbolic ρ-convex functions and some related inequalities. Then we define the co-ordinated hyperbolic ρ -convex functions.
Definition 3. [10] A function f:I→R is said to be hyperbolic ρ-convex, if for any arbitrary closed subinterval [a,b] of I such that we have
f(x)≤sinh[ρ(b−x)]sinh[ρ(b−a)]f(a)+sinh[ρ(x−a)]sinh[ρ(b−a)]f(b) | (1.5) |
for all x∈[a,b]. If we take x=(1−t)a+tb, t∈[0,1] in (1.5), then the condition (1.5) becomes
f((1−t)a+tb)≤sinh[ρ(1−t)(b−a)]sinh[ρ(b−a)]f(a)+sinh[ρt(b−a)]sinh[ρ(b−a)]f(b). | (1.6) |
If the inequality (1.5) holds with "≥", then the function will be called hyperbolic ρ-concave on I.
The following Hermite-Hadamard inequality for hyperbolic ρ-convex function is proved by Dragomir in [10].
Theorem 3. Suppose that f:I→R is hyperbolic ρ-convex on I. Then for any a,b∈I, we have
2ρf(a+b2)sinh[ρ(b−a)2]≤b∫af(x)dx≤f(a)+f(b)ρtanh[ρ(b−a)2]. | (1.7) |
Moreover in [12], Dragomir prove the following Hermite Hadamard-Fejer type inequalities for hyperbolic ρ-convex functions.
Theorem 4. Assume that the function f:I→R is hyperbolic ρ-convex on I and a,b∈I. Assume also that p:[a,b]⟶R is a positive, symmetric and integrable function on [a,b], then we have
f(a+b2)b∫acosh[ρ(x−a+b2)]p(x)dx≤b∫af(x)p(x)dx≤f(a)+f(b)2sech[ρ(b−a)2]b∫acosh[ρ(x−a+b2)]p(x)dx. | (1.8) |
For the other inequalities for hyperbolic ρ-convex functions, please refer to ([12,13,14,15]).
Now we give the definition of co-ordinated hyperbolic ρ-convex functions.
Definition 4. [23] A function f:Δ→R is said to co-ordinated hyperbolic ρ-convex on Δ, if the inequality
f(x,y)≤sinh[ρ1(b−x)]sinh[ρ1(b−a)]sinh[ρ2(d−y)]sinh[ρ2(d−c)]f(a,c)+sinh[ρ1(b−x)]sinh[ρ1(b−a)]sinh[ρ2(y−c)]sinh[ρ2(d−c)]f(a,d)+sinh[ρ1(x−a)]sinh[ρ1(b−a)]sinh[ρ2(d−y)]sinh[ρ2(d−c)]f(b,c)+sinh[ρ1(x−a)]sinh[ρ1(b−a)]sinh[ρ2(y−c)]sinh[ρ2(d−c)]f(b,d). | (1.9) |
holds.
If the inequality (1.9) holds with "≥", then the function will be called co-ordinated hyperbolic ρ-concave on Δ.
If we take x=(1−t)a+tb and y=(1−s)c+sd for t,s,∈[0,1], then the inequality (1.9) can be written as
f((1−t)a+tb,(1−s)c+sd)≤sinh[ρ1(1−t)(b−a)]sinh[ρ1(b−a)]sinh[ρ2(1−s)(d−y)]sinh[ρ2(d−c)]f(a,c)+sinh[ρ1(1−t)(b−a)]sinh[ρ1(b−a)]sinh[ρ2s(d−y)]sinh[ρ2(d−c)]f(a,d)+sinh[ρ1t(b−a)]sinh[ρ1(b−a)]sinh[ρ2(1−s)(d−y)]sinh[ρ2(d−c)]f(b,c)+sinh[ρ1(b−a)]sinh[ρ1(b−a)]sinh[ρ2s(d−y)]sinh[ρ2(d−c)]f(b,d). | (1.10) |
Now we give the following useful lemma:
Lemma 1. [23] If f:Δ=[a,b]×[c,d]→R is co-ordinated ρ-convex function on Δ, then we have the following inequality
cosh[ρ1(x−a+b2)]cosh[ρ2(y−c+d2)]f(a+b2,c+d2)≤14[f(x,y)+f(x,c+d−y)+f(a+b−x,y)+f(a+b−x,c+d−y)]≤f(a,c)+f(a,d)+f(b,c)+f(b,d)4cosh[ρ1(x−a+b2)]cosh[ρ1(b−a)2]cosh[ρ2(y−c+d2)]cosh[ρ2(d−c)2] | (1.11) |
for all (x,y)∈Δ.
Theorem 5. Let p:Δ→R be a positive, integrable and symmetric about a+b2 and c+d2. Let, f:Δ→R be a co-ordinated hyperbolic ρ-convex functions on Δ. We have the following Hermite-Hadamard-Fejer type inequalities:
f(a+b2,c+d2)b∫ad∫ccosh[ρ1(x−a+b2)]cosh[ρ2(y−c+d2)]p(x,y)dydx≤b∫ad∫cf(x,y)p(x,y)dydx≤f(a,c)+f(a,d)+f(b,c)+f(b,d)4cosh[ρ1(b−a)2]cosh[ρ2(d−c)2]×b∫ad∫ccosh[ρ1(x−a+b2)]cosh[ρ2(y−c+d2)]p(x,y)dydx. | (2.1) |
Proof. Multiplying the inequality (1.1) by p(x,y)>0 and then integrating with respect to (x,y) on Δ, we obtain
f(a+b2,c+d2)b∫ad∫ccosh[ρ1(x−a+b2)]cosh[ρ2(y−c+d2)]p(x,y)dydx≤14b∫ad∫c[f(x,y)+f(x,c+d−y)+f(a+b−x,y)+f(a+b−x,c+d−y)]p(x,y)dydx≤f(a,c)+f(a,d)+f(b,c)+f(b,d)4cosh[ρ1(b−a)2]cosh[ρ2(d−c)2]×b∫ad∫ccosh[ρ1(x−a+b2)]cosh[ρ2(y−c+d2)]p(x,y)dydx | (2.2) |
Since p is symmetric about a+b2 and c+d2, one can show that
b∫ad∫cf(x,c+d−y)p(x,y)dydx=b∫ad∫cf(a+b−x,y)p(x,y)dydx=b∫ad∫cf(a+b−x,c+d−y)p(x,y)dydx=b∫ad∫cf(x,y)p(x,y)dydx. |
This completes the proof.
Remark 1. If we choose p(x,y)=1 in Theorem 5, then we have the following the inequality
4ρ1ρ2sinh[ρ1(b−a)2]sinh[ρ2(d−c)2]f(a+b2,c+d2)≤b∫ad∫cf(x,y)dydx≤f(a,c)+f(a,d)+f(b,c)+f(b,d)ρ1ρ2tanh[ρ1(b−a)2]tanh[ρ2(d−c)2] |
which is proved by Özçelik et. al in [23].
Corollary 1. Suppose that all assumptions of Theorem 5 are satisfied. Then we have the following inequality,
f(a+b2,c+d2)b∫ad∫cw(x,y)dydx≤b∫ad∫cf(x,y)w(x,y)sech[ρ1(x−a+b2)]sech[ρ2(y−c+d2)]dydx≤f(a,c)+f(a,d)+f(b,c)+f(b,d)4sech[ρ1(b−a)2]sech[ρ2(d−c)2]b∫ad∫cw(x,y)dydx. | (2.3) |
Proof. Let us define the function p(x,y) by
w(x,y)=p(x,y)cosh[ρ1(x−a+b2)]cosh[ρ2(y−c+d2)]. |
Clearly, w(x.y) is a a positive, integrable and symmetric about a+b2 and c+d2. If we apply Theorem 5 for the function w(x,y) then we establish the desired inequality (2.3).
Remark 2. If we choose w(x,y)=1 for all (x,y)ϵΔ in Corollary 1, then we have the following the inequality
f(a+b2,c+d2)≤1(b−a)(d−c)b∫ad∫cf(x,y)sech[ρ1(x−a+b2)]sech[ρ2(y−c+d2)]dydx≤f(a,c)+f(a,d)+f(b,c)+f(b,d)4sech[ρ1(b−a)2]sech[ρ2(d−c)2]. | (2.4) |
which is proved by Özçelik et. al in [23].
Theorem 6. Let p:Δ→R be a positive, integrable and symmetric about a+b2 and c+d2. Let f:Δ→R be a co-ordinated hyperbolic ρ-convex on Δ, then we have the following Hermite-Hadamard-Fejer type inequalities
f(a+b2,c+d2)b∫ad∫ccosh[ρ1(x−a+b2)]cosh[ρ2(y−c+d2)]p(x,y)dydx≤12[b∫ad∫cf(x,c+d2)cosh[ρ2(y−c+d2)]p(x,y)dydx+b∫ad∫cf(a+b2,y)cosh[ρ1(x−a+b2)]p(x,y)dydx]≤b∫ad∫cf(x,y)p(x,y)dydx≤14[sech[ρ2(d−c)2]b∫ad∫c[f(x,c)+f(x,d)]cosh[ρ2(y−c+d2)]p(x,y)dydx+sech[ρ1(b−a)2]b∫ad∫c[f(a,y)+f(b,y)]cosh[ρ1(x−a+b2)]p(x,y)dydx]≤f(a,c)+f(b,c)+f(a,d)+f(b,d)4sech[ρ1(b−a)2]sech[ρ2(d−c)2]×b∫ad∫ccosh[ρ1(x−a+b2)]cosh[ρ2(y−c+d2)]p(x,y)dydx. | (2.5) |
Proof. Since f is co-ordinated hyperbolic ρ-convex on Δ, if we define the mappings fx:[c,d]→R, fx(y)=f(x,y) and px:[c,d]→R, px(y)=p(x,y), then fx(y) is hyperbolic ρ-convex on [c,d] and px(y) is positive, integrable and symmetric about c+d2 for all x∈[a,b]. If we apply the inequality (1.8) for the hyperbolic ρ-convex function fx(y), then we have
fx(c+d2)d∫ccosh[ρ2(y−c+d2)]px(y)dy≤d∫cfx(y)px(y)dy≤fx(c)+fx(d)2sech[ρ2(d−c)2]d∫ccosh[ρ2(y−c+d2)]px(y)dy. | (2.6) |
That is,
f(x,c+d2)d∫ccosh[ρ2(y−c+d2)]p(x,y)dy≤d∫cf(x,y)p(x,y)dy≤f(x,c)+f(x,d)2sech[ρ2(d−c)2]d∫ccosh[ρ2(y−c+d2)]p(x,y)dy. | (2.7) |
Integrating the inequality (2.7) with respect to x from a to b, we obtain
b∫ad∫cf(x,c+d2)cosh[ρ2(y−c+d2)]p(x,y)dydx≤b∫ad∫cf(x,y)p(x,y)dydx≤12b∫ad∫c[f(x,c)+f(x,d)]sech[ρ2(d−c)2]cosh[ρ2(y−c+d2)]p(x,y)dydx. | (2.8) |
Similarly, as f is co-ordinated hyperbolic ρ-convex on Δ, if we define the mappings fy:[a,b]→R, fy(x)=f(x,y) and py:[a,b]→R, py(x)=p(x,y), then fy(x) is hyperbolic ρ-convex on [a,b] and py(x) is positive, integrable and symmetric about a+b2 for all y∈[c,d]. Utilizing the inequality (1.8) for the hyperbolic ρ-convex function fy(x), then we obtain the inequality
fy(a+b2)b∫acosh[ρ1(x−a+b2)]py(x)dx≤b∫afy(x)py(x)dx≤fy(a)+fy(b)2sech[ρ1(b−a)2]b∫acosh[ρ1(x−a+b2)]py(x)dx | (2.9) |
i.e.
f(a+b2,y)b∫acosh[ρ1(x−a+b2)]p(x,y)dx≤b∫af(x,y)p(x,y)dx≤f(a,y)+f(b,y)2sech[ρ1(b−a)2]b∫acosh[ρ1(x−a+b2)]p(x,y)dx. | (2.10) |
Integrating the inequality (2.10) with respect to y on [c,d], we get
b∫ad∫cf(a+b2,y)cosh[ρ1(x−a+b2)]p(x,y)dydx≤b∫ad∫cf(x,y)p(x,y)dydx≤12b∫ad∫c[f(a,y)+f(b,y)]sech[ρ1(b−a)2]cosh[ρ1(x−a+b2)]p(x,y)dydx. | (2.11) |
Summing the inequalities (2.8) and (2.11), we obtain the second and third inequalities in (2.5).
Since f(a+b2,y) is hyperbolic ρ-convex on [c,d] and px(y) is positive, integrable and symmetric about c+d2, using the first inequality in (1.8), we have
f(a+b2,c+d2)d∫ccosh[ρ2(y−c+d2)]p(x,y)dy≤d∫cf(a+b2,y)p(x,y)dy. | (2.12) |
Multiplying the inequality (2.12) by cosh[ρ1(x−a+b2)] and integrating resulting inequality with respect to x on [a,b], we get
f(a+b2,c+d2)b∫ad∫ccosh[ρ2(y−c+d2)]cosh[ρ1(x−a+b2)]p(x,y)dydx≤b∫ad∫cf(a+b2,y)cosh[ρ1(x−a+b2)]p(x,y)dydx. | (2.13) |
Since f(x,c+d2) is hyperbolic ρ-convex on [a,b] and py(x) is positive, integrable and symmetric about a+b2, utilizing the first inequality in (1.8), we have the following inequality
f(a+b2,c+d2)b∫acosh[ρ1(x−a+b2)]p(x,y)dx≤b∫af(x,c+d2)p(x,y)dx. | (2.14) |
Multiplying the inequality (2.14) by cosh[ρ2(y−c+d2)] and integrating resulting inequality with respect to y on [c,d], we get
f(a+b2,c+d2)b∫ad∫ccosh[ρ1(x−a+b2)]cosh[ρ2(y−c+d2)]p(x,y)dydx≤b∫ad∫cf(x,c+d2)cosh[ρ2(y−c+d2)]p(x,y)dydx. | (2.15) |
From the inequalities (2.13) and (2.15), we obtain the first inequality in (2.5).
For the proof of last inequality in (2.5), using the second inequality in (1.8) for the hyperbolic ρ-convex functions f(x,c) and f(x,d) on [a,b] and for the symmetric function py(x), we obtain the inequalities
b∫af(x,c)p(x,y)dx≤f(a,c)+f(b,c)2sech[ρ1(b−a)2]b∫acosh[ρ1(x−a+b2)]p(x,y)dx | (2.16) |
and
b∫af(x,d)p(x,y)dx≤f(a,d)+f(b,d)2sech[ρ1(b−a)2]b∫acosh[ρ1(x−a+b2)]p(x,y)dx. | (2.17) |
If we multiply the inequalities (2.16) and (2.17) by sech[ρ2(d−c)2]cosh[ρ2(y−c+d2)] and integrating the resulting inequalities on [c,d], then we have
b∫ad∫cf(x,c)sech[ρ2(d−c)2]cosh[ρ2(y−c+d2)]p(x,y)dydx≤f(a,c)+f(b,c)2sech[ρ1(b−a)2]sech[ρ2(d−c)2]×b∫ad∫ccosh[ρ1(x−a+b2)]cosh[ρ2(y−c+d2)]p(x,y)dydx | (2.18) |
and
b∫ad∫cf(x,d)sech[ρ2(d−c)2]cosh[ρ2(y−c+d2)]p(x,y)dydx≤f(a,d)+f(b,d)2sech[ρ1(b−a)2]sech[ρ2(d−c)2]×b∫ad∫ccosh[ρ1(x−a+b2)]cosh[ρ2(y−c+d2)]p(x,y)dydx. | (2.19) |
Similarly, applying the second inequality in (1.8) for the hyperbolic ρ-convex functions f(a,y) and f(b,y) on [c,d] and for the symmetric function px(y), we have
d∫cf(a,y)p(x,y)dy≤f(a,c)+f(a,d)2sech[ρ2(d−c)2]d∫ccosh[ρ2(y−c+d2)]p(x,y)dy | (2.20) |
and
d∫cf(b,y)p(x,y)dy≤f(b,c)+f(b,d)2sech[ρ2(d−c)2]d∫ccosh[ρ2(y−c+d2)]p(x,y)dy. | (2.21) |
Multiplying the inequalities (2.20) and (2.21) by sech[ρ1(b−a)2]cosh[ρ1(x−a+b2)] and integrating the resulting inequalities on [a,b], then we have
b∫ad∫cf(a,y)sech[ρ1(b−a)2]cosh[ρ1(x−a+b2)]p(x,y)dydx≤f(a,c)+f(a,d)2sech[ρ2(d−c)2]sech[ρ1(b−a)2]×b∫ad∫ccosh[ρ2(y−c+d2)]cosh[ρ1(x−a+b2)]p(x,y)dydx | (2.22) |
and
b∫ad∫cf(b,y)sech[ρ1(b−a)2]cosh[ρ1(x−a+b2)]p(x,y)dydx≤f(b,c)+f(b,d)2sech[ρ2(d−c)2]sech[ρ1(b−a)2]×b∫ad∫ccosh[ρ2(y−c+d2)]cosh[ρ1(x−a+b2)]p(x,y)dydx. | (2.23) |
Summing the inequalities (2.18), (2.19), (2.22) and (2.23), we establish the last inequality in (2.5). This completes the proof.
Remark 3. If we choose p(x,y)=1 in Theorem 6, then we have
4ρ1ρ2sinh[ρ1(b−a)2]sinh[ρ2(d−c)2]f(a+b2,c+d2)≤1ρ1sinh[ρ1(b−a)2]d∫cf(a+b2,y)dy+1ρ2sinh[ρ2(d−c)2]b∫af(x,c+d2)dx≤b∫ad∫cf(x,y)dydx≤12[1ρ2tanh[ρ2(d−c)2]b∫a[f(x,c)+f(x,d)]dx+1ρ1tanh[ρ1(b−a)2]d∫c[f(a,y)+f(b,y)]dy]≤tanh[ρ1(b−a)2]tanh[ρ2(d−c)2]f(a,c)+f(a,d)+f(b,c)+f(b,d)ρ1ρ2 | (2.24) |
which is proved by Özçelik et. al in [23].
Remark 4. Choosing ρ1=ρ2=0 in Theorem 6, we obtain
f(a+b2,c+d2)b∫ad∫cp(x,y)dydx≤12b∫ad∫c[f(x,c+d2)+f(a+b2,y)]p(x,y)dydx≤b∫ad∫cf(x,y)p(x,y)dydx≤14b∫ad∫c[f(x,c)+f(x,d)+f(a,y)+f(b,y)]p(x,y)dydx≤f(a,c)+f(a,d)+f(b,c)+f(b,d)4b∫ad∫cp(x,y)dydx. |
which is proved by Budak and Sarikaya in [5].
Corollary 2. Let g1:[a,b]→R and g1:[c,d]→R be two positive, integrable and symmetric about a+b2 and c+d2, respectively. If we choose p(x,y)=g1(x)g2(y)G1G2 for all (x,y)∈Δ in Theorem 6, then we have
f(a+b2,c+d2)≤12[1G1b∫af(x,c+d2)g1(x)dx+1G2d∫cf(a+b2,y)g2(y)dy]≤1G1G2b∫ad∫cf(x,y)g1(x)g2(y)dydx≤14[sech[ρ2(d−c)2]1G1b∫a[f(x,c)+f(x,d)]g1(x)dx+sech[ρ1(b−a)2]1G2d∫c[f(a,y)+f(b,y)]g2(y)dy]≤f(a,c)+f(b,c)+f(a,d)+f(b,d)4sech[ρ1(b−a)2]sech[ρ2(d−c)2] | (2.25) |
where
G1=b∫acosh[ρ1(x−a+b2)]g1(x)dxandG2=d∫ccosh[ρ2(y−c+d2)]g2(y)dy. |
Remark 5. If we choose ρ1=ρ2=0 in Corollary 2, then we have
f(a+b2,c+d2)≤12[1G1b∫af(x,c+d2)g1(x)dx+1G2d∫cf(a+b2,y)g2(y)dy]≤1G1G2b∫ad∫cf(x,y)g1(x)g2(y)dydx≤14[1G1b∫a[f(x,c)+f(x,d)]g1(x)dx+1G2d∫c[f(a,y)+f(b,y)]g2(y)dy]≤f(a,c)+f(a,d)+f(b,c)+f(b,d)4 |
which is proved by Farid et al. in [16].
In this section we obtain some fractional Hermite-Hadamard an Fejer type inequalities for co-ordinated hyperbolic ρ-convex functions.
