Citation: Giacomo Ascione, Enrica Pirozzi. On a stochastic neuronal model integrating correlated inputs[J]. Mathematical Biosciences and Engineering, 2019, 16(5): 5206-5225. doi: 10.3934/mbe.2019260
[1] | Y. Sakai, S. Funahashi and S. Shinomoto, Temporally correlated inputs to leaky integrate-and-fire models can reproduce spiking statistics of cortical neurons, Neural Networks, 12 (1999), 1181– 1190. |
[2] | E. Pirozzi, Colored noise and a stochastic fractional model for correlated inputs and adaptation in neuronal firing, Biol. Cybern., 1–2 (2018), 25–39. |
[3] | L. Sacerdote and M. T. Giraudo, Stochastic Integrate and Fire Models: A Review on Mathematical Methods and Their Applications, in Stochastic Biomathematical Models, Volume 2058 of Lecture Notes in Mathematics, Springer, Berlin, Heidelberg (2012), 99–148. |
[4] | A. Buonocore, L. Caputo, E. Pirozzi, et al., The first passage time problem for gauss-diffusion processes: Algorithmic approaches and applications to LIF neuronal model, Methodol. Comput. Appl. Probab., 13 (2011), 29–57. |
[5] | S. Shinomoto, Y. Sakai and S. Funahashi, The Ornstein–Uhlenbeck process does not reproduce spiking statistics of cortical neurons, Neural Computat., 11 (1997), 935–951. |
[6] | C. F. Stevens and A. M. Zador, Input synchrony and the irregular firing of cortical neurons, Nat. Neurosci., 1 (1998), 210–217. |
[7] | H. Kim and S. Shinomoto, Estimating nonstationary inputs from a single spike train based on a neuron model with adaptation, Math. Bios. Eng., 11 (2014), 49–62. |
[8] | A. Buonocore, L. Caputo, M. F. Carfora, et al., A Leaky Integrate-And-Fire Model With Adapta-tion For The Generation Of A Spike Train. Math. Bios. Eng., 13 (2016), 483–493. |
[9] | A. Bazzani, G. Bassi and G. Turchetti, Diffusion and memory effects for stochastic processes and fractional Langevin equations, Phys. A Stat. Mech. Appl., 324 (2003), 530–550. |
[10] | W. Teka, T. M. Marinov and F. Santamaria, Neuronal Spike Timing Adaptation Described with a Fractional Leaky Integrate-and-Fire Model, PLoS Comput Biol., 10 (2014). |
[11] | G. Ascione and E. Pirozzi, On fractional stochastic modeling of neuronal activity including mem-ory effects, in Computer Aided Systems Theory EUROCAST 2017, LNCS, 10672, (2018), 3–11. |
[12] | E. Salinas and T. J. Sejnowski, Impact of correlated synaptic input on output firing rate and vari-ability in simple neuronal models, J. Neurosci., 20 (2000), 6193–6209. |
[13] | J. Feng and P. Zhang, Behavior of integrate-and-fire and Hodgkin-Huxley models with correlated inputs, Phys. Rev. E, 63 (2001), 051902. |
[14] | N. Brunel and S. Sergi, Firing frequency of leaky intergrate-and-fire neurons with synaptic current dynamics, J. Theor. Biol., 195 (1998), 87–95. |
[15] | E. Salinas and T. J. Sejnowski, Integrate-and-fire neurons driven by correlated stochastic input, Neural. Comput., 14 (2002), 2111–2155. |
[16] | H. C. Tuckwell, F. Y. M. Wan and J.-P. Rospars, A spatial stochastic neuronal model with Orn-steinUhlenbeck input current, Biol. Cybern., 86 (2002), 137–145. |
[17] | N. Fourcaud and N. Brunel, Dynamics of the firing probability of noisy integrate-and-fire neurons, Neural. Comput., 14 (2002), 2057–2110. |
[18] | M. Abundo, On the first passage time of an integrated Gauss-Markov process, SCMJ, 28 (2015), 1–14. |
[19] | M. Abundo and E. Pirozzi, Integrated stationary Ornstein-Uhlenbeck process, and double integral processes , Phys. A Stat. Mech. Appl., 494 (2018), 265–275 |
[20] | R. Kobayashi and K. Kitano, Impact of slow K^{+} currents on spike generation can be described by an adaptive threshold model, J. Comput. Neurosci., 40 (2016), 347–362. |
[21] | M. Pospischil, M. Toledo-Rodriguez, C. Monier, et al., Minimal HodgkinHuxley type models for different classes of cortical and thalamic neurons, Biol. Cybern., 99 (2008), 427–441. |
[22] | R. F. Fox, Stochastic versions of the Hodgkin-Huxley equations, Biophys. J., 72 (1997), 2068–2074. |
[23] | R. Höpfner, E. Löcherbach and M. Thieullen, Ergodicity for a stochastic HodgkinHuxley model driven by OrnsteinUhlenbeck type input, Ann. I. H. Poincare-Pr., 52, Institut Henri Poincaré, 2016. |
[24] | A. Buonocore, L. Caputo, E. Pirozzi,et al., Gauss-diffusion processes for modeling the dynamics of a couple of interacting neurons. Math. Biosci. Eng., 11 (2014), 189–201. |
[25] | M.F.Carfora and E.Pirozzi, Linked Gauss-Diffusion processes for modeling a finite-size neuronal network, Biosystems, 161 (2017), 15–23. |
[26] | A. Jentzen and A. Neuenkirch, A random Euler scheme for Carathèodory differential equations, J. Comput. Appl. Math., 224 (2009), 346–359. |
[27] | P. Cheridito, H. Kawaguchi and M. Maejima, Fractional Ornstein-Uhlenbeck processes, Electron. J. Probab. 8, (2003). |
[28] | A. Tonnelier, H. Belmabrouk and D. Martinez, Event-driven simulations of nonlinear integrate-and-fire neurons, Neural. Comput., 19 (2007), 3226–3238. |
[29] | V. J. Barranca, D. C. Johnson, J. L. Moyher, et al., Dynamics of the exponential integrate-and-fire model with slow currents and adaptation, J. Comput. Neurosci., 37 (2014), 161–180. |
[30] | P. Dayan and L. F. Abbott, Theoretical Neuroscience: Computational and Mathematical Modeling of Neural Systems, MIT press (2001). |
[31] | P. Lánský, Sources of periodical force in noisy integrate-and-fire models of neuronal dynamics, Phys. Rev. E, 55 (1997), 2040–2043. |
[32] | Y. Gai, B. Doiron, V. Kotak, et al, Noise-gated encoding of slow inputs by auditory brainstem neurons with a low-threshold K^{+} current, J. Neurophysiol., 102 (2009), 3447–3460. |
[33] | R. Kobayashi, Y. Tsubo and S. Shinomoto, Made-to-order spiking neuron model equipped with a multi-timescale adaptive threshold, Front. Comput. Neurosc., 3 (2009), 9. |
[34] | E. Di Nardo, A. G. Nobile, E. Pirozzi, et al., A computational approach to first-passage-time problems for GaussMarkov processes, Adv. Appl. Probab., 33 (2001), 453–482. |
[35] | J. L. Doob, Heuristic approach to the Kolmogorov-Smirnov theorems, Ann. Math. Stat., 20 (1949), 393–403. |
[36] | S. Asmussen and P. W. Glynn, Stochastic simulation: algorithms and analysis, Springer Science & Business Media (2007). |