Citation: Muhammad Uzair Awan, Nousheen Akhtar, Artion Kashuri, Muhammad Aslam Noor, Yu-Ming Chu. 2D approximately reciprocal ρ-convex functions and associated integral inequalities[J]. AIMS Mathematics, 2020, 5(5): 4662-4680. doi: 10.3934/math.2020299
[1] | Sheza. M. El-Deeb, Gangadharan Murugusundaramoorthy, Kaliyappan Vijaya, Alhanouf Alburaikan . Certain class of bi-univalent functions defined by quantum calculus operator associated with Faber polynomial. AIMS Mathematics, 2022, 7(2): 2989-3005. doi: 10.3934/math.2022165 |
[2] | F. Müge Sakar, Arzu Akgül . Based on a family of bi-univalent functions introduced through the Faber polynomial expansions and Noor integral operator. AIMS Mathematics, 2022, 7(4): 5146-5155. doi: 10.3934/math.2022287 |
[3] | Pinhong Long, Huo Tang, Wenshuai Wang . Functional inequalities for several classes of q-starlike and q-convex type analytic and multivalent functions using a generalized Bernardi integral operator. AIMS Mathematics, 2021, 6(2): 1191-1208. doi: 10.3934/math.2021073 |
[4] | Erhan Deniz, Hatice Tuǧba Yolcu . Faber polynomial coefficients for meromorphic bi-subordinate functions of complex order. AIMS Mathematics, 2020, 5(1): 640-649. doi: 10.3934/math.2020043 |
[5] | Shuhai Li, Lina Ma, Huo Tang . Meromorphic harmonic univalent functions related with generalized (p, q)-post quantum calculus operators. AIMS Mathematics, 2021, 6(1): 223-234. doi: 10.3934/math.2021015 |
[6] | Mohammad Faisal Khan . Certain new applications of Faber polynomial expansion for some new subclasses of υ-fold symmetric bi-univalent functions associated with q-calculus. AIMS Mathematics, 2023, 8(5): 10283-10302. doi: 10.3934/math.2023521 |
[7] | Khadeejah Rasheed Alhindi, Khalid M. K. Alshammari, Huda Ali Aldweby . Classes of analytic functions involving the q-Ruschweyh operator and q-Bernardi operator. AIMS Mathematics, 2024, 9(11): 33301-33313. doi: 10.3934/math.20241589 |
[8] | İbrahim Aktaş . On some geometric properties and Hardy class of q-Bessel functions. AIMS Mathematics, 2020, 5(4): 3156-3168. doi: 10.3934/math.2020203 |
[9] | Ala Amourah, B. A. Frasin, G. Murugusundaramoorthy, Tariq Al-Hawary . Bi-Bazilevič functions of order ϑ+iδ associated with (p,q)− Lucas polynomials. AIMS Mathematics, 2021, 6(5): 4296-4305. doi: 10.3934/math.2021254 |
[10] | Zeya Jia, Nazar Khan, Shahid Khan, Bilal Khan . Faber polynomial coefficients estimates for certain subclasses of q-Mittag-Leffler-Type analytic and bi-univalent functions. AIMS Mathematics, 2022, 7(2): 2512-2528. doi: 10.3934/math.2022141 |
In his survey-cum-expository review article, Srivastava [35] included also a brief overview of the classical q-analysis versus the so-called (p,q)-analysis with an obviously redundant additional parameter p (see, for details, [35,p. 340]). The present sequel to Srivastava's widely-cited review article [35], we apply the concept of q-convolution in order to introduce and study the general Taylor-Maclaurin coefficient estimates for functions belonging to a new class of normalized analytic and bi-close-to-convex functions in the open unit disk, which we have defined here.
Let A denote the class of analytic functions of the form:
f(z)=z+∞∑n=2anzn(z∈Δ), | (1.1) |
where Δ denotes the open unit disk in the complex z-plane given by
Δ:={z:z∈Cand|z|<1}. |
Also let S⊂A consist of functions which are also univalent in Δ.
If the function f is given by (1.1) and the function Υ∈A is given by
Υ(z)=z+∞∑n=2ψnzn(z∈Δ), | (1.2) |
then the Hadamard product (or convolution) of the functions f and Υ is defined by defined by
(f∗Υ)(z):=z+∞∑n=2anψnzn=:(Υ∗f)(z)(z∈Δ). |
For 0≦α<1, we let S∗(α) denote the class of functions g∈S which are starlike of order α in Δ such that
ℜ(zg′(z)g(z))>α(z∈Δ). |
We denote by C(α) the class of functions f∈S which are close-to-convex of order α in Δ such that (see [10,24])
ℜ(zf′(z)g(z))>α(z∈Δ), |
where
g∈S∗(0)=:S∗. |
We note that
S∗(α)⊂C(α)⊂Sand|an|<n(∀f∈S;n∈N∖{1}) |
by the Bieberbach conjecture or the De Branges Theorem (see [3,10]), N being the set of natural numbers (or the positive integers).
In the above-cited review article, Srivastava [35] made use of various operators of q-calculus and fractional q-calculus. We begin by recalling the definitions and notations as follows (see also [33] and [45,pp. 350–351]).
The q-shifted factorial is defined, for λ,q∈C and n∈N0=N∪{0}, by
(λ;q)n={1(n=0)(1−λ)(1−λq)⋯(1−λqn−1)(n∈N). |
By using the q-gamma function Γq(z), we get
(qλ;q)n=(1−q)n Γq(λ+n)Γq(λ)(n∈N0), |
Γq(z)=(1−q)1−z(q;q)∞(qz;q)∞(|q|<1). |
We note also that
(λ;q)∞=∞∏n=0(1−λqn)(|q|<1), |
and that the q-gamma function Γq(z) satisfies the following recurrence relation:
Γq(z+1)=[z]qΓq(z), |
where [λ]q denotes the basic (or q-) number defined as follows:
[λ]q:={1−qλ1−q(λ∈C)1+ℓ−1∑j=1qj(λ=ℓ∈N). | (1.3) |
Using the definition in (1.3), we have the following consequences:
(ⅰ) For any non-negative integer n∈N0, the q-shifted factorial is given by
[n]q!:={1(n=0)n∏k=1[k]q(n∈N). |
(ⅱ) For any positive number r, the generalized q-Pochhammer symbol is defined by
[r]q,n:={1(n=0)r+n−1∏k=r[k]q(n∈N). |
In terms of the classical (Euler's) gamma function Γ(z), it is easily seen that
limq→1−{Γq(z)}=Γ(z). |
We also observe that
limq→1−{(qλ;q)n(1−q)n}=(λ)n, |
where (λ)n is the familiar Pochhammer symbol defined by
(λ)n={1(n=0)λ(λ+1)⋯(λ+n−1)(n∈N). |
For 0<q<1, the q-derivative operator (or, equivalently, the q-difference operator) Dq is defined by (see [22]; see also [14,16,21])
Dq(f∗Υ)(z)=Dq(z+∞∑n=2anψnzn):=(f∗Υ)(z)−(f∗Υ)(qz)z(1−q)=1+∞∑n=2[n]qanψnzn−1(z∈Δ), |
where, as in the definition (1.3),
[n]q={1−qn1−q=1+n−1∑j=1qj(n∈N)0(n=0). | (1.4) |
Remark 1. Whereas a q-extension of the class of starlike functions was introduced in 1990 in [20] by means of the q-derivative operator Dq, a firm footing of the usage of the q-calculus in the context of Geometric Function Theory was actually provided and the generalized basic (or q-) hypergeometric functions were first used in Geometric Function Theory in an earlier book chapter published in 1989 by Srivastava (see, for details, [34]; see also the recent works [25,27,32,36,37,39,40,46,51,52,53,55,56,57]).
