Research article

Pseudo-ordering and $ \delta^{1} $-level mappings: A study in fuzzy interval convex analysis

  • Received: 31 December 2024 Revised: 14 March 2025 Accepted: 20 March 2025 Published: 28 March 2025
  • MSC : 26A51, 26D07, 26D10, 26D15, 26D20

  • This work utilized the concepts of fuzzy interval analysis and convexity to explore some novel refinements of classical counterparts. The main goal was to look into a type of strong convexity that connected the ideas of pseudo-ordering, $ \delta^{1} $-level mappings, and the control function $ \hslash_{\circ} $. This type of mapping is called a fuzzy number-valued $ \hslash_{\circ} $-super-quadratic mapping. An interesting fact is that all the function classes extracted from this class were new and novel and quite useful in the optimization and approximation theory. We assessed this class of functions pertaining to essential properties, examples, and various integral inequalities such as Jensen's, reverse Jensen's, Jensen-Mercer, Hermite-Hadamard and Fejer's like inequalities in the classical, and fractional framework. Furthermore, we delivered the accuracy of our findings through graphical and tabular approaches, particularly a novel application for means.

    Citation: Muhammad Zakria Javed, Muhammad Uzair Awan, Loredana Ciurdariu, Omar Mutab Alsalami. Pseudo-ordering and $ \delta^{1} $-level mappings: A study in fuzzy interval convex analysis[J]. AIMS Mathematics, 2025, 10(3): 7154-7190. doi: 10.3934/math.2025327

    Related Papers:

  • This work utilized the concepts of fuzzy interval analysis and convexity to explore some novel refinements of classical counterparts. The main goal was to look into a type of strong convexity that connected the ideas of pseudo-ordering, $ \delta^{1} $-level mappings, and the control function $ \hslash_{\circ} $. This type of mapping is called a fuzzy number-valued $ \hslash_{\circ} $-super-quadratic mapping. An interesting fact is that all the function classes extracted from this class were new and novel and quite useful in the optimization and approximation theory. We assessed this class of functions pertaining to essential properties, examples, and various integral inequalities such as Jensen's, reverse Jensen's, Jensen-Mercer, Hermite-Hadamard and Fejer's like inequalities in the classical, and fractional framework. Furthermore, we delivered the accuracy of our findings through graphical and tabular approaches, particularly a novel application for means.



    加载中


    [1] K. Nikodem, On strongly convex functions and related classes of functions, In: Handbook of functional equations: functional inequalities, 2014,365–405. https://doi.org/10.1007/978-1-4939-1246-9_16
    [2] A. W. Roberts, D. E. Varberg, Convex functions, New York: Academic Press, 1973.
    [3] K. Nikodem, Z. Pales, Characterizations of inner product spaces by strongly convex functions, Banach J. Math. Anal., 5 (2011), 83–87. https://doi.org/10.15352/bjma/1313362982 doi: 10.15352/bjma/1313362982
    [4] N. Merentes, K. Nikodem, Remarks on strongly convex functions, Aequat. Math., 80 (2010), 193–199. https://doi.org/10.1007/s00010-010-0043-0 doi: 10.1007/s00010-010-0043-0
    [5] M. A. Noor, K. I. Noor, Some characterizations of strongly preinvex functions, J. Math. Anal., 316 (2006), 697–706. https://doi.org/10.1016/j.jmaa.2005.05.014 doi: 10.1016/j.jmaa.2005.05.014
    [6] S. Z. Ullah, M. A. Khan, Z. A. Khan, Y. M. Chu, Coordinate strongly $s$-convex functions and related results, J. Math. Inequal., 14 (2020), 829–843. http://doi.org/10.7153/jmi-2020-14-53 doi: 10.7153/jmi-2020-14-53
    [7] S. Abramovich, G. Jameson, G. Sinnamon, Refining Jensen's inequality, Bull. Math. Soc. Sci. Math. Roumanie, 47 (2004), 3–14.
    [8] M. Kian, Operator Jensen inequality for superquadratic functions, Linear Algebra Appl., 456 (214), 82–87. https://doi.org/10.1016/j.laa.2012.12.011 doi: 10.1016/j.laa.2012.12.011
    [9] M. Kian, S. S. Dragomir, Inequalities involving superquadratic functions and operators, Mediterr. J. Math., 11 (2014), 1205–1214. https://doi.org/10.1007/s00009-013-0357-y doi: 10.1007/s00009-013-0357-y
    [10] J. A. Oguntuase, L. E. Persson, Refinement of Hardy's inequalities via superquadratic and subquadratic functions, J. Math. Anal. Appl., 339 (2008), 1305–1312. https://doi.org/10.1016/j.jmaa.2007.08.007 doi: 10.1016/j.jmaa.2007.08.007
    [11] M. Krnic, H. R. Moradi, M. Sababheh, On superquadratic and logarithmically superquadratic functions, Mediterr. J. Math., 20 (2023), 311. https://doi.org/10.1007/s00009-023-02514-y doi: 10.1007/s00009-023-02514-y
    [12] S. Abramovich, S. Banic, M. Matic, J. Pecaric, Jensen-Steffensen's and related inequalities for superquadratic functions, Math. Inequal. Appl., 11 (2008), 23.
    [13] D. Khan, S. I. Butt, Y. Seol, Analysis of $(P, m)$-superquadratic function and related fractional integral inequalities with applications, J. Inequal. Appl., 2024 (2024), 137. https://doi.org/10.1186/s13660-024-03218-x doi: 10.1186/s13660-024-03218-x
    [14] M. Niezgoda, An extension of Levin-Steckin's theorem to uniformly convex and superquadratic functions, Aequat. Math., 94 (2020), 303–321. https://doi.org/10.1007/s00010-019-00675-4 doi: 10.1007/s00010-019-00675-4
    [15] S. Banic, J. Pecaric, S. Varosanec, Superquadratic functions and refinements of some classical inequalities, J. Korean Math. Soc., 45 (2008), 513–525. https://doi.org/10.4134/JKMS.2008.45.2.513 doi: 10.4134/JKMS.2008.45.2.513
    [16] S. Varosanec, On ${\hslash_{\circ}}$-convexity, J. Math. Anal. Appl., 326 (2007), 303–311. https://doi.org/10.1016/j.jmaa.2006.02.086 doi: 10.1016/j.jmaa.2006.02.086
    [17] M. W. Alomari, C. Chesneau, On ${\hslash_{\circ}}$-superquadratic functions, Afr. Mat., 33 (2022), 41. https://doi.org/10.1007/s13370-022-00984-z doi: 10.1007/s13370-022-00984-z