Theorem 7. If f:Δ→R is a co-ordinated hyperbolic ρ-convex functions on Δ, then we have the following Hermite-Hadamard and Fejer type inequalities,
f(a+b2,c+d2)H(α,β)≤[Jα,βa+,c+f(b,d)+Jα,βa+,d−f(b,c)+Jα,βb−,c+f(a,d)+Jα,βb−,d−f(a,c)]≤f(a,c)+f(a,d)+f(b,c)+f(b,d)4sech[ρ1(b−a)2]sech[ρ2(d−c)2]H(α,β) |
where
H(α,β)=1Γ(α)Γ(β)b∫ad∫ccosh[ρ1(x−a+b2)]cosh[ρ2(y−c+d2)]×[(b−x)α−1(d−y)β−1+(b−x)α−1(y−c)β−1+(x−a)α−1(d−y)β−1+(x−a)α−1(y−c)β−1]dydx. |
Proof. If we apply Theorem 5 for the symmetric function
p(x,y)=1Γ(α)Γ(β)[(b−x)α−1(d−y)β−1+(b−x)α−1(y−c)β−1+(x−a)α−1(d−y)β−1+(x−a)α−1(y−c)β−1], |
then we get the following inequality
f(a+b2,c+d2)H(α,β)≤1Γ(α)Γ(β)b∫ad∫cf(x,y)[(b−x)α−1(d−y)β−1+(b−x)α−1(y−c)β−1+(x−a)α−1(d−y)β−1+(x−a)α−1(y−c)β−1]dydx≤f(a,c)+f(a,d)+f(b,c)+f(b,d)4sech[ρ1(b−a)2]sech[ρ2(d−c)2]H(α,β). |
From the definition of the double fractional integrals we have
1Γ(α)Γ(β)b∫ad∫cf(x,y)[(b−x)α−1(d−y)β−1+(b−x)α−1(y−c)β−1+(x−a)α−1(d−y)β−1+(x−a)α−1(y−c)β−1]dydx=[Jα,βa+,c+f(b,d)+Jα,βa+,d−f(b,c)+Jα,βb−,c+f(a,d)+Jα,βb−,d−f(a,c)] |
which completes the proof.
Remark 6. If we choose ρ1=ρ2=0 in Theorem 7, then we have the following fractional Hermite-Hadamard inequality,
f(a+b2,c+d2)≤Γ(α+1)Γ(β+1)4(b−a)α(d−c)β[Jα,βa+,c+f(b,d)+Jα,βa+,d−f(b,c)+Jα,βb−,c+f(a,d)+Jα,βb−,d−f(a,c)]≤f(a,c)+f(a,d)+f(b,c)+f(b,d)4 |
which was proved by Sarikaya in [29,Theorem 4].
Remark 7. If we choose α =β=1 in Theorem 7, then we have
H(1,1)=16ρ1ρ2sinh(ρ1(b−a)2)sinh(ρ2(d−c)2). |
Thus, we get the following Hermite-Hadamard inequality,
4ρ1ρ2f(a+b2,c+d2)sinh(ρ1(b−a)2)sinh(ρ2(d−c)2)≤b∫ad∫cf(x,y)dydx≤f(a,c)+f(a,d)+f(b,c)+f(b,d)ρ1ρ2tanh[ρ1(b−a)2]tanh[ρ2(d−c)2] |
which is proved by Özçelik et al. in [23].
Theorem 8. Let p:Δ→R be a positive, integrable and symmetric about a+b2 and c+d2. If f:Δ→R is a co-ordinated hyperbolic ρ-convex functions on Δ, then we have the following Hermite-Hadamard-Fejer type inequalities,
f(a+b2,c+d2)Hp(α,β)≤[Jα,βa+,c+(fp)(b,d)+Jα,βa+,d−(fp)(b,c)+Jα,βb−,c+(fp)(a,d)+Jα,βb−,d−(fp)(a,c)]≤f(a,c)+f(a,d)+f(b,c)+f(b,d)4sech[ρ1(b−a)2]sech[ρ2(d−c)2]Hp(α,β) |
where
Hp(α,β)=1Γ(α)Γ(β)b∫ad∫ccosh[ρ1(x−a+b2)]cosh[ρ2(y−c+d2)]×[(b−x)α−1(d−y)β−1+(b−x)α−1(y−c)β−1+(x−a)α−1(d−y)β−1+(x−a)α−1(y−c)β−1]p(x,y)dydx. |
Proof. Let us define the function k(x,y) by
k(x,y)=p(x,y)Γ(α)Γ(β)[(b−x)α−1(d−y)β−1+(b−x)α−1(y−c)β−1+(x−a)α−1(d−y)β−1+(x−a)α−1(y−c)β−1], |
Clearly, k(x.y) is a a positive, integrable and symmetric about a+b2 and c+d2. If we apply Theorem 5 for the function k(x,y) then we obtain,
f(a+b2,c+d2)Hp(α,β)≤1Γ(α)Γ(β)b∫ad∫cf(x,y)p(x,y)[(b−x)α−1(d−y)β−1+(b−x)α−1(y−c)β−1+(x−a)α−1(d−y)β−1+(x−a)α−1(y−c)β−1]dydx≤f(a,c)+f(a,d)+f(b,c)+f(b,d)4cosh[ρ1(b−a)2]cosh[ρ2(d−c)2]Hp(α,β). |
From the definition of the double fractional integrals we have
1Γ(α)Γ(β)b∫ad∫cf(x,y)[(b−x)α−1(d−y)β−1+(b−x)α−1(y−c)β−1+(x−a)α−1(d−y)β−1+(x−a)α−1(y−c)β−1]p(x,y)dydx=[Jα,βa+,c+(fp)(b,d)+Jα,βa+,d−(fp)(b,c)+Jα,βb−,c+(fp)(a,d)+Jα,βb−,d−(fp)(a,c)]. |
This completes the proof.
Remark 8. If we choose ρ1=ρ2=0 in Theorem 3, then we have the following fractional Hermite-Hadamard inequality,
f(a+b2,c+d2)[Jα,βa+,c+p(b,d)+Jα,βa+,d−p(b,c)+Jα,βb−,c+p(a,d)+Jα,βb−,d−p(a,c)]≤[Jα,βa+,c+(fp)(b,d)+Jα,βa+,d−(fp)(b,c)+Jα,βb−,c+(fp)(a,d)+Jα,βb−,d−(fp)(a,c)]≤f(a,c)+f(a,d)+f(b,c)+f(b,d)4[Jα,βa+,c+p(b,d)+Jα,βa+,d−p(b,c)+Jα,βb−,c+p(a,d)+Jα,βb−,d−p(a,c)] |
which is proved by Yaldız et all in [34].
Remark 9. If we choose α =β=1 in Theorem 3, then we have Theorem 1.3 reduces to Theorem 5.
Theorem 9. If f:Δ→R is a co-ordinated hyperbolic ρ-convex functions on Δ. Then we have the following Hermite-Hadamard type inequalities for fractional integrals,
f(a+b2,c+d2)H1(α,β)≤12[(Jαa+f(b,c+d2)+Jαb−f(a,c+d2))H2(β)+Jβc+f(d,a+b2)+Jβd−f(c,a+b2)H3(α)]≤[Jα,βa+,c+f(b,d)+Jα,βa+,d−f(b,c)+Jα,βb−,c+f(a,d)+Jα,βb−,d−f(a,c)]≤14[sech[ρ2(d−c)2](Jαa+f(b,c)+Jαa+f(b,d)+Jαb−f(a,c)+Jαb−f(a,d))H2(β)+sech[ρ1(b−a)2](Jβc+f(a,d)+Jβc+f(b,d)+Jβd−f(a,c)+Jβd−f(b,c))H3(α)]≤f(a,c)+f(b,c)+f(a,d)+f(b,d)4sech[ρ1(b−a)2]sech[ρ2(d−c)2]H1(α,β) | (3.1) |
where
H1(α,β)=1Γ(α)Γ(β)b∫ad∫ccosh[ρ1(x−a+b2)]cosh[ρ2(y−c+d2)]×[(b−x)α−1(d−y)β−1+(b−x)α−1(y−c)β−1+(x−a)α−1(d−y)β−1+(x−a)α−1(y−c)β−1]dydx, |
H2(β)=1Γ(β)d∫ccosh[ρ2(y−c+d2)][(d−y)β−1+(y−c)β−1]dy |
and
H3(α,β)=1Γ(α)b∫acosh[ρ1(x−a+b2)][(b−x)α−1+(x−a)α−1]dx. |
Proof. If we apply Theorem 6 for the symmetric function
p(x,y)=1Γ(α)Γ(β)[(b−x)α−1(d−y)β−1+(b−x)α−1(y−c)β−1+(x−a)α−1(d−y)β−1+(x−a)α−1(y−c)β−1], |
then we get the following inequality
f(a+b2,c+d2)H1(α,β)≤12[(1Γ(α)b∫af(x,c+d2)[(b−x)α−1+(x−a)α−1]dx)H2(β)+(1Γ(β)d∫cf(a+b2,y)[(d−y)β−1+(y−c)β−1]dy)H3(α)]≤1Γ(α)Γ(β)b∫ad∫cf(x,y)[(b−x)α−1(d−y)β−1+(b−x)α−1(y−c)β−1+(x−a)α−1(d−y)β−1+(x−a)α−1(y−c)β−1]dydx≤14[sech[ρ2(d−c)2](1Γ(α)b∫a[f(x,c)+f(x,d)][(b−x)α−1+(x−a)α−1]dx)H2(β)+sech[ρ1(b−a)2](1Γ(β)b∫a[f(a,y)+f(b,y)][(d−y)β−1+(y−c)β−1]dx)H3(α)]≤f(a,c)+f(b,c)+f(a,d)+f(b,d)4sech[ρ1(b−a)2]sech[ρ2(d−c)2]H1(α,β). |
This completes the proof.
Remark 10. Under assumptions of Theorem 9 with α=β=1, the inequalities (3.1) reduce to inequalities (2.5) proved by Özçelik et. al in [23].
Remark 11. Under assumptions of Theorem 9 with ρ1=ρ2=0, the inequalities (3.1) reduce to inequalities proved by Sarikaya in [29,Theorem 4]
In this paper, we establish some Fejer type inequalities for co-ordinated hyperbolic ρ-convex functions. By using these inequalities we present some inequalities for Riemann-Liouville fractional integrals. In the future works, authors can prove similar inequalities for other fractional integrals.
All authors declare no conflicts of interest.
[1] |
R. C. Rockne, J. G. Scott, Introduction to mathematical oncology, JCO Clin. Cancer Inform., 3 (2019), 1–4. https://doi.org/10.1200/CCI.19.00010 doi: 10.1200/CCI.19.00010
![]() |
[2] | R. A. Weinberg, The Biology of Cancer, W.W. Norton & Company, (2006). https://doi.org/10.1201/9780203852569 |
[3] |
T. A. Graham, A. Sottoriva, Measuring cancer evolution from the genome, J. Pathol., 241 (2017), 183–191. https://doi.org/10.1002/path.4821 doi: 10.1002/path.4821
![]() |
[4] |
D. Hanahan, R. A. Weinberg, Hallmarks of cancer: The next generation, Cell, 144 (2011), 646–674. https://doi.org/10.1016/j.cell.2011.02.013 doi: 10.1016/j.cell.2011.02.013
![]() |
[5] |
R. D. Schreiber, L. J. Old, M. J. Smyth, Cancer immunoediting: Integrating immunity's roles in cancer suppression and promotion, Science, 331 (2011), 1565–1570. https://doi.org/10.1126/science.1203486 doi: 10.1126/science.1203486
![]() |
[6] |
Y. Zhang, Z. Zhang, The history and advances in cancer immunotherapy: Understanding the characteristics of tumor-infiltrating immune cells and their therapeutic implications, Cell. Mol. Immunol., 17 (2020), 807–821. https://doi.org/10.1038/s41423-020-0488-6 doi: 10.1038/s41423-020-0488-6
![]() |
[7] |
A. Rounds, J. Kolesar, Nivolumab for second-line treatment of metastatic squamous non-small-cell lung cancer, Am. J. Health-Syst. Pharm., 72 (2015), 1851–1855. https://doi.org/10.2146/ajhp150235 doi: 10.2146/ajhp150235
![]() |
[8] |
G. M. Keating, Nivolumab: A review in advanced nonsquamous non-small cell lung cancer, Drugs, 76 (2016), 969–978. https://doi.org/10.1007/s40265-016-0589-9 doi: 10.1007/s40265-016-0589-9
![]() |
[9] |
Y. Iwai, J. Hamanishi, K. Chamoto, T. Honjo, Cancer immunotherapies targeting the PD-1 signaling pathway, J. Biomed. Sci., 24 (2017), 26. https://doi.org/10.1186/s12929-017-0329-9 doi: 10.1186/s12929-017-0329-9
![]() |
[10] |
N. Ghaffari Laleh, C. M. L. Loeffler, J. Grajek, K. Staňková, A. T. Pearson, H. S. Muti, et al., Classical mathematical models for prediction of response to chemotherapy and immunotherapy, PLOS Comput. Biol., 18 (2022), 1–18. https://doi.org/10.1371/journal.pcbi.1009822 doi: 10.1371/journal.pcbi.1009822
![]() |
[11] |
I. Ezhov, K. Scibilia, K. Franitza, F. Steinbauer, S. Shit, L. Zimmer, et al., Learn-Morph-Infer: A new way of solving the inverse problem for brain tumor modeling, Med. Image Anal., 83 (2023), 102672. https://doi.org/10.1016/j.media.2022.102672 doi: 10.1016/j.media.2022.102672
![]() |
[12] |
A. K. Laird, Dynamics of tumour growth: Comparison of growth rates and extrapolation of growth curve to one cell, Br. J. Cancer, 19 (1965), 278–291. https://doi.org/10.1038/bjc.1965.32 doi: 10.1038/bjc.1965.32
![]() |
[13] | L. Norton, A Gompertzian model of human breast cancer growth, Cancer Res., 48 (1988), 7067–7071. |
[14] |
S. Benzekry, C. Lamont, A. Beheshti, A. Tracz, J. M. L. Ebos, L. Hlatky, et al., Classical mathematical models for description and prediction of experimental tumor growth, PLoS Comput. Biol., 10 (2014), e1003800. https://doi.org/10.1371/journal.pcbi.1003800 doi: 10.1371/journal.pcbi.1003800
![]() |
[15] |
M. Bilous, C. Serdjebi, A. Boyer, P. Tomasini, C. Pouypoudat, D. Barbolosi, et al., Quantitative mathematical modeling of clinical brain metastasis dynamics in non-small cell lung cancer, Sci. Rep., 9 (2019), 13018. https://doi.org/10.1038/s41598-019-49407-3 doi: 10.1038/s41598-019-49407-3
![]() |
[16] |
P. Schlicke, C. Kuttler, C. Schumann, How mathematical modeling could contribute to the quantification of metastatic tumor burden under therapy: Insights in immunotherapeutic treatment of non-small cell lung cancer, Theor. Biol. Med. Model., 18 (2021), 1–15. https://doi.org/10.1186/s12976-021-00142-1 doi: 10.1186/s12976-021-00142-1
![]() |
[17] |
S. Benzekry, C. Sentis, C. Coze, L. Tessonnier, N. André, Development and validation of a prediction model of overall survival in high-risk neuroblastoma using mechanistic modeling of metastasis, JCO Clin. Cancer Inf., 5 (2021), 81–90. https://doi.org/10.1200/CCI.20.00092 doi: 10.1200/CCI.20.00092
![]() |
[18] | S. Benzekry, P. Schlicke, P. Tomasini, E. Simon, Mechanistic modeling of brain metastases in NSCLC provides computational markers for personalized prediction of outcome, medRxiv preprint, 2023. https://doi.org/10.1101/2023.01.10.23284189 |
[19] |
F. Bray, J. Ferlay, I. Soerjomataram, R. L. Siegel, L. A. Torre, A. Jemal, Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries, CA. Cancer J. Clin., 68 (2018), 394–424. https://doi.org/10.3322/caac.21492 doi: 10.3322/caac.21492
![]() |
[20] | C. Zappa, S. A. Mousa, Non-small cell lung cancer: Current treatment and future advances, Transl. Lung Cancer Res., 5 (2016). https://doi.org/10.21037/tlcr.2016.06.07 |
[21] |
W. D. Travis, E. Brambilla, A. G. Nicholson, Y. Yatabe, J. H. Austin, M. B. Beasley, et al., The 2015 world health organization classification of lung tumors: Impact of genetic, clinical and radiologic advances since the 2004 classification, J. Thorac. Oncol., 10 (2015), 1243–1260. https://doi.org/10.1097/JTO.0000000000000630 doi: 10.1097/JTO.0000000000000630
![]() |
[22] | J. S. Lowengrub, H. B. Frieboes, F. Jin, Y. L. Chuang, X. Li, P. Macklin, et al., Nonlinear modelling of cancer: Bridging the gap between cells and tumours, Nonlinearity, 23 (2009). https://doi.org/10.1088/0951-7715/23/1/r01 |
[23] | V. Cristini, J. Lowengrub, Multiscale Modeling of Cancer: An Integrated Experimental and Mathematical Modeling Approach, Cambridge University Press, (2010). https://doi.org/10.1017/cbo9780511781452 |
[24] |
O. Clatz, M. Sermesant, P. Y. Bondiau, H. Delingette, S. K. Warfield, G. Malandain, et al., Realistic simulation of the 3-D growth of brain tumors in MR images coupling diffusion with biomechanical deformation, IEEE Trans. Med. Imaging, 24 (2005), 1334–1346. https://doi.org/10.1109/tmi.2005.857217 doi: 10.1109/tmi.2005.857217
![]() |
[25] |
S. Subramanian, A. Gholami, G. Biros, Simulation of glioblastoma growth using a 3D multispecies tumor model with mass effect, J. Math. Biol., 79 (2019), 941–967. https://doi.org/10.1007/s00285-019-01383-y doi: 10.1007/s00285-019-01383-y
![]() |
[26] |
H. J. Bowers, E. E. Fannin, A. Thomas, J. A. Weis, Characterization of multicellular breast tumor spheroids using image data-driven biophysical mathematical modeling, Sci. Rep., 10 (2020), 1–12. https://doi.org/10.1038/s41598-020-68324-4 doi: 10.1038/s41598-020-68324-4
![]() |
[27] |
P. Friedl, D. Gilmour, Collective cell migration in morphogenesis, regeneration and cancer, Nat. Rev. Mol. Cell Biol., 10 (2009), 445–457. https://doi.org/10.1038/nrm2720 doi: 10.1038/nrm2720
![]() |
[28] |
H. Garcke, K. F. Lam, E. Sitka, V. Styles, A Cahn–Hilliard–Darcy model for tumour growth with chemotaxis and active transport, Math. Models Method Appl. Sci., 26 (2016), 1095–1148. https://doi.org/10.1142/s0218202516500263 doi: 10.1142/s0218202516500263
![]() |
[29] |
S. Frigeri, M. Grasselli, E. Rocca, On a diffuse interface model of tumour growth, Eur. J. Appl. Math., 26 (2015), 215–243. https://doi.org/10.1017/s0956792514000436 doi: 10.1017/s0956792514000436
![]() |
[30] |
H. G. Lee, Y. Kim, J. Kim, Mathematical model and its fast numerical method for the tumor growth, Math. Biosci. Eng., 12 (2015), 1173–1187. https://doi.org/10.3934/mbe.2015.12.1173 doi: 10.3934/mbe.2015.12.1173
![]() |
[31] |
M. Ebenbeck, H. Garcke, Analysis of a Cahn–Hilliard–Brinkman model for tumour growth with chemotaxis, J. Differ. Equations, 266 (2019), 5998–6036. https://doi.org/10.1016/j.jde.2018.10.045 doi: 10.1016/j.jde.2018.10.045
![]() |
[32] |
M. Ebenbeck, H. Garcke, On a Cahn–Hilliard–Brinkman model for tumor growth and its singular limits, SIAM J. Math. Anal., 51 (2019), 1868–1912. https://doi.org/10.1137/18m1228104 doi: 10.1137/18m1228104
![]() |
[33] |
M. Fritz, E. Lima, J. T. Oden, B. Wohlmuth, On the unsteady Darcy–Forchheimer–Brinkman equation in local and nonlocal tumor growth models, Math. Models Method Appl. Sci., 29 (2019), 1691–1731. https://doi.org/10.1142/S0218202519500325 doi: 10.1142/S0218202519500325
![]() |
[34] |
K. F. Lam, H. Wu, Thermodynamically consistent Navier–Stokes–Cahn–Hilliard models with mass transfer and chemotaxis, Eur. J. Appl. Math., 29 (2018), 595–644. https://doi.org/10.1017/s0956792517000298 doi: 10.1017/s0956792517000298
![]() |
[35] | G. Lorenzo, A. M. Jarrett, C. T. Meyer, V. Quaranta, D. R. Tyson, T. E. Yankeelov, Identifying mechanisms driving the early response of triple negative breast cancer patients to neoadjuvant chemotherapy using a mechanistic model integrating in vitro and in vivo imaging data, arXiv preprint, (2022), arXiv: 2212.04270. https://doi.org/10.48550/arXiv.2212.04270 |
[36] |
H. Garcke, K. F. Lam, R. Nürnberg, E. Sitka, A multiphase Cahn–Hilliard–Darcy model for tumour growth with necrosis, Math. Models Method Appl. Sci., 28 (2018), 525–577. https://doi.org/10.1142/s0218202518500148 doi: 10.1142/s0218202518500148
![]() |
[37] |
J. T. Oden, A. Hawkins, S. Prudhomme, General diffuse-interface theories and an approach to predictive tumor growth modeling, Math. Models Method Appl. Sci., 20 (2010), 477–517. https://doi.org/10.1142/s0218202510004313 doi: 10.1142/s0218202510004313
![]() |
[38] |
S. M. Wise, J. S. Lowengrub, H. B. Frieboes, V. Cristini, Three-dimensional multispecies nonlinear tumor growth – I: Model and numerical method, J. Theor. Biol., 253 (2008), 524–543. https://doi.org/10.1016/j.jtbi.2008.03.027 doi: 10.1016/j.jtbi.2008.03.027
![]() |
[39] |
V. Cristini, X. Li, J. S. Lowengrub, S. M. Wise, Nonlinear simulations of solid tumor growth using a mixture model: Invasion and branching, J. Math. Biol., 58 (2009), 723–763. https://doi.org/10.1007/s00285-008-0215-x doi: 10.1007/s00285-008-0215-x
![]() |
[40] |
H. B. Frieboes, F. Jin, Y. L. Chuang, S. M. Wise, J. S. Lowengrub, V. Cristini, Three-dimensional multispecies nonlinear tumor growth – II: Tumor invasion and angiogenesis, J. Theor. Biol., 264 (2010), 1254–1278. https://doi.org/10.1016/j.jtbi.2010.02.036 doi: 10.1016/j.jtbi.2010.02.036
![]() |
[41] |
E. Lima, J. T. Oden, R. Almeida, A hybrid ten-species phase-field model of tumor growth, Math. Models Method Appl. Sci., 24 (2014), 2569–2599. https://doi.org/10.1142/s0218202514500304 doi: 10.1142/s0218202514500304
![]() |
[42] |
A. Hawkins-Daarud, K. G. van der Zee, J. T. Oden, Numerical simulation of a thermodynamically consistent four-species tumor growth model, Int. J. Numer. Meth. Biol., 28 (2012), 3–24. https://doi.org/10.1002/cnm.1467 doi: 10.1002/cnm.1467
![]() |
[43] |
M. Fritz, P. K. Jha, T. Köppl, J. T. Oden, A. Wagner, B. Wohlmuth, Modeling and simulation of vascular tumors embedded in evolving capillary networks, Comput. Methods Appl. Mech. Eng., 384 (2021), 113975. https://doi.org/10.1016/j.cma.2021.113975 doi: 10.1016/j.cma.2021.113975
![]() |
[44] |
M. Fritz, P. K. Jha, T. Köppl, J. T. Oden, B. Wohlmuth, Analysis of a new multispecies tumor growth model coupling 3D phase-fields with a 1D vascular network, Nonlinear Anal. Real World Appl., 61 (2021), 103331. https://doi.org/10.1016/j.nonrwa.2021.103331 doi: 10.1016/j.nonrwa.2021.103331
![]() |
[45] |
G. Lorenzo, M. A. Scott, K. Tew, T. J. Hughes, Y. J. Zhang, L. Liu, et al., Tissue-scale, personalized modeling and simulation of prostate cancer growth, Proc. Natl. Acad. Sci., 113 (2016), E7663–E7671. https://doi.org/10.1073/pnas.1615791113 doi: 10.1073/pnas.1615791113
![]() |
[46] |
G. Song, T. Tian, X. Zhang, A mathematical model of cell-mediated immune response to tumor, Math. Biosci. Eng., 18 (2021), 373–385. https://doi.org/10.3934/mbe.2021020 doi: 10.3934/mbe.2021020
![]() |
[47] |
D. Kirschner, A. Tsygvintsev, On the global dynamics of a model for tumor immunotherapy, Math. Biosci. Eng., 6 (2009), 573–583. https://doi.org/10.3934/mbe.2009.6.573 doi: 10.3934/mbe.2009.6.573
![]() |
[48] |
K. R. Fister, J. H. Donnelly, Immunotherapy: An optimal control theory approach, Math. Biosci. Eng., 2 (2005), 499–510. https://doi.org/10.3934/mbe.2005.2.499 doi: 10.3934/mbe.2005.2.499
![]() |
[49] | A. Soboleva, A. Kaznatcheev, R. Cavill, K. Schneider, K. Stankova, Polymorphic gompertzian model of cancer validated with in vitro and in vivo data, bioRxiv preprint, 2023. https://doi.org/10.1101/2023.04.19.537467 |
[50] |
G. G. Powathil, D. J. Adamson, M. A. Chaplain, Towards predicting the response of a solid tumour to chemotherapy and radiotherapy treatments: Clinical insights from a computational model, PLoS Comput. Biol., 9 (2013), 1–14. https://doi.org/10.1371/journal.pcbi.1003120 doi: 10.1371/journal.pcbi.1003120
![]() |
[51] |
C. Wu, D. A. Hormuth, G. Lorenzo, A. M. Jarrett, F. Pineda, F. M. Howard, et al., Towards patient-specific optimization of neoadjuvant treatment protocols for breast cancer based on image-guided fluid dynamics, IEEE Trans. Biomed. Eng., 69 (2022), 3334–3344. https://doi.org/10.1109/tbme.2022.3168402 doi: 10.1109/tbme.2022.3168402
![]() |
[52] |
A. M. Jarrett, D. A. Hormuth, S. L. Barnes, X. Feng, W. Huang, T. E. Yankeelov, Incorporating drug delivery into an imaging-driven, mechanics-coupled reaction diffusion model for predicting the response of breast cancer to neoadjuvant chemotherapy: theory and preliminary clinical results, Phys. Med. Biol., 63 (2018), 105015. https://doi.org/10.1088/1361-6560/aac040 doi: 10.1088/1361-6560/aac040
![]() |
[53] | R. C. Rockne, A. D. Trister, J. Jacobs, A. J. Hawkins-Daarud, M. L. Neal, K. Hendrickson, et al., A patient-specific computational model of hypoxia-modulated radiation resistance in glioblastoma using 18F-FMISO-PET, J. R. Soc. Interface, 12 (2015). https://doi.org/10.1098/rsif.2014.1174 |
[54] |
P. Colli, H. Gomez, G. Lorenzo, G. Marinoschi, A. Reali, E. Rocca, Optimal control of cytotoxic and antiangiogenic therapies on prostate cancer growth, Math. Models Method Appl. Sci., 31 (2021), 1419–1468. https://doi.org/10.1142/s0218202521500299 doi: 10.1142/s0218202521500299
![]() |
[55] |
M. Fritz, C. Kuttler, M. L. Rajendran, L. Scarabosio, B. Wohlmuth, On a subdiffusive tumour growth model with fractional time derivative, IMA J. Appl. Math., 86 (2021), 688–729. https://doi.org/10.1093/imamat/hxab009 doi: 10.1093/imamat/hxab009
![]() |
[56] |
S. A. Quezada, K. S. Peggs, Exploiting CTLA-4, PD-1 and PD-L1 to reactivate the host immune response against cancer, Br. J. Cancer, 108 (2013), 1560–1565. https://doi.org/10.1038/bjc.2013.117 doi: 10.1038/bjc.2013.117
![]() |
[57] |
A. Ribas, Tumor immunotherapy directed at PD-1, N. Engl. J. Med., 366 (2012), 2517–2519. https://doi.org/10.1056/NEJMe1205943 doi: 10.1056/NEJMe1205943
![]() |
[58] |
D. M. Pardoll, The blockade of immune checkpoints in cancer immunotherapy, Nat. Rev. Cancer, 12 (2012), 252–264. https://doi.org/10.1038/nrc3239 doi: 10.1038/nrc3239
![]() |
[59] |
E. N. Rozali, S. V. Hato, B. W. Robinson, R. A. Lake, W. J. Lesterhuis, Programmed death ligand 2 in cancer-induced immune suppression, Clin. Dev. Immunol., 2012 (2012), 1–8. https://doi.org/10.1155/2012/656340 doi: 10.1155/2012/656340
![]() |
[60] |
S. P. Patel, R. Kurzrock, PD-L1 expression as a predictive biomarker in cancer immunotherapy, Mol. Cancer Ther., 14 (2015), 847–856. https://doi.org/10.1158/1535-7163.MCT-14-0983 doi: 10.1158/1535-7163.MCT-14-0983
![]() |
[61] |
Y. Viossat, R. Noble, A theoretical analysis of tumour containment, Nat. Ecol. Evol., 5 (2021), 826–835. https://doi.org/10.1038/s41559-021-01428-w doi: 10.1038/s41559-021-01428-w
![]() |
[62] | T. Hillen, K. J. Painter, M. Winkler, Convergence of a cancer invasion model to a logistic chemotaxis model, Math. Models Method Appl. Sci., 23 (2013), 165–198. |
[63] |
B. Gompertz, On the nature of the function expressive of the law of human mortality, and on the new mode of determining the value of life contingencies, Philos. Trans. R. Soc., 115 (1825), 513–585. https://doi.org/10.1098/rstl.1825.0026 doi: 10.1098/rstl.1825.0026
![]() |
[64] |
K. Erbertseder, J. Reichold, B. Flemisch, P. Jenny, R. Helmig, A coupled discrete/continuum model for describing cancer-therapeutic transport in the lung, PLOS ONE, 7 (2012), 1–17. https://doi.org/10.1371/journal.pone.0031966 doi: 10.1371/journal.pone.0031966
![]() |
[65] |
H. Garcke, K. F. Lam, Well-posedness of a Cahn–Hilliard system modelling tumour growth with chemotaxis and active transport, Eur. J. Appl. Math., 28 (2017), 284–316. https://doi.org/10.1017/S0956792516000292 doi: 10.1017/S0956792516000292
![]() |
[66] |
H. Garcke, K. F. Lam, Analysis of a Cahn–Hilliard system with non-zero Dirichlet conditions modeling tumor growth with chemotaxis, Discrete Contin. Dyn. Syst. Ser. A, 37 (2017), 4277–4308. https://doi.org/10.3934/dcds.2017183 doi: 10.3934/dcds.2017183
![]() |
[67] |
P. Colli, H. Gomez, G. Lorenzo, G. Marinoschi, A. Reali, E. Rocca, Optimal control of cytotoxic and antiangiogenic therapies on prostate cancer growth, Math. Models Method Appl. Sci., 31 (2021), 1419–1468. https://doi.org/10.1142/s0218202521500299 doi: 10.1142/s0218202521500299
![]() |
[68] |
D. J. Eyre, Unconditionally gradient stable time marching the Cahn–Hilliard equation, MRS Online Proc. Lib., 529 (1998), 39–46. https://doi.org/10.1557/proc-529-39 doi: 10.1557/proc-529-39
![]() |
[69] |
S. C. Brenner, A. E. Diegel, L. Y. Sung, A robust solver for a mixed finite element method for the Cahn–Hilliard equation, J. Sci. Comput., 77 (2018), 1234–1249. https://doi.org/10.1007/s10915-018-0753-3 doi: 10.1007/s10915-018-0753-3
![]() |
[70] | S. Balay, S. Abhyankar, M. F. Adams, S. Benson, J. Brown, P. Brune, et al., PETSc/TAO} Users Manual, Technical Report ANL-21/39 - Revision 3.18, Argonne National Laboratory, 2022. |
[71] | A. Logg, K. A. Mardal, G. Wells, Automated Solution of Differential Equations by the Finite Element Method: The FEniCS Book, Springer Science & Business Media, (2012). https://doi.org/10.1007/978-3-642-23099-8 |
[72] | R. Kikinis, S. D. Pieper, K. G. Vosburgh, 3D Slicer: A platform for subject-specific image analysis, visualization, and clinical support, in Intraoperative Imaging and Image-guided Therapy, Springer, (2013), 277–289. https://doi.org/10.1007/978-1-4614-7657-3_19 |
[73] | Blender, Accessed: 2022-12-02. Available from: https://www.blender.org/. |
[74] |
C. Geuzaine, J. F. Remacle, Gmsh: A 3-D finite element mesh generator with built-in pre-and post-processing facilities, Int. J. Numer. Meth. Eng., 79 (2009), 1309–1331. https://doi.org/10.1002/nme.2579 doi: 10.1002/nme.2579
![]() |
[75] | The Vascular Modeling Toolkit website, Accessed: 2022-12-02. www.vmtk.org. |
[76] |
L. Antiga, M. Piccinelli, L. Botti, B. Ene-Iordache, A. Remuzzi, D. A. Steinman, An image-based modeling framework for patient-specific computational hemodynamics, Med. Biol. Eng. Comput., 46 (2008), 1097–1112. https://doi.org/10.1007/s11517-008-0420-1 doi: 10.1007/s11517-008-0420-1
![]() |
[77] |
E. Eisenhauer, P. Therasse, J. Bogaerts, L. Schwartz, D. Sargent, R. Ford, et al., New response evaluation criteria in solid tumours: Revised RECIST guideline (version 1.1), Eur. J. Cancer, 45 (2009), 228–247. https://doi.org/10.1016/j.ejca.2008.10.026 doi: 10.1016/j.ejca.2008.10.026
![]() |
[78] |
L. Hanin, J. Rose, Suppression of metastasis by primary tumor and acceleration of metastasis following primary tumor resection: A natural law, Bull. Math. Biol., 80 (2018), 519–539. https://doi.org/10.1007/s11538-017-0388-9 doi: 10.1007/s11538-017-0388-9
![]() |
1. | Dumitru Baleanu, Artion Kashuri, Pshtiwan Othman Mohammed, Badreddine Meftah, General Raina fractional integral inequalities on coordinates of convex functions, 2021, 2021, 1687-1847, 10.1186/s13662-021-03241-y | |
2. | Han Li, Muhammad Shoaib Saleem, Imran Ahmed, Kiran Naseem Aslam, Hermite–Hadamard and Fejér-type inequalities for strongly reciprocally (p, h)-convex functions of higher order, 2023, 2023, 1029-242X, 10.1186/s13660-023-02960-y | |
3. | Silvestru Sever Dragomir, Mohamed Jleli, Bessem Samet, Hermite-Hadamard-type inequalities for generalized trigonometrically and hyperbolic ρ-convex functions in two dimension, 2024, 22, 2391-5455, 10.1515/math-2024-0028 |