For λ>−1 and 0<q<1, El-Deeb et al. [14] defined the linear operator Hλ,qΥ:A→A by
Hλ,qΥf(z)∗Mq,λ+1(z)=zDq(f∗Υ)(z)(z∈Δ), |
where the function Mq,λ(z) is given by
Mq,λ(z)=z+∞∑n=2[λ]q,n−1[n−1]q!zn(z∈Δ). |
A simple computation shows that
Hλ,qΥf(z)=z+∞∑n=2[n]q![λ+1]q,n−1anψnzn(λ>−1;0<q<1;z∈Δ). | (1.5) |
From the defining relation (1.5), we can easily verify that the following relations hold true for all f∈A:
(i)[λ+1]qHλ,qΥf(z)=[λ]qHλ+1,qΥf(z)+qλz Dq(Hλ+1,qΥf(z))(z∈Δ);(ii)IλΥf(z):=limq→1−Hλ,qΥf(z)=z+∞∑n=2n!(λ+1)n−1anψnzm(z∈Δ). | (1.6) |
Remark 2. If we take different particular cases for the coefficients ψn, we obtain the following special cases for the operator Hλ,qh:
(ⅰ) For ψn=1, we obtain the operator Jλq defined by Arif et al. [2] as follows (see also Srivastava [47]):
Jλqf(z):=z+∞∑n=2[n]q![λ+1]q,n−1anzn(z∈Δ); | (1.7) |
(ⅱ) For
ψn=(−1)n−1Γ(υ+1)4n−1(n−1)!Γ(n+υ)andυ>0, |
we obtain the operator Nλυ,q defined by El-Deeb and Bulboacǎ [12] and El-Deeb [11] as follows (see also [16]):
Nλυ,qf(z):=z+∞∑n=2(−1)n−1Γ(υ+1)4n−1(n−1)!Γ(n+υ)⋅[n]q![λ+1]q,n−1anzn=z+∞∑n=2[n]q![λ+1]q,n−1ϕnanzn | (1.8) |
(υ>0;λ>−1;0<q<1; z∈Δ), |
where
ϕn:=(−1)n−1Γ(υ+1)4n−1(n−1)!Γ(n+υ)(n∈N∖{1}); | (1.9) |
(ⅲ) For
ψn=(n+1m+n)α,α>0andn∈N0, |
we obtain the operator Mλ,αm,q defined by El-Deeb and Bulboacǎ (see [13,43]) as follows:
Mλ,αm,qf(z):=z+∞∑n=2(m+1m+n)α⋅[n]q![λ+1]q,n−1anzn(z∈Δ); | (1.10) |
(ⅳ) For
ψn=ρn−1(n−1)!e−ρandρ>0, |
we obtain a q-analogue of the Poisson operator defined in [30] by
Iλ,ρqf(z):=z+∞∑n=2ρn−1(n−1)!e−ρ⋅[n]q![λ+1]q,n−1anzn(z∈Δ); | (1.11) |
(ⅴ) For
\psi_{n} = \binom{m+n-2}{n-1}\; \theta^{n-1}\left(1-\theta \right)^{m}\qquad \left(m\in \mathbb{N};\; 0\leqq \theta \leqq 1\right), |
we get a q -analogue \Psi_{q, \theta}^{\lambda, m} of the Pascal distribution operator as follows (see [15]):
\begin{equation} \Psi_{q,\theta}^{\lambda,m}f(z): = z+\sum\limits_{n = 2}^{\infty} \binom{m+n-2}{n-1}\theta^{n-1}\left(1-\theta \right)^{m}\cdot \frac{[n]_{q}!}{[\lambda+1]_{q,n-1}}\;a_{n}\; z^{n} \end{equation} | (1.12) |
(z\in \Delta). |
If f and F are analytic functions in \Delta , we say that the function f is subordinate to the function F , written as f(z)\prec F(z) , if there exists a Schwarz function s , which is analytic in \Delta with s(0) = 0 and \left\vert s(z)\right\vert < 1 for all z\in \Delta , such that
f(z) = F\big(s(z)\big) \qquad (z\in \Delta). |
Furthermore, if the function F is univalent in \Delta , then we have the following equivalence (see, for example, [7,28])
\begin{equation*} f(z)\prec F(z)\; \Longleftrightarrow \; f(0) = F(0)\qquad \text{and} \qquad f(\Delta)\subset F(\Delta). \end{equation*} |
The Koebe one-quarter theorem (see [10]) asserts that the image of \Delta under every univalent function f\in \mathcal{S} contains the disk of radius \dfrac{1}{4} . Therefore, every function f\in \mathcal{S} has an inverse f^{-1} which satisfies the following inequality:
\begin{equation*} f\big(f^{-1}(w)\big) = w\qquad \left(\left\vert w\right\vert \lt r_{0}\left(f\right); \;r_{0}\left(f\right) \geqq \frac{1}{4}\right) , \end{equation*} |
where
\begin{align*} g(w) & = f^{-1}(w) = w-a_{2}w^{2}+\left(2a_{2}^{2}-a_{3}\right) w^{3}-\left( 5a_{2}^{3}-5a_{2}a_{3}+a_{4}\right) w^{4}+\cdots \\ & = w+\sum\limits_{n = 2}^{\infty}A_{n}\; w^{n}. \end{align*} |
A function f\in \mathcal{A} is said to be bi-univalent in \Delta if both f and f^{-1} are univalent in \Delta . Let \Sigma denote the class of normalized analytic and bi-univalent functions in \Delta given by (1.1). The class \Sigma of analytic and bi-univalent functions was introduced by Lewin [26], where it was shown that
f\in \Sigma \;\Longrightarrow\;\left\vert a_{2}\right\vert \lt 1.51. |
Brannan and Clunie [4] improved Lewin's result to the following form:
f\in \Sigma \;\Longrightarrow\; \left\vert a_{2}\right\vert \lt \sqrt{2} |
and, subsequently, Netanyahu [29] proved that
f\in \Sigma \;\Longrightarrow\;\left\vert a_{2}\right\vert \lt \frac{4}{3}. |
It should be noted that the following functions:
f_{1}(z) = \dfrac{z}{1-z},\quad f_{2}(z) = \dfrac{1}{2}\log\left(\dfrac{1+z}{1-z}\right) \qquad \text{and} \qquad f_{3}(z) = -\log (1-z), |
together with their corresponding inverses given by
f_{1}^{-1}(w) = \dfrac{w}{1+w}, \quad f_{2}^{-1}(w) = \dfrac{e^{2w}-1}{e^{2w}+1} \qquad \text{and} \qquad f_{3}^{-1}(w) = \dfrac{e^{w}-1}{e^{w}}, |
are elements of the analytic and bi-univalent function class \Sigma (see [14,48]). A brief history and interesting examples of the analytic and bi-univalent function class \Sigma can be found in (for example) [5,48].
Brannan and Taha [6] (see also [48]) introduced certain subclasses of the bi-univalent function class \Sigma similar to the familiar subclasses S^{\ast }\left(\alpha \right) and K\left(\alpha \right) of starlike and convex functions of order \alpha \; \left(0\leqq \alpha < 1\right) , respectively (see [5]). Indeed, following Brannan and Taha [6], a function f\in \mathcal{A} is said to be in the class S_{\Sigma}^{\ast }\left(\alpha \right) of bi-starlike functions of order \alpha \; \left(0 < \alpha \leqq 1\right) , if each of the following conditions is satisfied:
\begin{equation*} f\in \Sigma \qquad \text{and}\qquad \left\vert \arg\left(\frac{zf^{\prime}(z)}{ f(z)}\right)\right\vert \lt \frac{\alpha \pi}{2}\qquad (z\in \Delta) \end{equation*} |
and
\begin{equation*} \left\vert \arg\left(\frac{z\mathcal{F}^{\prime}(w)}{\mathcal{F}(w)}\right\vert\right) \lt \frac{\alpha \pi }{2} \qquad (w\in \Delta), \end{equation*} |
where the function \mathcal{F} is the analytic extension of f^{-1} to \Delta , given by
\begin{equation} \mathcal{F}(w) = w-a_{2}w^{2}+\left( 2a_{2}^{2}-a_{3}\right) w^{3}-\left( 5a_{2}^{3}-5a_{2}a_{3}+a_{4}\right) w^{4}+\cdots \qquad (w\in \Delta). \end{equation} | (1.13) |
A function f\in A is said to be in the class K_{\Sigma}^{\ast }\left(\alpha \right) of bi-convex functions of order \alpha \; \left(0 < \alpha \leqq 1\right) , if each of the following conditions is satisfied:
\begin{equation*} f\in \Sigma ,\quad \text{with}\quad \left\vert \arg\left(1+\frac{ zf^{\prime \prime }(z)}{f^{\prime}(z)}\right) \right\vert \lt \frac{\alpha \pi }{2} \qquad (z\in \Delta) \end{equation*} |
and
\begin{equation*} \left\vert \arg\left(1+\frac{zg^{\prime \prime}(w)}{g^{\prime}(w)} \right) \right\vert \lt \frac{\alpha \pi }{2}\qquad (w\in \Delta). \end{equation*} |
The classes S_{\Sigma}^{\ast}\left(\alpha \right) and K_{\Sigma}\left(\alpha \right) of bi-starlike functions of order \alpha in \Delta and bi-convex functions of order \alpha \; \left(0 < \alpha \leqq 1\right) in \Delta , corresponding to the function classes S^{\ast}\left(\alpha \right) and K\left(\alpha \right) , were also introduced analogously. For each of the function classes S_{\Sigma}^{\ast}\left(\alpha \right) and K_{\Sigma}\left(\alpha \right) , non-sharp estimates on the first two Taylor-Maclaurin coefficients \left\vert a_{2}\right\vert and \left\vert a_{3}\right\vert are known (see [6,35,48]). In fact, this pioneering work by Srivastava et al. [48] happens to be one of the most important studies of the bi-univalent function class \Sigma . It not only revived the study of the bi-univalent function class \Sigma in recent years, but it has also inspired remarkably many investigations in this area including the present paper. Some of these many recent papers dealing with problems involving the analytic and bi-univalent functions such as those considered in this article include [1,9,17,23,48], and indeed also many other works (see, for example, [38,44,54]).
Sakar and Güney [31] introduced and studied the following class:
\mathcal{T}_{\Sigma}\left( \lambda,\beta \right) \;\; \left(0\leqq \lambda \leqq 1;\; 0\leqq \beta \lt 1\right). |
In the same way, we define the following subclass of bi-close-to-convex functions \mathcal{H}_{\Sigma}^{q, \lambda }\left(\eta, \beta, \Upsilon \right) as follows.
Definition 1. For 0\leqq \eta < 1 and 0\leqq \beta \leqq 1, \; a function f\in \Sigma has the form (1.1) and the function \Upsilon given by (1.2), the function f is said to be in the class \mathcal{H}_{\Sigma}^{q, \lambda}\left(\eta, \beta, \Upsilon\right) if there exists a function g \in \mathcal{S}^{\ast} such that
\begin{equation} \Re\left(\frac{z\left(\mathcal{H}_{\Upsilon}^{\lambda ,q}f(z)\right) ^{{\prime }}+\beta z^{2}\left( \mathcal{H}_{\Upsilon }^{\lambda ,q}f(z)\right)^{\prime\prime}}{\left(1-\beta \right) \mathcal{H}_{\Upsilon }^{\lambda,q}g(z)+\beta z\left(\mathcal{H}_{\Upsilon }^{\lambda,q}g(z)\right)^{\prime}}\right) \gt \eta \qquad (z\in \Delta) \end{equation} | (1.14) |
and
\begin{equation} \Re\left(\frac{z\left(\mathcal{H}_{\Upsilon}^{\lambda,q}\mathcal{F }(w)\right)^{{\prime}}+\beta z^{2}\left(\mathcal{H}_{\Upsilon}^{\lambda ,q}\mathcal{F}(w)\right) ^{^{{\prime \prime }}}}{\left(1-\beta \right) \mathcal{H}_{\Upsilon }^{\lambda,q}\mathcal{G}(w)+\beta z\left(\mathcal{H} _{\Upsilon }^{\lambda ,q}\mathcal{G}(w)\right)^{{\prime}}}\right) \gt \eta \qquad (w\in \Delta), \end{equation} | (1.15) |
where the function \mathcal{F} is the analytic extension of f^{-1} to \Delta , and is given by (1.13), and \mathcal{G} is the analytic extension of g^{-1} to \Delta as follows:
\begin{equation} \mathcal{G}(w) = w-b_{2}w^{2}+\left(2b_{2}^{2}-b_{3}\right)w^{3}-\left( 5b_{2}^{3}-5b_{2}b_{3}+b_{4}\right) w^{4}+\cdots \qquad (w\in \Delta). \end{equation} | (1.16) |
We note that, if b_{n} = a_{n}\; \; (n\in \mathbb{N}\setminus\{1\}) , \mathcal{S}_{\Sigma }^{q, \lambda}\left(\eta, \beta, \Upsilon\right) becomes the class of bi-starlike functions satisfying the following inequalities:
\begin{equation} \Re\left(\frac{z\left(\mathcal{H}_{\Upsilon}^{\lambda ,q}f(z)\right)^{{\prime}}+\beta z^{2}\left(\mathcal{H}_{\Upsilon }^{\lambda ,q}f(z)\right) ^{\prime \prime}}{\left( 1-\beta \right) \mathcal{H}_{\Upsilon }^{\lambda ,q}f(z)+\beta z\left( \mathcal{H}_{\Upsilon }^{\lambda ,q}f(z)\right)^{\prime}}\right) \gt \eta \qquad (z\in \Delta). \end{equation} | (1.17) |
and
\begin{equation} \Re\left(\frac{z\left(\mathcal{H}_{\Upsilon}^{\lambda ,q}\mathcal{F }(w)\right) ^{{\prime}}+\beta z^{2}\left(\mathcal{H}_{\Upsilon}^{\lambda ,q}\mathcal{F}(w)\right)^{\prime \prime}}{\left(1-\beta \right) \mathcal{H}_{\Upsilon}^{\lambda,q}\mathcal{F}(w)+\beta z\left( \mathcal{H} _{\Upsilon }^{\lambda ,q}\mathcal{F}(w)\right)^{\prime}}\right) \gt \eta \qquad (w\in \Delta). \end{equation} | (1.18) |
Remark 3. Each of the following limit cases when q\rightarrow 1{-} is worthy of note.
(ⅰ) Putting q\rightarrow 1{-} , we obtain
\lim\limits_{q\rightarrow 1{-}}\mathcal{H}_{\Sigma }^{q,\lambda}\left(\eta,\beta,h\right) = : \mathcal{P}_{\Sigma}^{\lambda}\left(\eta,\beta,h\right), |
where \mathcal{P}_{\Sigma}^{\lambda }\left(\eta, \beta, \Upsilon \right) represents the functions f\in \Sigma that satisfy (1.14) and (1.15) with \mathcal{H}_{\Upsilon}^{\lambda, q} replaced by \mathcal{I}_{\Upsilon}^{\lambda} as in (1.6).
(ⅱ) Putting
\psi_{n} = \dfrac{(-1)^{n-1}\Gamma(\upsilon+1)}{ 4^{n-1}\; (n-1)! \;\Gamma(m+\upsilon)}\qquad (\upsilon \gt 0), |
we obtain the class \mathcal{B}_{\Sigma}^{q, \lambda} \left(\eta, \beta, \upsilon\right) representing the functions f\in \Sigma that satisfy (1.14) and (1.15) with \mathcal{H}_{\Upsilon}^{\lambda, q} replaced by \mathcal{N}_{\upsilon, q}^{\lambda} as in (1.8).
(ⅲ) Putting
\psi_{n} = \left(\dfrac{n+1}{m+n}\right)^{\alpha}\qquad (\alpha \gt 0;\; m\geqq \mathbb{N}_0), |
we obtain the class \mathcal{L}_{\Sigma}^{\lambda, q} \left(\eta, \beta, m, \alpha \right) consisting of the functions f\in \Sigma that satisfy (1.14) and (1.15) with \mathcal{H} _{\Upsilon}^{\lambda, q} replaced by \mathcal{M}_{m, q}^{\lambda, \alpha } as in (1.10).
(ⅳ) Putting
\psi_{n} = \dfrac{\rho^{n-1}}{(n-1)!}\;e^{-\rho }\qquad (\rho \gt 0), |
we obtain the class \mathcal{M}_{\Sigma}^{q, \lambda}\left(\eta, \beta, \rho \right) representing the functions f\in \Sigma which satisfy the inequalities in (1.14) and (1.15) with \mathcal{H}_{\Upsilon}^{\lambda, q} replaced by \mathcal{I}_{q}^{\lambda, \rho} as in (1.11).
(ⅴ) Putting
\psi_{n} = \binom{m+n-2}{n-1}\; \theta^{n-1}\left(1-\theta \right)^{m}\qquad \left(m\in \mathbb{N};\; 0\leqq \theta \leqq 1\right), |
we get the class \mathcal{W}_{\Sigma}^{q, \lambda}\left(\eta, \beta, m, \theta \right) of the functions f\in \Sigma which satisfy the inequalities in (1.14) and (1.15) with \mathcal{H}_{\Upsilon}^{\lambda, q} replaced by \Psi_{q, \theta}^{\lambda, m} occurring in (1.12).
Using the Faber polynomial expansion of functions f\in \mathcal{A} which have the normalized form (1.1), the coefficients of its inverse map may be expressed as follows (see [18]):
\begin{equation} \mathcal{F}(w) = f^{-1}(w) = w+\sum\limits_{n = 2}^{\infty}\frac{1}{n}\; K_{n-1}^{-n}(a_{2},a_{3},\cdots)\;w^{n} = w+\sum\limits_{n = 2}^{\infty}A_{n}\;w^{n}, \end{equation} | (1.19) |
where
\begin{align} \mathcal{K}_{n-1}^{-n}(a_{2},a_{3},\cdots) & = \frac{(-n)!}{(-2n+1)!\; (n-1)!} a_{2}^{n-1} \\ &\qquad +\frac{(-n)!}{(2(-n+1))!\; (n-3)!}\;a_{2}^{n-3}\;a_{3} \\ &\qquad +\frac{(-n)!}{(-2n+3)!\; (n-4)!}\;a_{2}^{n-4}\;a_{4} \\ &\qquad +\frac{(-n)!}{ (2(-n+2))!\; (n-5)!}\;a_{2}^{n-5}\;\left[a_{5}+\left(-n+2\right)a_{3}^{2}\right] \\ &\qquad +\frac{(-n)!}{(-2n+5)!\; (n-6)!}\;a_{2}^{n-6} \left[a_{6}+\left(-2n+5\right) a_{3}\;a_{4}\right] \\ &\qquad +\sum\limits_{j\geqq 7}a_{2}^{n-j}U_{j} \end{align} | (1.20) |
such that U_{j} with 7\leqq j\leqq n is a homogeneous polynomial in the variables a_{2}, a_{3}, \cdots, a_{n} . Here such expressions as (for example) (-n)! are to be interpreted symbolically by
\begin{equation*} (-n)!\equiv \Gamma(1-n): = (-n)(-n-1)(-n-2)\cdots \qquad \big(n\in \mathbb{N}_0\big). \end{equation*} |
In particular, the first three terms of \mathcal{K}_{n-1}^{-n} are given by
\begin{align*} \mathcal{K}_{1}^{-2} = -2a_{2}, \end{align*} |
\begin{align*} \mathcal{K}_{2}^{-3} = 3\left(2a_{2}^{2}-a_{3}\right) \end{align*} |
and
\begin{align*} \mathcal{K}_{3}^{-4} = -4\left(5a_{2}^{3}-5a_{2}a_{3}+a_{4}\right). \end{align*} |
In general, an expansion of \mathcal{K}_{m}^{-n} \; (n\in \mathbb{N}) is given by (see [1,8,41,42,47,49,50])
\begin{equation*} \mathcal{K}_{m}^{-n} = na_{m}+\frac{n\left(n-1\right)}{2}\;\mathcal{D}_{m}^{2}+ \frac{n!}{3!\;\left(n-3\right)!}\;\mathcal{D}_{m}^{3}+\cdots+\frac{n!}{m!\left( n-m\right)!}\;\mathcal{D}_{m}^{m}, \end{equation*} |
where
\mathcal{D}_{m}^{n} = \mathcal{D}_{m}^{n}(a_{2},a_{3},a_{4},\cdots) |
and, alternatively,
\begin{equation*} \mathcal{D}_{m}^{n}(a_{2},a_{3},\cdots,a_{m+1}) = \sum\limits_{i_1,\cdots,i_m}\left(\frac{n!}{ i_{1}!\;\cdots\; i_{m}!}\right)\;a_{2}^{i_{1}}\;\cdots\; a_{m+1}^{i_{m}}, \end{equation*} |
where a_{1} = 1 and the sum is taken over all non-negative integers i_{1}, \cdots, i_{m} satisfying the following constraints:
i_{1}+i_{2}+\cdots+i_{m} = n |
and
i_{1}+2i_{2}+\cdots+mi_{m} = m. |
Evidently, we have
\begin{equation*} \mathcal{D}_{m}^{m}(a_{2},a_{3},\cdots,a_{m+1}) = a_{2}^{m}. \end{equation*} |
The following Lemma will be needed to prove our results.
The Carathéodory Lemma. (see [10]) If \phi \in \mathfrak{P} and
\phi(z) = 1+\sum\limits_{n = 1}^{\infty}c_{n}\;z^{n}, |
then
|c_{n}|\leqq 2 \qquad (n \in \mathbb{N}). |
This inequality is sharp for all positive integers n . Here \mathfrak{P} is the family of all functions \phi, which analytic and have positive real part in \Delta, with \phi(0) = 1 .
In this section, we apply the above-described Faber polynomial expansion method, we derive bounds for the general Taylor-Maclaurin coefficients of functions in \mathcal{H}_{\Sigma}^{q, \lambda}\left(\eta, \beta, \Upsilon \right) .
Theorem 1. Let the function f given by (1.1) belong to the class \mathcal{H}_{\Sigma}^{q, \lambda}\left(\eta, \beta, \Upsilon \right) . Suppose also that
0\leqq \eta \lt 1,\quad 0\leqq \beta \leqq 1,\quad \lambda \gt -1 \qquad \mathit{\text{and}} \qquad 0 \lt q \lt 1. |
If a_{k} = 0 for 2\leqq k\leqq n-1, then
\begin{equation*} \left\vert a_{n}\right\vert \leqq \frac{2\left(1-\eta \right) [\lambda +1]_{q,n-1}}{n\left[1+\left(n-1\right)\beta\right] \ [n]_{q}!\,\psi _{n}} +1. \end{equation*} |
Proof. If f\in \mathcal{H}_{\Sigma }^{q, \lambda }\left(\eta, \beta, \Upsilon \right) , then there exists a function g(z) , given by
g(z): = z+\sum\limits_{n = 2}^{\infty}b_{n}\;z^{n}\in S^{\ast}, |
such that
\begin{equation*} \Re\left(\frac{z\left(\mathcal{H}_{\Upsilon}^{\lambda ,q}f(z)\right)^{\prime}+\beta z^{2}\left( \mathcal{H}_{\Upsilon }^{\lambda ,q}f(z)\right)^{\prime \prime}}{\left(1-\beta \right) \mathcal{H}_{\Upsilon}^{\lambda,q}g(z)+\beta z\left(\mathcal{H}_{\Upsilon }^{\lambda,q}g(z)\right)^{{\prime}}}\right) \gt \eta \qquad (z\in \Delta). \end{equation*} |
Moreover, by using the Faber polynomial expansion, we have
\begin{align} &\frac{z\left(\mathcal{H}_{\Upsilon }^{\lambda,q}f(z)\right)^{\prime} +\beta z^{2}\left(\mathcal{H}_{\Upsilon}^{\lambda ,q}f(z)\right) ^{\prime \prime}}{\left(1-\beta \right) \mathcal{H}_{\Upsilon }^{\lambda ,q}g(z)+\beta z\left(\mathcal{H}_{\Upsilon }^{\lambda ,q}g(z)\right)^{\prime}} \\ &\qquad = 1+\sum\limits_{n = 2}^{\infty}\Bigg(\left[1+\beta \left(n-1\right) \right]\; \frac{[n]_{q}!}{[\lambda+1]_{q,n-1}}\,\psi _{n}\left(na_{n}-b_{n}\right) \\ &\qquad \qquad \qquad +\sum\limits_{t = 1}^{n-2}\dfrac{[n,q]!} {[\lambda +1,q]_{n-1}}\,\psi _{n}\left[1+\left(n-t-1\right)\beta \right] \\ &\qquad \qquad \qquad \qquad \cdot K_{t}^{-1}\left[\left( 1+\beta \right) b_{2},\left(1+2\beta \right) b_{3},\cdots, \left(1+t\beta \right) b_{t+1}\right] \\ &\qquad \qquad \qquad \qquad \cdot \left[\left(n-t\right)\ a_{n-t}-b_{n-t}\right] \Bigg) z^{n-1}\qquad (z\in \Delta). \end{align} | (2.1) |
Also, for the inverse map \mathcal{F} = f^{-1}, there exists a function \mathcal{G}(w) , given by
\mathcal{G}(w) = w+\sum\limits_{n = 2}^{\infty}B_{n}\;w^{n}\in S^{\ast}, |
such that
\begin{equation*} \Re\left(\frac{z\left( \mathcal{H}_{\Upsilon }^{\lambda ,q}\mathcal{F }(w)\right) ^{{\prime }}+\beta z^{2}\left( \mathcal{H}_{\Upsilon }^{\lambda ,q}\mathcal{F}(w)\right) ^{{{\prime \prime }}}}{\left( 1-\beta \right) \mathcal{H}_{\Upsilon }^{\lambda ,q}\mathcal{G}(w)+\beta z\left( \mathcal{H} _{\Upsilon }^{\lambda ,q}\mathcal{G}(w)\right) ^{{\prime }}}\right) \gt \eta \qquad (w\in \Delta), \end{equation*} |
the Faber polynomial expansion of the inverse map \mathcal{F} = f^{-1} is given by
\mathcal{F}(w) = w+\sum\limits_{n = 2}^{\infty}A_{n}\;w^{n}, |
so we have
\begin{align} &\frac{z\left(\mathcal{H}_{\Upsilon}^{\lambda,q}\mathcal{F}(w)\right) ^{\prime}+\beta z^{2}\left(\mathcal{H}_{\Upsilon}^{\lambda,q}\mathcal{ F}(w)\right)^{\prime \prime}}{\left(1-\beta \right) \mathcal{H} _{\Upsilon }^{\lambda ,q}\mathcal{G}(w)+\beta z\left(\mathcal{H}_{\Upsilon }^{\lambda ,q}\mathcal{G}(w)\right)^{\prime}} \\ &\qquad = 1+\sum\limits_{n = 2}^{\infty}\Bigg(\left[1+\beta \left(n-1\right)\right]\;\frac{[n]_{q}!}{[\lambda +1]_{q,n-1}}\,\psi _{n}\left(nA_{n}-B_{n}\right) \\ &\qquad \qquad +\sum\limits_{t = 1}^{n-2}\frac{[n]_{q}!}{[\lambda +1]_{q,n-1}}\psi _{n}\left[1+\left(n-t-1\right) \beta \right] \\ &\qquad \qquad \qquad \cdot K_{t}^{-1}\left[\left( 1+\beta \right) B_{2},\left( 1+2\beta \right) B_{3},\cdots,\left(1+t\beta \right) B_{t+1}\right] \\ &\qquad \qquad \qquad \cdot \left[\left(n-t\right) A_{n-t}-B_{n-t}\right] \Bigg)\; w^{n-1}\qquad (w\in \Delta). \end{align} | (2.2) |
Now, since
\begin{equation*} f\in \mathcal{H}_{\Sigma}^{q,\lambda}\left(\eta,\beta,\Upsilon \right) \qquad \text{and}\qquad \mathcal{F} = f^{-1}\in \mathcal{H}_{\Sigma}^{q,\lambda }\left(\eta,\beta,\Upsilon \right) , \end{equation*} |
there are the following two positive real part functions:
\begin{equation*} U(z) = 1+\sum\limits_{n = 1}^{\infty}c_{n}\;z^{n} \end{equation*} |
and
\begin{equation*} V(w) = 1+\sum\limits_{n = 1}^{\infty}d_{n}\;w^{n}, \end{equation*} |
for which
\begin{equation*} \Re\big(U(z)\big) \gt 0\qquad \text{and} \qquad \Re\big( V(w)\big) \gt 0 \qquad (z,w\in \Delta), \end{equation*} |
so that
\begin{align} &\frac{z\left(\mathcal{H}_{\Upsilon}^{\lambda,q}\mathcal{F}(w)\right) ^{\prime}+\beta z^{2}\left(\mathcal{H}_{\Upsilon }^{\lambda,q}\mathcal{ F}(w)\right)^{{{\prime \prime }}}}{\left( 1-\beta \right) \mathcal{H} _{\Upsilon}^{\lambda,q}\mathcal{G}(w)+\beta z\left( \mathcal{H}_{\Upsilon }^{\lambda ,q}\mathcal{G}(w)\right)^{\prime}} = \eta +\left(1-\eta \right) \; U(z) \\ &\qquad = 1+\left(1-\eta \right) \sum\limits_{n = 1}^{\infty}c_{n}\;z^{n} \end{align} | (2.3) |
and
\begin{align} &\frac{z\left(\mathcal{H}_{\Upsilon }^{\lambda ,q}\mathcal{F}(w)\right) ^{{\prime }}+\beta z^{2}\left(\mathcal{H}_{\Upsilon }^{\lambda ,q}\mathcal{ F}(w)\right)^{\prime \prime}}{\left(1-\beta \right) \mathcal{H} _{\Upsilon }^{\lambda ,q}\mathcal{G}(w)+\beta z\left(\mathcal{H}_{\Upsilon }^{\lambda ,q}\mathcal{G}(w)\right)^{\prime}} = \eta +\left(1-\eta \right)\; V(w) \\ &\qquad = 1+\left(1-\eta \right)\sum\limits_{n = 1}^{\infty}d_{n}\;w^{n}. \end{align} | (2.4) |
Now, under the assumption that a_{k} = 0 for 0\leqq k\leqq n-1, we obtain A_{n} = -a_{n}. Then, by using (2.1) and comparing the corresponding coefficients in (2.3), we obtain
\begin{equation} \left[1+\beta \left(n-1\right)\right] \;\frac{[n]_{q}!}{[\lambda+1]_{q,n-1} }\,\psi_{n}\left(na_{n}-b_{n}\right) = \left(1-\eta \right)\; c_{n-1}. \end{equation} | (2.5) |
Similarly, by using (2.2) in the Eq (2.4), we find that
\begin{equation} \left[1+\beta \left(n-1\right) \right]\; \frac{[n]_{q}!}{[\lambda +1]_{q,n-1} }\,\psi_{n}\left(nA_{n}-B_{n}\right) = \left(1-\eta \right)\; d_{n-1}, \end{equation} | (2.6) |
\begin{equation} \left[1+\beta \left(n-1\right) \right]\; \frac{[n]_{q}!}{[\lambda +1]_{q,n-1} }\,\psi_{n}\left(na_{n}-b_{n}\right) = \left(1-\eta \right) \;c_{n-1} \end{equation} | (2.7) |
and
\begin{equation} -\left[ 1+\beta \left(n-1\right) \right] \frac{[n]_{q}!}{[\lambda +1]_{q,n-1}}\,\psi_{n}\left(-na_{n}-B_{n}\right) = \left(1-\eta \right)\; d_{n-1}. \end{equation} | (2.8) |
Taking the moduli of both members of (2.7) and (2.8) for
\left\vert b_{n}\right\vert \leqq n\qquad \text{and} \qquad \left\vert B_{n}\right\vert \leqq n, |
and applying the Carathéodory Lemma, we conclude that
\begin{equation*} \left\vert a_{n}\right\vert \leqq \frac{2\left(1-\eta \right) [\lambda +1]_{q,n-1}}{n\left[1+\left(n-1\right) \beta \right] \; [n]_{q}!\,\psi_{n}} +1, \end{equation*} |
which completes the proof of Theorem 1.
If we set
\psi_{n} = \dfrac{(-1)^{n-1}\Gamma (\upsilon+1)}{4^{n-1}\;(n-1)!\;\Gamma (n+\upsilon)}\qquad (\upsilon \gt 0) |
in Theorem 1, we obtain the following special case.
Corollary 1. Let the function f given byt (1.1) belong to the class \mathcal{B}_{\Sigma}^{q, \lambda}\left(\eta, \beta, \upsilon \right) . Suppose also tha
0\leqq \eta \lt 1,\quad 0\leqq \beta \leqq 1,\quad \lambda \gt -1,\quad \upsilon \gt 0\qquad \mathit{\text{and}} \qquad 0 \lt q \lt 1. |
If a_{k} = 0 for 2\leqq k\leqq n-1, then
\begin{equation*} \left\vert a_{n}\right\vert \leqq \frac{2\left(1-\eta \right)[\lambda +1]_{q,n-1}}{n\left[1+\left( n-1\right) \beta \right] \; [n]_{q}!\;\phi_{n}} +1, \end{equation*} |
where \phi_{n} is given by (1.9).
Upon putting
\psi_{n} = \left(\dfrac{n+1}{m+n}\right)^{\alpha} \qquad (\alpha \gt 0;\; m\in \mathbb{N}_0) |
in Theorem 1, we obtain the following result.
Corollary 2. Let the function f given by (1.1) belong to the class \mathcal{L}_{\Sigma}^{q, \lambda}\left(\eta, \beta, m, \alpha \right) . Suppose also that
0\leqq \eta \lt 1,\quad 0\leqq \beta \leqq 1,\quad \lambda \gt -1,\quad \alpha \gt 0,\quad m\in \mathbb{N}_0 \qquad \mathit{\text{and}} \qquad 0 \lt q \lt 1. |
If a_{k} = 0 for 2\leqq k\leqq n-1, then
\begin{equation*} \left\vert a_{n}\right\vert \leqq \frac{2\left(1-\eta \right) \left( m+n\right)^{\alpha}\;[\lambda +1]_{q,n-1}}{n\left[1+\left(n-1\right) \beta \right] \; [n]_{q}!\,\left(n+1\right)^{\alpha}}+1. \end{equation*} |
If we take
\psi_{n} = \dfrac{\rho^{n-1}}{(n-1)!}\;e^{-\rho}\qquad (\rho \gt 0) |
in Theorem 1, we obtain the following special case.
Corollary 3. Let the function f given by (1.1) belong to the class \mathcal{M}_{\Sigma}^{q, \lambda}\left(\eta, \beta, \rho \right) . Suppose also that
0\leqq \eta \lt 1,\quad 0\leqq \beta \leqq 1,\quad\lambda \gt -1,\quad \rho \gt 0 \qquad \mathit{\text{and}} \qquad 0 \lt q \lt 1. |
If a_{k} = 0 for 2\leqq k\leqq n-1, then
\begin{equation*} \left\vert a_{n}\right\vert \leqq \frac{2\left(1-\eta \right)\;(n-1)!\;[\lambda +1]_{q,n-1}}{n\left[1+\left(n-1\right) \beta \right] \; [n]_{q}!\;\rho ^{n-1}\;e^{-\rho }}+1. \end{equation*} |
Upon setting
\psi_{n} = \binom{m+n-2}{n-1}\ \theta^{n-1}\;\left(1-\theta \right)^{m}\qquad \left(m\in\mathbb{N};\; 0\leqq \theta \leqq 1\right) |
in Theorem 1, we are led to the following result for the above-defined class \mathcal{W}_{\Sigma}^{q, \lambda}\left(\eta, \beta, m, \theta\right) .
Corollary 4. Let the function f given by (1.1) belong to the following class :
\mathcal{W}_{\Sigma}^{q,\lambda}\left(\eta,\beta,m,\theta \right) |
(0\leqq \eta \lt 1;\; 0\leqq \beta \leqq 1;\;\lambda \gt -1;\; 0 \lt q \lt 1;\; m\in \mathbb{N};\; 0\leqq\theta \leqq 1). |
If a_{k} = 0 for 2\leqq k\leqq n-1, then
\left\vert a_{n}\right\vert \leqq \frac{2\left(1-\eta\right) [\lambda +1]_{q,n-1}}{n\left[1+\left(n-1\right)\beta \right] \; [n]_{q}!\; \binom{m+n-2}{n-1}\; \theta^{n-1}\;\left(1-\theta \right)^{m}}+1. |
In particular, if we let g(z) = f(z) , we obtain the class \mathcal{S}_{\Sigma }^{q, \lambda}\left(\eta, \beta, \Upsilon \right) , which is a subclass of \mathcal{H}_{\Sigma }^{q, \lambda}\left(\eta, \beta, \Upsilon\right) . We then give the next theorem, which involves the coefficients of this subclass of the analytic and bi-starlike functions in \Delta .
Theorem 2. Let the function f given by (1.1) belong to the class \mathcal{S}_{\Sigma}^{q, \lambda}\left(\eta, \beta, \Upsilon \right) . Suppose also that
\gamma \geqq 1,\quad \eta \geqq 0,\quad \lambda \gt -1, \quad 0\leqq\beta \lt 1 \qquad \mathit{\text{and}} \qquad 0 \lt q \lt 1. |
Then
\begin{equation} \left\vert a_{2}\right\vert \leqq \left\{ \begin{array}{ll} \frac{2\left( 1-\eta \right) [\lambda +1]_{q}}{\left( 1+\beta \right) \ [2]_{q}!\,\psi _{2}}& \qquad \left(0\leqq \eta \lt 1-\frac{\left( 1+\beta \right) ^{2}\ \left( [2]_{q}!\right) ^{2}\,[\lambda +2]_{q}\ \psi _{2}^{2}}{ 2\left( 1+2\beta -\beta ^{2}\right) \ [3]_{q}!\,[\lambda +1]_{q}\ \psi _{3}} \right) \\ \\ \sqrt{\frac{2\left( 1-\eta \right) [\lambda +1]_{q,2}}{\left( 1+2\beta -\beta ^{2}\right) \ [3]_{q}!\,\psi _{3}}} &\qquad \left(1-\frac{\left(1+\beta \right)^{2}\ \left([2]_{q}!\right)^{2}\,[\lambda +2]_{q}\ \psi_{2}^{2}}{ 2\left(1+2\beta -\beta ^{2}\right) \ [3]_{q}!\,[\lambda +1]_{q} \psi_{3}} \leqq \eta \lt 1\right) \end{array} \right. \end{equation} | (2.9) |
and
\begin{equation} \left\vert a_{3}\right\vert \leqq \left\{ \begin{array}{ll} \frac{2\left(1-\eta \right) [\lambda +1]_{q,2}}{\left( 1+2\beta -\beta ^{2}\right) \ [3]_{q}!\,\psi _{3}} &\quad \left(0\leqq \eta \lt 1-\frac{\left(1+\beta \right)^{2}\ \left( [2]_{q}!\right)^{2}\,[\lambda +2]_{q}\ \psi _{2}^{2}}{2\left(1+2\beta -\beta ^{2}\right) \ [3]_{q}!\,[\lambda +1]_{q}\ \psi _{3}}\right) \\ \\ \frac{\left(1-\eta \right)}{\left(1+2\beta \right)}\left(\tfrac{ [\lambda +1]_{q,2}}{[3]_{q}!\,\psi_{3}}+\tfrac{2\left(1-\eta\right) [\lambda +1]_{q}^{2}}{\left([2]_{q}!\right)^{2}\ \psi_{2}^{2}}\right) &\quad \left(1-\tfrac{\left(1+\beta \right)^{2}\ \left([2]_{q}!\right) ^{2}\,[\lambda +2]_{q}\ \psi_{2}^{2}}{2\left(1+2\beta -\beta ^{2}\right) \ [3]_{q}![\lambda +1]_{q}\ \psi _{3}}\leqq \eta \lt 1\right). \end{array} \right. \end{equation} | (2.10) |
Proof. Putting n = 2 and n = 3 in (2.5) and (2.6), we have
\begin{equation} \left( 1+\beta \right) \ \frac{[2]_{q}!}{[\lambda +1]_{q}}\,\psi _{2}a_{2} = \left( 1-\eta \right) c_{1}, \end{equation} | (2.11) |
\begin{equation} \left[ 2\left( 1+2\beta \right) \ a_{3}-\left(1+\beta \right)^{2}a_{2}^{2} \right] \frac{[3]_{q}!}{[\lambda +1]_{q,2}}\,\psi_{3} = \left( 1-\eta \right) c_{2}, \end{equation} | (2.12) |
\begin{equation} -\left( 1+\beta \right) \ \frac{[2]_{q}!}{[\lambda +1]_{q}}\,\psi _{2}a_{2} = \left( 1-\eta \right) d_{1} \end{equation} | (2.13) |
and
\begin{equation} \left[ -2\left( 1+2\beta \right) \ a_{3}+\left(3+6\beta -\beta ^{2}\right) a_{2}^{2}\right] \frac{[3]_{q}!}{[\lambda +1]_{q,2}}\,\psi _{3} = \left( 1-\eta \right) d_{2}. \end{equation} | (2.14) |
From (2.11) and (2.13), by using the Carathéodory Lemma, we obtain
\begin{align} \left\vert a_{2}\right\vert & = \frac{\left( 1-\eta \right) [\lambda +1]_{q}\left\vert c_{1}\right\vert }{\left( 1+\beta \right) [2]_{q}!\psi _{2} } = \frac{\left( 1-\beta \right) [\lambda +1]_{q}\left\vert d_{1}\right\vert }{ \left( 1+\gamma +2\eta \right) [2]_{q}!\psi _{2}} \\ &\leq \frac{2\left( 1-\eta \right) [\lambda +1]_{q}}{\left( 1+\beta \right) [2]_{q}!\psi _{2}}. \end{align} | (2.15) |
Also, from (2.12) and (2.14), we have
\begin{equation*} 2\left(1+2\beta -\beta ^{2}\right) \ \frac{[3]_{q}!}{[\lambda +1]_{q,2}} \,\psi _{3}a_{2}^{2} = \left( 1-\beta \right) \left( c_{2}+d_{2}\right). \end{equation*} |
Thus, by using the Carathéodory Lemma, we obtain
\begin{equation} \left\vert a_{2}\right\vert \leqq \sqrt{\frac{2\left( 1-\beta \right) [\lambda +1]_{q,2}}{\left( 1+2\beta -\beta ^{2}\right) \ [3]_{q}!\,\psi _{3}} }. \end{equation} | (2.16) |
From (2.15) and (2.16), we obtain the desired estimate on the coefficient \left\vert a_{2}\right\vert as asserted in (2.9).
In order to find the bound on the coefficient \left\vert a_{3}\right\vert, we subtract (2.14) from (2.12), so that
\begin{equation*} 4\left(1+2\beta \right) \ \frac{[3]_{q}!}{[\lambda +1]_{q,2}}\,\psi _{3}\left( a_{3}-a_{2}^{2}\right) = \left( 1-\eta \right) \left( c_{2}-d_{2}\right), \end{equation*} |
that is,
\begin{equation} a_{3} = a_{2}^{2}+\frac{\left(1-\eta \right) \left( c_{2}-d_{2}\right) [\lambda +1]_{q,2}}{4\left(1+2\beta \right)\; [3]_{q}!\; \psi_{3}}. \end{equation} | (2.17) |
Now, upon substituting the value of a_{2}^{2} from (2.16) into (2.17) and using the Carathéodory Lemma, we find that
\begin{equation} \left\vert a_{3}\right\vert \leqq \frac{2\left( 1-\beta \right) [\lambda +1]_{q,2}}{\left( 1+2\beta -\beta ^{2}\right) \ [3]_{q}!\;\psi _{3}}. \end{equation} | (2.18) |
Moreover, upon substituting the value of a_{2}^{2} from (2.11) into (2.12), we have
\begin{equation*} a_{3} = \frac{\left(1-\eta \right)}{2\left(1+2\beta \right)}\left(\frac{ [\lambda+1]_{q,2}\ c_{2}}{[3]_{q}!\psi_{3}}+\frac{\left(1-\eta \right) [\lambda+1]_{q}^{2}c_{1}^{2}}{\left([2]_{q}!\right)^{2}\psi_{2}^{2}} \right). \end{equation*} |
Applying the Carathéodory Lemma, we obtain
\begin{equation} \left\vert a_{3}\right\vert \leqq \frac{\left( 1-\eta \right) }{\left( 1+2\beta \right) }\left(\frac{[\lambda +1]_{q,2}\ }{[3]_{q}!\psi _{3}}+ \frac{2\left(1-\eta \right) [\lambda +1]_{q}^{2}}{\left([2]_{q}!\right) ^{2}\psi_{2}^{2}}\right). \end{equation} | (2.19) |
Finally, by combining (2.18) and (2.19), we have the desired estimate on the coefficient \left\vert a_{3}\right\vert as asserted in (2.10). The proof of Theorem 2 is thus completed.
In our present investigation, we have made use of the concept of q -convolution with a view to introducing a new class of analytic and bi-close-to-convex functions in the open unit disk. For functions belonging to this analytic and bi-univalent function class, we have derived estimates for the general coefficients in their Taylor-Maclaurin series expansions in the open unit disk. Our methodology is based essentially upon the Faber polynomial expansion method. We have also presented a number of corollaries and consequences of our main results.
In his recently-published review-cum-expository review article, in addition to applying the q -analysis to Geometric Function Theory of Complex Analysis, Srivastava [35] pointed out the fact that the results for the q -analogues can easily (and possibly trivially) be translated into the corresponding results for the (p, q) -analogues (with 0 < q < p \leqq 1 ) by applying some obvious parametric and argument variations, the additional parameter p being redundant. Of course, this exposition and observation of Srivastava [35,p. 340] would apply also to the results which we have considered in our present investigation for 0 < q < 1 .
The authors received no funding for the investigation leading to the completion of this article.
The authors declare that there is no conflict of interest in respect of this article.
[1] | M. K. Wang, H. H. Chu, Y. M. Li, et al. Answers to three conjectures on convexity of three functions involving complete elliptic integrals of the first kind, Appl. Anal. Discrete Math., 14 (2020), 255-271. |
[2] |
T. H. Zhao, L. Shi, Y. M. Chu, Convexity and concavity of the modified Bessel functions of the first kind with respect to Hölder means, RACSAM, 114 (2020), 1-14. doi: 10.1007/s13398-019-00732-2
![]() |
[3] |
X. M. Hu, J. F. Tian, Y. M. Chu, et al. On Cauchy-Schwarz inequality for N-tuple diamond-alpha integral, J. Inequal. Appl., 2020 (2020), 1-15. doi: 10.1186/s13660-019-2265-6
![]() |
[4] |
S. Rashid, M. A. Noor, K. I. Noor, et al. Ostrowski type inequalities in the sense of generalized \mathcal{K}-fractional integral operator for exponentially convex functions, AIMS Mathematics, 5 (2020), 2629-2645. doi: 10.3934/math.2020171
![]() |
[5] |
S. Zaheer Ullah, M. Adil Khan, Y. M. Chu, A note on generalized convex functions, J. Inequal. Appl., 2019 (2019), 1-10. doi: 10.1186/s13660-019-1955-4
![]() |
[6] |
S. Khan, M. Adil Khan, Y. M. Chu, Converses of the Jensen inequality derived from the Green functions with applications in information theory, Math. Method. Appl. Sci., 43 (2020), 2577-2587. doi: 10.1002/mma.6066
![]() |
[7] |
W. M. Qian, Z. Y. He, Y. M. Chu, Approximation for the complete elliptic integral of the first kind, RACSAM, 114 (2020), 1-12. doi: 10.1007/s13398-019-00732-2
![]() |
[8] | S. Khan, M. Adil Khan, Y. M. Chu, New converses of Jensen inequality via Green functions with applications, RACSAM, 114 (2020), 114. |
[9] | Z. H. Yang, W. M. Qian, W. Zhang, et al. Notes on the complete elliptic integral of the first kind, Math. Inequal. Appl., 23 (2020), 77-93. |
[10] |
Y. M. Chu, M. K. Wang, S. L. Qiu, et al. Bounds for complete elliptic integrals of the second kind with applications, Comput. Math. Appl., 63 (2012), 1177-1184. doi: 10.1016/j.camwa.2011.12.038
![]() |
[11] |
W. M. Qian, Y. Y. Yang, H. W. Zhang, et al. Optimal two-parameter geometric and arithmetic mean bounds for the Sándor-Yang mean, J. Inequal. Appl., 2019 (2019), 1-12. doi: 10.1186/s13660-019-1955-4
![]() |
[12] |
H. Z. Xu, Y. M. Chu, W. M. Qian, Sharp bounds for the Sándor-Yang means in terms of arithmetic and contra-harmonic means, J. Inequal. Appl., 2018 (2018), 1-13. doi: 10.1186/s13660-017-1594-6
![]() |
[13] |
W. M. Qian, Z. Y. He, H. W. Zhang, et al. Sharp bounds for Neuman means in terms of twoparameter contraharmonic and arithmetic mean, J. Inequal. Appl., 2019 (2019), 1-13. doi: 10.1186/s13660-019-1955-4
![]() |
[14] | W. M. Qian, W. Zhang, Y. M. Chu, Bounding the convex combination of arithmetic and integral means in terms of one-parameter harmonic and geometric means, Miskolc Math. Notes, 20 (2019), 1157-1166. |
[15] |
M. K. Wang, Z. Y. He, Y. M. Chu, Sharp power mean inequalities for the generalized elliptic integral of the first kind, Comput. Meth. Funct. Th., 20 (2020), 111-124. doi: 10.1007/s40315-020-00298-w
![]() |
[16] |
B. Wang, C. L. Luo, S. H. Li, et al. Sharp one-parameter geometric and quadratic means bounds for the Sándor-Yang means, RACSAM, 114 (2020), 1-10. doi: 10.1007/s13398-019-00732-2
![]() |
[17] | M. K. Wang, M. Y. Hong, Y. F. Xu, et al. Inequalities for generalized trigonometric and hyperbolic functions with one parameter, J. Math. Inequal., 14 (2020), 1-21. |
[18] | S. Rashid, F. Jarad, M. A. Noor, et al. Inequalities by means of generalized proportional fractional integral operators with respect another function, Mathematics, 7 (2019), 1-18. |
[19] | S. Rashid, F. Jarad, Y. M. Chu, A note on reverse Minkowski inequality via generalized proportional fractional integral operator with respect to another function, Math. Probl. Eng., 2020 (2020), 1-12. |
[20] | S. Rashid, F. Jarad, H. Kalsoom, et al. On Pólya-Szegö and Ćebyšev type inequalities via generalized k-fractional integrals, Adv. Differ. Equ., 2020 (2020), 125. |
[21] | I. Abbas Baloch, Y. M. Chu, Petrović-type inequalities for harmonic h-convex functions, J. Funct. Space., 2020 (2020), 1-17. |
[22] |
M. Adil Khan, M. Hanif, Z. A. Khan, et al. Association of Jensen's inequality for s-convex function with Csiszár divergence, J. Inequal. Appl., 2019 (2019), 1-14. doi: 10.1186/s13660-019-1955-4
![]() |
[23] | S. Zaheer Ullah, M. Adil Khan, Z. A. Khan, et al. Integral majorization type inequalities for the functions in the sense of strong convexity, J. Funct. Space., 2019 (2019), 1-11. |
[24] |
S. Rafeeq, H. Kalsoom, S. Hussain, et al. Delay dynamic double integral inequalities on time scales with applications, Adv. Differ. Equ., 2020 (2020), 1-32. doi: 10.1186/s13662-019-2438-0
![]() |
[25] |
S. Rashid, R. Ashraf, M. A. Noor, et al. New weighted generalizations for differentiable exponentially convex mappings with application, AIMS Mathematics, 5 (2020), 3525-3546. doi: 10.3934/math.2020229
![]() |
[26] | İ. İşcan, Hermite-Hadamard type inequalities for harmonically convex functions, Hacet. J. Math. Stat., 43 (2014), 935-942. |
[27] | M. A. Noor, K. I. Noor, M. U. Awan, et al. Some integral inequalities for harmonically h-convex functions, Politehn. Univ. Bucharest Sci. Bull. Ser. A Appl. Math. Phys., 77 (2015), 5-16. |
[28] |
M. A. Noor, K. I. Noor, M. U. Awan, Integral inequalities for coordinated harmonically convex functions, Complex Var. Elliptic Equ., 60 (2015), 776-786. doi: 10.1080/17476933.2014.976814
![]() |
[29] |
M. U. Awan, M. A. Noor, M. V. Mihai, et al. On approximately harmonic h-convex functions depending on a given function, Filomat, 33 (2019), 3783-3793. doi: 10.2298/FIL1912783A
![]() |
[30] |
M. A. Latif, S. Rashid, S. S. Dragomir, et al. Hermite-Hadamard type inequalities for co-ordinated convex and qausi-convex functions and their applications, J. Inequal. Appl., 2019 (2019), 1-33. doi: 10.1186/s13660-019-1955-4
![]() |
[31] |
M. Adil Khan, N. Mohammad, E. R. Nwaeze, et al. Quantum Hermite-Hadamard inequality by means of a Green function, Adv. Differ. Equ., 2020 (2020), 1-20. doi: 10.1186/s13662-019-2438-0
![]() |
[32] | A. Iqbal, M. Adil Khan, S. Ullah, et al. Some new Hermite-Hadamard-type inequalities associated with conformable fractional integrals and their applications, J. Funct. Space., 2020 (2020), 1-18. |
[33] | S. Rashid, M. A. Noor, K. I. Noor, et al. Hermite-Hadamrad type inequalities for the class of convex functions on time scale, Mathematics, 7 (2019), 1-20. |
[34] | M. U. Awan, S. Talib, Y. M. Chu, et al. Some new refinements of Hermite-Hadamard-type inequalities involving Ψk-Riemann-Liouville fractional integrals and applications, Math. Probl. Eng., 2020 (2020), 1-10. |
[35] |
M. U. Awan, N. Akhtar, S. Iftikhar, et al. Hermite-Hadamard type inequalities for n-polynomial harmonically convex functions, J. Inequal. Appl., 2020 (2020), 1-12. doi: 10.1186/s13660-019-2265-6
![]() |
[36] |
S. S. Dragomir, On the Hadamard's inequality for convex functions on the co-ordinates in a rectangle from the plane, Taiwanese J. Math., 5 (2001), 775-788. doi: 10.11650/twjm/1500574995
![]() |
[37] |
H. Budak, H. Kara, M. E. Kiri, On Hermite-Hadamard type inequalities for co-ordinated trigonometrically ρ-convex functions, Tbilisi Math. J., 13 (2020), 1-26. doi: 10.32513/tbilisi/1585015215
![]() |
[38] | T. H. Zhao, Y. M. Chu, H. Wang, Logarithmically complete monotonicity properties relating to the gamma function, Abstr. Appl. Anal., 2011 (2011), 1-13. |
[39] |
G. J. Hai, T. H. Zhao, Monotonicity properties and bounds involving the two-parameter generalized Grötzsch ring function, J. Inequal. Appl., 2020 (2020), 1-17. doi: 10.1186/s13660-019-2265-6
![]() |
[40] |
S. L. Qiu, X. Y. Ma, Y. M. Chu, Sharp Landen transformation inequalities for hypergeometric functions, with applications, J. Math. Anal. Appl., 474 (2019), 1306-1337. doi: 10.1016/j.jmaa.2019.02.018
![]() |
[41] |
M. K. Wang, Y. M. Chu, Y. P. Jiang, Ramanujan's cubic transformation inequalities for zerobalanced hypergeometric functions, Rocky Mountain J. Math., 46 (2016), 679-691. doi: 10.1216/RMJ-2016-46-2-679
![]() |
[42] | M. K. Wang, Y. M. Chu, W. Zhang, Monotonicity and inequalities involving zero-balanced hypergeometric function, Math. