Research article

Generalized $ * $-Ricci soliton on Kenmotsu manifolds

  • Received: 05 December 2024 Revised: 17 March 2025 Accepted: 17 March 2025 Published: 28 March 2025
  • MSC : 53C15, 53C25, 53C44, 53D10

  • In the present paper, we examine generalized $ * $-Ricci solitons on Kenmotsu manifolds. To illustrate our findings, we present an example of a five-dimensional Kenmotsu manifold that admits the generalized $ * $-Ricci soliton.

    Citation: Yanlin Li, Shahroud Azami. Generalized $ * $-Ricci soliton on Kenmotsu manifolds[J]. AIMS Mathematics, 2025, 10(3): 7144-7153. doi: 10.3934/math.2025326

    Related Papers:

  • In the present paper, we examine generalized $ * $-Ricci solitons on Kenmotsu manifolds. To illustrate our findings, we present an example of a five-dimensional Kenmotsu manifold that admits the generalized $ * $-Ricci soliton.



    加载中


    [1] S. Azami, Generalized Ricci solitons of three-dimensional Lorentzian Lie groups associated canonical connections and Kobayashi-Nomizu connections, J. Nonlinear Math. Phys., 30 (2023), 1–33. https://doi.org/10.1007/s44198-022-00069-2 doi: 10.1007/s44198-022-00069-2
    [2] C. S. Bagewadi, V. S. Prasad, Note on Kenmotsu manifolds, Bull. Calcutta Math. Soc., 91 (1999), 379–384.
    [3] G. Calvaruso, Three-dimensional homogeneous generalized Ricci solitons, Mediterr. J. Math., 14 (2017), 1–21. https://doi.org/10.1007/s00009-017-1019-2 doi: 10.1007/s00009-017-1019-2
    [4] G. Catino, P. Mastrolia, D. D. Monticelli, M. Rigoli, On the geometry of gradient Einstein-type manifolds, Pac. J. Math., 286 (2017), 39–67. https://doi.org/10.2140/pjm.2017.286.39 doi: 10.2140/pjm.2017.286.39
    [5] X. Chen, Real hypersurfaces with $*$-Ricci solitons of non-flat complex space forms, Tokyo J. Math., 41 (2018), 433–451. https://doi.org/10.3836/tjm/1502179275 doi: 10.3836/tjm/1502179275
    [6] B. Y. Chen, Classification of torqued vector fields and its applications to Ricci solitons, Kragujev. J. Math., 41 (2017), 239–250. https://doi.org/10.5937/KgJMath1702239C doi: 10.5937/KgJMath1702239C
    [7] B. Y. Chen, A simple characterization of generalized Robertson-Walker space-times, Gen. Relat. Gravit., 46 (2014), 1833. https://doi.org/10.1007/s10714-014-1833-9 doi: 10.1007/s10714-014-1833-9
    [8] P. T. Chrusciel, H. S. Reall, P. Tod, On non-existence of static vacuum black holes with degenerate components of the event horizon, Classical Quant. Grav., 23 (2006), 549–554. https://dx.doi.org/10.1088/0264-9381/23/2/018 doi: 10.1088/0264-9381/23/2/018
    [9] D. Dey, S. Sarkar, A. Bhattacharyya, $*$-$\eta$-Ricci soliton and contact geometry, Ric. Mat., 73 (2024), 1203–1221. https://doi.org/10.1007/s11587-021-00667-0 doi: 10.1007/s11587-021-00667-0
    [10] R. S. Gupta, S. Rani, $*$-Ricci soliton on GSSF with Sasakian metric, Note Mat., 42 (2022), 95–108. https://doi.org/10.1285/i15900932v42n1p95 doi: 10.1285/i15900932v42n1p95
    [11] T. Hamada, Real hypersurfaces of complex space forms in terms of Ricci $*$-tensor, Tokyo J. Math., 25 (2002), 473–483. https://doi.org/10.3836/tjm/1244208866 doi: 10.3836/tjm/1244208866
    [12] R. S. Hamilton, The Ricci flow on surfaces in Mathematics and General Relativity, Contemps. Math., 71 (1988), 237–262.
    [13] A. Haseeb, S. K. Chaubey, Lorentzian Para-Sasakian Manifolds and $*$-Ricci Solitons, Kragujev. J. Math., 48 (2024), 167–179. https://doi.org/10.46793/KgJMat2402.167H doi: 10.46793/KgJMat2402.167H
    [14] J. Jezierski, On the existence of Kundt's metrics and degenerate (or extermal) Killing horizons, Classical Quant. Grav., 26 (2009), 035011. http://dx.doi.org/10.1088/0264-9381/26/3/035011 doi: 10.1088/0264-9381/26/3/035011
    [15] G. Kaimkamis, K. Panagiotidou, $*$-Ricci solitons of real hypersurface in non-flat complex space forms, J. Geom. Phys., 76 (2014), 408–413. https://doi.org/10.1016/j.geomphys.2014.09.004 doi: 10.1016/j.geomphys.2014.09.004
    [16] K. Kenmotsu, A class of almost contact Riemannian manifolds, Tohoku Math. J., 24 (1972), 93–103. https://doi.org/10.2748/tmj/1178241594 doi: 10.2748/tmj/1178241594
    [17] H. K. Kunduri, J. Lucietti, Classifiction of near-horizon geometries of extermal black holes, Living Rev. Relativ., 16 (2013). https://doi.org/10.12942/lrr-2013-8 doi: 10.12942/lrr-2013-8
    [18] Y. Li, S. Bhattacharyya, S. Azami, S. Hui, Li-Yau type estimation of a semilinear parabolic system along geometric flow, J. Inequal. Appl., 131 (2024). https://doi.org/10.1186/s13660-024-03209-y doi: 10.1186/s13660-024-03209-y
    [19] Y. Li, A. K. Mallick, A. Bhattacharyya, M. S. Stankovic, A conformal $\eta$-Ricci soliton on a four-dimensional Lorentzian para-Sasakian manifold, Axioms, 13 (2024), 753. https://doi.org/10.3390/axioms13110753 doi: 10.3390/axioms13110753
    [20] Y. Li, M. S. Siddesha, H. A. Kumara, M. M. Praveena, Characterization of Bach and Cotton tensors on a class of Lorentzian manifolds, Mathematics, 12 (2024), 3130. https://doi.org/10.3390/math12193130 doi: 10.3390/math12193130
    [21] Y. Li, N. Alshehri, A. Ali, Riemannian invariants for warped product submanifolds in $\mathbb{Q}^m_\epsilon\times\mathbb{R}$ and their applications, Open Math., 22 (2024), 20240063. https://doi.org/10.1515/math-2024-0063 doi: 10.1515/math-2024-0063
    [22] P. Nurowski, M. Randall, Generalized Ricci solitons, J. Geom. Anal., 26 (2016), 1280–1345. https://doi.org/10.1007/s12220-015-9592-8 doi: 10.1007/s12220-015-9592-8
    [23] D. S. Patra, F. Mofarreh, A. Ali, Geometry of almost contact metrics as almost $*$-Ricci solitons, Int. J. Geom. Methodes M., 21 (2024), 2450095. https://doi.org/10.1142/S0219887824500956 doi: 10.1142/S0219887824500956
    [24] R. C. Pavithra, H. G. Nagaraja, Almost $*$-$\eta$-Ricci soliton on three-dimensional trans-Sasakian manifolds, Int. J. Geom. Methodes M., 20 (2023), 2350173. https://doi.org/10.1142/S0219887823501736 doi: 10.1142/S0219887823501736
    [25] V. Pirhadi, G. F. Ramandi, S. Azami, Generalized Ricci solitons on three-dimensional Lorentzian walker manifolds, J. Nonlinear Math. Phys., 30 (2023), 1409–1423. https://doi.org/10.1007/s44198-023-00134-4 doi: 10.1007/s44198-023-00134-4
    [26] S. Roy, S. Dey, A. Bhattacharyya, A Kenmotsu metric as a conformal $\eta$-Einstein soliton, Carpathian Math. Publ., 13 (2021), 110–118. https://doi.org/10.15330/cmp.13.1.110-118 doi: 10.15330/cmp.13.1.110-118
    [27] J. A. Schouten, Ricci calculus, Berlin: Springer-Verlag, 1954.
    [28] R. Sharma, Certain results on K-contact and $(\kappa, \mu)$-contact manifolds, J. Geom., 89 (2008), 138–147. https://doi.org/10.1007/s00022-008-2004-5 doi: 10.1007/s00022-008-2004-5
    [29] M. D. Siddiqi, Generalized $\eta$-Ricci solitons in trans Sasakian manifolds, Eurasian B. math., 1 (2018), 107–116.
    [30] S. Tachibana, On almost-analytic vectors in almost Kählerian manifolds, Tohoku Math. J., 11 (1959), 247–265.
    [31] V. Venkatesha, D. M. Naik, H. A. Kumara, $*$-Ricci solitons and gradient almost $*$-Ricci solitons on Kenmotsu manifolds, Math. Slovaca, 69 (2019), 1447–1458. https://doi.org/10.1515/ms-2017-0321 doi: 10.1515/ms-2017-0321
    [32] Y. Wang, Contact 3-manifolds and $*$-Ricci soliton, Kodai Math. J., 43 (2020), 256–267. https://doi.org/10.2996/kmj/1594313553 doi: 10.2996/kmj/1594313553
    [33] K. Yano, Concircular geometry Ⅰ. Concircular tranformations, Proc. Imp. Acad., 16 (1940), 195–200. http:/doi.org/10.3792/pia/1195579139 doi: 10.3792/pia/1195579139
    [34] K. Yano, On the torse-forming directions in Riemannian spaces, Proc. Imp. Acad., 20 (1944), 340–345. https://doi.org/10.3792/pia/1195572958 doi: 10.3792/pia/1195572958
    [35] K. Yano, B. Y. Chen, On the concurrent vector fields of immersed manifolds, Kodai Math. Semin. Rep., 23 (1971), 343–350. https://doi.org/10.2996/kmj/1138846372 doi: 10.2996/kmj/1138846372
    [36] I. H. Yoldas, On Kenmotsu manifolds admitting $\eta$-Ricci-Yamabe solitons, Int. J. Geom. Methodes M., 18 (2021), 2150189. https://doi.org/10.1142/S0219887821501899 doi: 10.1142/S0219887821501899
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(994) PDF downloads(68) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog