With the aid of the Euler totient function $ \varphi $ and its summation function $ \top $, a new matrix $ \Delta(\varphi, \top) = (\delta(\varphi, \top)_{nk}) $, where
$ \delta(\varphi, \top)_{nk} = \left\{ \begin{array} [c]{ccl} \frac{(-1)^{n-k} \top(k)}{\varphi(n)}, & {n-1\leq k\leq n}, \\ 0, & \text{otherwise} \end{array} \right. $
is constructed to define the domains $ \ell_p(\Delta(\varphi, \top)) $, $ \ell_\infty(\Delta(\varphi, \top)) $, and $ \ell_1(\Delta(\varphi, \top)) $. After obtaining the norms on these domains, it is proved that these spaces are linearly isomorphic to classical ones. Also, their dual spaces are determined. Finally, characterizations of several matrix mappings are stated and proved.
Citation: Merve İlkhan Kara, Dilek Aydın. Certain domains of a new matrix constructed by Euler totient and its summation function[J]. AIMS Mathematics, 2025, 10(3): 7206-7222. doi: 10.3934/math.2025329
With the aid of the Euler totient function $ \varphi $ and its summation function $ \top $, a new matrix $ \Delta(\varphi, \top) = (\delta(\varphi, \top)_{nk}) $, where
$ \delta(\varphi, \top)_{nk} = \left\{ \begin{array} [c]{ccl} \frac{(-1)^{n-k} \top(k)}{\varphi(n)}, & {n-1\leq k\leq n}, \\ 0, & \text{otherwise} \end{array} \right. $
is constructed to define the domains $ \ell_p(\Delta(\varphi, \top)) $, $ \ell_\infty(\Delta(\varphi, \top)) $, and $ \ell_1(\Delta(\varphi, \top)) $. After obtaining the norms on these domains, it is proved that these spaces are linearly isomorphic to classical ones. Also, their dual spaces are determined. Finally, characterizations of several matrix mappings are stated and proved.
| [1] |
I. J. Schoenberg, The integrability of certain functions and related summability methods, The American Mathematical Monthly, 66 (1959), 361–375. https://doi.org/10.2307/2308747 doi: 10.2307/2308747
|
| [2] |
B. Altay, F. Başar, M. Mursaleen, On the Euler sequence spaces which include the spaces $\ell_p$ and $\ell_\infty$ I, Inform. Sciences, 176 (2006), 1450–1462. https://doi.org/10.1016/j.ins.2005.05.008 doi: 10.1016/j.ins.2005.05.008
|
| [3] |
F. Başar, B. Altay, On the space of sequences of $p$-bounded variation and related matrix mappings, Ukr. Math. J., 55 (2003), 136–147. https://doi.org/10.1023/A:1025080820961 doi: 10.1023/A:1025080820961
|
| [4] |
T. Yaying, B. Hazarika, M. Mursaleen, On sequence space derived by the domain of $q$-Cesaro matrix in $\ell_p$ space and the associated operator ideal, J. Math. Anal. Appl., 493 (2021), 124453. https://doi.org/10.1016/j.jmaa.2020.124453 doi: 10.1016/j.jmaa.2020.124453
|
| [5] |
P. Z. Alp, A new paranormed sequence space defined by Catalan conservative matrix, Math. Method. Appl. Sci., 44 (2021), 7651–7658. https://doi.org/10.1002/mma.6530 doi: 10.1002/mma.6530
|
| [6] |
P. Z. Alp, E. E. Kara, New Banach spaces defined by the domain of Riesz-Fibonacci matrix, Korean J. Math., 29 (2021), 665–677. https://doi.org/10.11568/kjm.2021.29.4.665 doi: 10.11568/kjm.2021.29.4.665
|
| [7] | F. Başar, Summability theory and its applications, Istanbul: Bentham Science Publishers, 2012. http://doi.org/10.2174/97816080545231120101 |
| [8] |
M. Mursaleen, A. K. Noman, On some new difference sequence spaces of non-absolute type, Math. Comput. Model., 52 (2010), 603–617. https://doi.org/10.1016/j.mcm.2010.04.006 doi: 10.1016/j.mcm.2010.04.006
|
| [9] |
M. C. Dağlı, T. Yaying, Some results on matrix transformation and compactness for fibonomial sequence spaces, Acta Sci. Math., 89 (2023), 593–609. https://doi.org/10.1007/s44146-023-00087-6 doi: 10.1007/s44146-023-00087-6
|
| [10] | F. Gökçe, Characterizations of matrix and compact operators on BK spaces, Universal Journal of Mathematics and Applications, 6 (2023), 76–85. |
| [11] | S. G. Georgiev, K. Zennir, Multiplicative differential calculus, 1 Eds., New York: Chapman and Hall/CRC, 2022. https://doi.org/10.1201/9781003299080 |
| [12] |
M. İlkhan, E. E. Kara, A new Banach space defined by Euler totient matrix operator, Oper. Matrices, 13 (2019), 527–544. https://doi.org/10.7153/oam-2019-13-40 doi: 10.7153/oam-2019-13-40
|
| [13] |
M. İlkhan, Matrix domain of a regular matrix derived by Euler totient function in the spaces $c_0$ and $c$, Mediterr. J. Math., 17 (2020), 27. https://doi.org/10.1007/s00009-019-1442-7 doi: 10.1007/s00009-019-1442-7
|
| [14] |
S. Demiriz, M. İlkhan, E. E. Kara, Almost convergence and Euler totient matrix, Ann. Funct. Anal., 11 (2020), 604–616. https://doi.org/10.1007/s43034-019-00041-0 doi: 10.1007/s43034-019-00041-0
|
| [15] | M. İlkhan, S. Demiriz, E. E. Kara, A new paranormed sequence space defined by Euler totient matrix, Karaelmas Science and Engineering Journal, 9 (2019), 277–282. |
| [16] |
S. Demiriz, S. Erdem, Domain of Euler-totient matrix operator in the space $\mathcal{L}_p$, Korean J. Math., 28 (2020), 361–378. https://doi.org/10.11568/kjm.2020.28.2.361 doi: 10.11568/kjm.2020.28.2.361
|
| [17] | M. İlkhan, G. C. H. Güleç, A study on absolute Euler totient series space and certain matrix transformations, Mugla Journal of Science and Technology, 6 (2020), 112–119. |
| [18] | G. C. H. Güleç, M. İlkhan, A new characterization of absolute summability factors, Commun. Optim. Theory, 2020 2020, 15. |
| [19] | S. Erdem, S. Demiriz, 4-Dimensional Euler-totient matrix operator and some double sequence spaces, Mathematical Sciences and Applications E-Notes, 8 (2020), 110–122. |
| [20] | M. ${\rm{\dot l}}$khan Kara, M. A. Bayrakdar, A study on matrix domain of Riesz-Euler totient matrix in the space of p-absolutely summable sequences, Communications in Advanced Mathematical Sciences, 4 (2021), 14–25. |
| [21] | U. Devletli, M. İ. Kara, New Banach sequence spaces defined by Jordan totient function, Communications in Advanced Mathematical Sciences, 6 (2023), 211–225. |
| [22] |
M. İlkhan, N. Şimşek, E. E. Kara, A new regular infinite matrix defined by Jordan totient function and its matrix domain in $\ell_p$, Math. Method. Appl. Sci, 44 (2021), 7622–7633. https://doi.org/10.1002/mma.6501 doi: 10.1002/mma.6501
|
| [23] | E. E. Kara, N. Şimşek, M. İ. Kara, On new sequence spaces related to domain of the Jordan totient matrix, In: Sequence space theory with applications, New York: Chapman and Hall/CRC, 2022. |
| [24] |
M. İlkhan, E. E. Kara, F. Usta, Compact operators on the Jordan totient sequence spaces, Math. Method. Appl. Sci., 44 (2021), 7666–7675. https://doi.org/10.1002/mma.6537 doi: 10.1002/mma.6537
|
| [25] |
S. Erdem, S. Demiriz, A new RH-regular matrix derived by Jordan's function and its domains on some double sequence spaces, J. Funct. Spaces, 2021 (2021), 5594751. https://doi.org/10.1155/2021/5594751 doi: 10.1155/2021/5594751
|
| [26] | S. Erdem, S. Demiriz, Some results related to new Jordan totient double sequence spaces, Turkish Journal of Mathematics and Computer Science, 14 (2022), 271-–280. |
| [27] | M. İ. Kara, G. Örnek, Domain of Jordan totient matrix in the space of almost convergent sequences, Mathematical Sciences and Applications E-Notes, 10 (2022), 199–207. |
| [28] |
V. A. Khan, M. Et, M. Faisal, Some new neutrosophic normed sequence spaces defined by Jordan totient operator, Filomat, 37 (2023), 8953-–8968. https://doi.org/10.2298/FIL2326953K doi: 10.2298/FIL2326953K
|
| [29] |
V. A. Khan, T. Umme, Topological properties of Jordan intuitionistic fuzzy normed spaces, Math. Slovaca, 73 (2023), 439–454. https://doi.org/10.1515/ms-2023-0033 doi: 10.1515/ms-2023-0033
|
| [30] |
T. Yaying, N. Saikia, On sequence spaces defined by arithmetic function and Hausdorff measure of noncompactness, Rocky Mountain J. Math., 52 (2022), 1867–1885. https://doi.org/10.1216/rmj.2022.52.1867 doi: 10.1216/rmj.2022.52.1867
|
| [31] |
T. Yaying, N. Saikia, M. Mursaleen, New sequence spaces derived by using generalized arithmetic divisor sum function and compact operators, Forum Math., 37 (2025), 205–223. https://doi.org/10.1515/forum-2023-0138 doi: 10.1515/forum-2023-0138
|
| [32] | A. Wilansky, Summability through functional analysis, Amsterdam: North-Holland, 1984. |
| [33] |
M. Stieglitz, H. Tietz, Matrix transformationen von folgenraumen eine ergebnisübersicht, Math. Z., 154 (1977), 1–16. https://doi.org/10.1007/BF01215107 doi: 10.1007/BF01215107
|
| [34] |
B. Altay, F. Başar, Certain topological properties and duals of the matrix domain of a triangle matrix in a sequence space, J. Math. Anal. Appl., 336 (2007), 632–645. https://doi.org/10.1016/j.jmaa.2007.03.007 doi: 10.1016/j.jmaa.2007.03.007
|