    [18] R. E. Moore, Interval analysis, Englewood Cliffs: Prentice-Hall, 1966.
    [19] L. A. Zadeh, Fuzzy sets, Inform. Control, 8 (1965), 338–353. https://doi.org/10.1016/S0019-9958(65)90241-X doi: 10.1016/S0019-9958(65)90241-X
    [20] D. Dubois, H. Prade, Towards fuzzy differential calculus part 1: Integration of fuzzy mappings, Fuzzy Sets Syst., 8 (1982), 1–17. https://doi.org/10.1016/0165-0114(82)90025-2 doi: 10.1016/0165-0114(82)90025-2
    [21] S. Nanda, K. Kar, Convex fuzzy mappings, Fuzzy Sets Syst., 48 (1992), 129–132. https://doi.org/10.1016/0165-0114(92)90256-4 doi: 10.1016/0165-0114(92)90256-4
    [22] L. Stefanini, A generalization of Hukuhara difference and division for interval and fuzzy arithmetic, Fuzzy Sets Syst., 161 (2010), 1564–1584. https://doi.org/10.1016/j.fss.2009.06.009 doi: 10.1016/j.fss.2009.06.009
    [23] D. Zhang, C. Guo, D. Chen, G. Wang, Jensen's inequalities for set-valued and fuzzy set-valued functions, Fuzzy Sets Syst., 404 (2021), 178–204. https://doi.org/10.1016/j.fss.2020.06.003 doi: 10.1016/j.fss.2020.06.003
    [24] U. W. Kulisch, W. L. Miranker, Computer arithmetic in theory and practice, New York: Academic press, 2014.
    [25] B. Bede, S. G. Gal, Generalizations of the differentiability of fuzzy-number-valued functions with applications to fuzzy differential equations, Fuzzy Sets Syst., 151 (2005), 581–599. https://doi.org/10.1016/j.fss.2004.08.001 doi: 10.1016/j.fss.2004.08.001
    [26] M. B. Khan, H. G. Zaini, J. E. Macias-Diaz, S. Treanta, M. S. Soliman, Some fuzzy Riemann-Liouville fractional integral inequalities for Preinvex fuzzy interval-valued Functions, Symmetry, 14 (2022), 313. https://doi.org/10.3390/sym14020313 doi: 10.3390/sym14020313
    [27] U. M. Pirzada, D. C. Vakaskar, Existence of Hukuhara differentiability of fuzzy-valued functions, preprint paper, 2017. https://doi.org/10.48550/arXiv.1609.04748T
    [28] Y. Chalco-Cano, R. Rodriguez-Lopez, M. D. Jimenez-Gamero, Characterizations of generalized differentiable fuzzy functions, Fuzzy Sets Syst., 95 (2016), 37–56. https://doi.org/10.1016/j.fss.2015.09.005 doi: 10.1016/j.fss.2015.09.005
    [29] O. Kaleva, Fuzzy differential equations, Fuzzy Sets Syst., 24 (1987), 301–317. https://doi.org/10.1016/0165-0114(87)90029-7 doi: 10.1016/0165-0114(87)90029-7
    [30] D. Zhao, M. A. Ali, A. Kashuri, H. Budak, M. Z. Sarikaya, Hermite-Hadamard-type inequalities for the interval-valued approximately ${\hslash_{\circ}}$-convex functions via generalized fractional integrals, J. Inequal. Appl., 2020 (2020), 222. https://doi.org/10.1186/s13660-020-02488-5 doi: 10.1186/s13660-020-02488-5
    [31] E. R. Nwaeze, M. A. Khan, Y. M. Chu, Fractional inclusions of the Hermite-Hadamard type for $m$-polynomial convex interval-valued functions, Adv. Differ. Equ., 2020 (2020), 507. https://doi.org/10.1186/s13662-020-02977-3 doi: 10.1186/s13662-020-02977-3
    [32] T. Abdeljawad, S. Rashid, H. Khan, Y. M. Chu, On new fractional integral inequalities for $p$-convexity within interval-valued functions, Adv. Differ. Equ., 2020 (2020), 330. https://doi.org/10.1186/s13662-020-02782-y doi: 10.1186/s13662-020-02782-y
    [33] F. Shi, G. Ye, W. Liu, D. Zhao, cr-h-convexity and some inequalities for CR-${\hslash_{\circ}}$-convex function, Filomat, 2022, 1–17.
    [34] W. Liu, F. Shi, G. Ye, D. Zhao, Some inequalities for cr-log-${\hslash_{\circ}}$-convex functions, J. Inequal. Appl., 2022 (2022), 160. https://doi.org/10.1186/s13660-022-02900-2 doi: 10.1186/s13660-022-02900-2
    [35] W. Liu, F. Shi, G. Ye, D. Zhao, The properties of harmonically cr-h-convex function and its applications, Mathematics, 10 (2022), 2089. https://doi.org/10.3390/math10122089 doi: 10.3390/math10122089
    [36] H. Budak, T. Tunc, M. Sarikaya, Fractional Hermite-Hadamard-type inequalities for interval-valued functions, Amer. Math. Soc., 148 (2020), 705–718. https://doi.org/10.1090/proc/14741 doi: 10.1090/proc/14741
    [37] M. Vivas-Cortez, S. Ramzan, M. U. Awan, M. Z. Javed, A. G. Khan, M. A. Noor, Ⅳ-CR-$\gamma$-convex functions and their application in fractional Hermite-Hadamard inequalities, Symmetry, 15 (2023), 1405. https://doi.org/10.3390/sym15071405 doi: 10.3390/sym15071405
    [38] H. Cheng, D. Zhao, M. Z. Sarikaya, Hermite-Hadamard type inequalities for ${\hslash_{\circ}}$-convex function via fuzzy interval-valued fractional $q$-integral, Fractals, 32 (2024), 2450042. https://doi.org/10.1142/S0218348X24500427 doi: 10.1142/S0218348X24500427
    [39] B. B. Mohsin, M. U. Awan, M. Javed, H. Budak, A. G. Khan, M. A. Noor, Inclusions involving interval-valued harmonically co-ordinated convex functions and Raina's fractional double integrals, J. Math., 2022 (2022), 5815993. https://doi.org/10.1155/2022/5815993 doi: 10.1155/2022/5815993
    [40] W. Afzal, E. Y. Prosviryakov, S. M. El-Deeb, Y. Almalki, Some new estimates of Hermite-Hadamard, Ostrowski and Jensen-type inclusions for ${h}$-convex stochastic process via interval-valued functions, Symmetry, 15 (2023), 831. https://doi.org/10.3390/sym15040831 doi: 10.3390/sym15040831
    [41] W. Afzal, A. Alb Lupas, K. Shabbir, Hermite-Hadamard and Jensen-type inequalities for harmonical $(h_1, h_2)$-Godunova-Levin interval-valued functions, Mathematics, 10 (2022), 2970. https://doi.org/10.3390/math10162970 doi: 10.3390/math10162970
    [42] B. Bin-Mohsin, M. Z. Javed, M. U. Awan, A. Kashuri, On some new AB-fractional inclusion relations, Fractal Fract., 7 (2023), 725. https://doi.org/10.3390/fractalfract7100725 doi: 10.3390/fractalfract7100725
    [43] D. Zhao, G. Ye, W. Liu, D. F. Torres, Some inequalities for interval-valued functions on time scale, Soft Comput., 23 (2019), 6005–6015. https://doi.org/10.1007/s00500-018-3538-6 doi: 10.1007/s00500-018-3538-6
    [44] B. Bin-Mohsin, M. Z. Javed, M. U. Awan, B. Meftah, A. Kashuri, Fractional reverse inequalities involving generic interval-valued convex functions and applications, Fractal Fract., 8 (2024), 587. https://doi.org/10.3390/fractalfract8100587 doi: 10.3390/fractalfract8100587
    [45] A. Fahad, Y. Wang, Z. Ali, R. Hussain, S. Furuichi, Exploring properties and inequalities for geometrically arithmetically-cr-convex functions with Cr-order relative entropy, Inform. Sci., 662 (2024), 120219. https://doi.org/10.1016/j.ins.2024.120219 doi: 10.1016/j.ins.2024.120219
    [46] M. Z. Javed, M. U. Awan, L. Ciurdariu, S. S. Dragomir, Y. Almalki, On extended class of totally ordered interval-valued convex stochastic processes and applications, Fractal Fract., 8 (2024), 577. https://doi.org/10.3390/fractalfract8100577 doi: 10.3390/fractalfract8100577
    [47] S. I. Butt, D. Khan, Superquadratic function and its applications in information theory via interval calculus, Chaos Solit. Fract., 190 (2025), 115748. https://doi.org/10.1016/j.chaos.2024.115748 doi: 10.1016/j.chaos.2024.115748
    [48] D. Khan, S. I. Butt, Superquadraticity and its fractional perspective via center-radius cr-order relation, Chaos Solit. Fract., 182 (2024), 114821. https://doi.org/10.1016/j.chaos.2024.114821 doi: 10.1016/j.chaos.2024.114821
    [49] T. M. Costa, A. Flores-Franulic, Y. Chalco-Cano, I. Aguirre-Cipe, Ostrowski-type inequalities for fuzzy-valued functions and its applications in quadrature theory, Inform. Sci., 529 (2020), 101–115. https://doi.org/10.1016/j.ins.2020.04.037 doi: 10.1016/j.ins.2020.04.037
    [50] D. Zhang, C. Guo, D. Chen, G. Wang, Jensen's inequalities for set-valued and fuzzy set-valued functions, Fuzzy Sets Syst., 404 (2021), 178–204. https://doi.org/10.1016/j.fss.2020.06.003 doi: 10.1016/j.fss.2020.06.003
    [51] M. B. Khan, M. A. Noor, P. O. Mohammed, J. L. Guirao, K. I. Noor, Some integral inequalities for generalized convex fuzzy-interval-valued functions via fuzzy Riemann integrals, Int. J. Comput. Intell. Syst., 14 (2021), 158. https://doi.org/10.1007/s44196-021-00009-w doi: 10.1007/s44196-021-00009-w
    [52] M. B. Khan, H. M. Srivastava, P. O. Mohammed, J. E. Macias-Diaz, Y. S. Hamed, Some new versions of integral inequalities for log-preinvex fuzzy-interval-valued functions through fuzzy order relation, Alex. Eng. J., 61 (2022), 7089–7101. https://doi.org/10.1016/j.aej.2021.12.052 doi: 10.1016/j.aej.2021.12.052
    [53] S. Abbaszadeh, M. Eshaghi, A Hadamard-type inequality for fuzzy integrals based on $r$-convex functions, Soft Comput., 20 (2016), 3117–3124. https://doi.org/10.1007/s00500-015-1934-8 doi: 10.1007/s00500-015-1934-8
    [54] B. Bin-Mohsin, S. Rafique, C. Cesarano, M. Z. Javed, M. U. Awan, A. Kashuri, et al., Some general fractional integral inequalities involving LR-bi-convex fuzzy interval-valued functions, Fractal Fract., 6 (10), 565. https://doi.org/10.3390/fractalfract6100565
    [55] D. H. Hong, Berwald and Favard type inequalities for fuzzy integrals, Int. J. Uncertain. Fuzz. Knowl. Based Syst., 24 (2016), 47. https://doi.org/10.1142/S0218488516500033 doi: 10.1142/S0218488516500033
    [56] H. Agahi, M. A. Yaghoobi, A Minkowski type inequality for fuzzy integrals, J. Uncertain Syst., 4 (2010), 187–194.
    [57] Y. Wang, M. Z. Javed, M. U. Awan, B. Bin-Mohsin, B. Meftah, S. Treanta, Symmetric quantum calculus in interval valued frame work: operators and applications, AIMS Math., 9 (2024), 27664–27686. https://doi.org/10.3934/math.20241343 doi: 10.3934/math.20241343
    [58] B. Daraby, A review on some fuzzy integral inequalities, Sahand Commun. Math. Anal., 18 (2021), 153–185. https://doi.org/10.22130/scma.2022.555219.1125 doi: 10.22130/scma.2022.555219.1125
    [59] S. I. Butt, D. Khan, Integral inequalities of $h$-superquadratic functions and their fractional perspective with applications, Math. Meth. Appl. Sci., 48 (2025), 1952–1981. https://doi.org/10.1002/mma.10418 doi: 10.1002/mma.10418
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(940) PDF downloads(36) Cited by(0)

Article outline

Figures and Tables

Figures(4)  /  Tables(4)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog