In this article, we explored the commutativity of a ring $ \Lambda $ that is equipped with a unique class of mappings called centrally extended $ n $-homoderivations, where $ n $ is an integer. These mappings generalize the concepts of derivations and homoderivations. Furthermore, we investigated specific properties of the center of such rings.
Citation: M. S. Tammam El-Sayiad, Munerah Almulhem. On centrally-extended $ n $-homoderivations on rings[J]. AIMS Mathematics, 2025, 10(3): 7191-7205. doi: 10.3934/math.2025328
In this article, we explored the commutativity of a ring $ \Lambda $ that is equipped with a unique class of mappings called centrally extended $ n $-homoderivations, where $ n $ is an integer. These mappings generalize the concepts of derivations and homoderivations. Furthermore, we investigated specific properties of the center of such rings.
| [1] | I. N. Herstein, Topics in ring theory, Chicago: University of Chicago Press, 1969. |
| [2] |
H. E. Bell, M. N. Daif, On centrally-extended maps on rings, Beitr. Algebra Geom., 57 (2016), 129–136. https://doi.org/10.1007/s13366-015-0244-8 doi: 10.1007/s13366-015-0244-8
|
| [3] | M. S. Tammam El-Sayiad, N. M. Muthana, Z. S. Alkhamisi, On right generalized $(\alpha, \beta)$-derivations in prime rings, East-West J. Math., 18 (2016), 47–51. |
| [4] | M. M. El-Soufi, Rings with some kinds of mappings, Cairo University, 2000. |
| [5] | A. Melaibari, N. Muthana, A. Al-Kenani, Homoderivations on rings, G. Math. Notes, 35 (2016), 1–8. |
| [6] |
E. F. Alharfie, N. M. Mthana, The commutativity of prime rings with homoderivations, Int. J. Adv. Appl. Sci., 5 (2018), 79–81. https://doi.org/10.21833/ijaas.2018.05.010 doi: 10.21833/ijaas.2018.05.010
|
| [7] | E. F. Alharfie, N. M. Mthana, On homoderivations and commutativity of rings, Bull. Int. Math. Virtual. Inst., 9 (2019), 301–304. |
| [8] | N. Rehman, M. R. Mozumder, A. Abbasi, Homoderivations on ideals of prime and semiprime rings, Aligarh Bull. Math., 38 (2019), 77–87. |
| [9] |
M. S. T. El-Sayiad, M. Almulhem, On centrally extended mappings that are centrally extended additive, AIMS Math., 9 (2024), 33254–33262. https://doi.org/10.3934/math.20241586 doi: 10.3934/math.20241586
|
| [10] |
M. M. El-Soufi, A. Ghareeb, Centrally-extended $\alpha $-homoderivations on prime and semiprime rings, J. Math., 2022 (2022), 5. https://doi.org/10.1155/2022/2584177 doi: 10.1155/2022/2584177
|
| [11] |
A. Boua, E. Koç Sögütcü, Semiprime rings with generalized homoderivations, Bol. da Soc. Paran. Matematica 41 (2023), 8. https://doi.org/10.5269/bspm.62479 doi: 10.5269/bspm.62479
|
| [12] |
M. S. T. El-Sayiad, A. Ageeb, A. Ghareeb, Centralizing $n$-homoderivations of semiprime rings, J. Math., 2022 (2022), 8. https://doi.org/10.1155/2022/1112183 doi: 10.1155/2022/1112183
|
| [13] |
L. O. Chung, Nil derivations, J. Algebra, 95 (1985), 20–30. https://doi.org/10.1016/0021-8693(85)90089-4 doi: 10.1016/0021-8693(85)90089-4
|
| [14] |
H. E. Bell, M. N. Daif, On commutativity and strong commutativity preserving maps, Canad. Math. Bull., 37 (1994), 443–447. https://doi.org/10.4153/cmb-1994-064-x doi: 10.4153/cmb-1994-064-x
|
| [15] |
J. H. Mayne, Centralizing mappings of prime rings, Canad. Math. Bull., 26 (1984), 122–126. https://doi.org/10.4153/cmb-1984-018-2 doi: 10.4153/cmb-1984-018-2
|
| [16] |
H. E. Bell, W. S. Martindale, Centralizing mappings of semiprime rings, Can. Math. Bull., 30 (1987), 92–101. https://doi.org/10.4153/CMB-1987-014-x doi: 10.4153/CMB-1987-014-x
|
| [17] |
S. Ali, S. Huang, On derivations in semiprime rings, Algebras Rep. Theory, 15 (2012), 1023–1033. https://doi.org/10.1007/s10468-011-9271-9 doi: 10.1007/s10468-011-9271-9
|
| [18] |
C. K. Liu, On skew derivations in semiprime rings, Algebras Rep. Theory, 16 (2013), 1561–1576. https://doi.org/10.1007/s10468-012-9370-2 doi: 10.1007/s10468-012-9370-2
|
| [19] |
B. L. M. Ferreira, H. Guzzo, R. N. Ferreira, An approach between the multiplicative and additive structure of a Jordan ring, Bull. Iran. Math. Soc., 47 (2021), 961–975. https://doi.org/10.1007/s41980-020-00423-4 doi: 10.1007/s41980-020-00423-4
|
| [20] |
J. C. M. Ferreira, B. L. M. Ferreira, Additivity of $n$-multiplicative maps on alternative rings, Comm. Algebra, 44 (2016), 1557–1568. https://doi.org/10.1080/00927872.2015.1027364 doi: 10.1080/00927872.2015.1027364
|
| [21] |
B. L. M. Ferreira, H. Julius, D. Smigly, Commuting maps and identities with inverse on alternative division rings, J. Algebra, 638 (2024), 488–505. https://doi.org/10.1016/j.jalgebra.2023.09.022 doi: 10.1016/j.jalgebra.2023.09.022
|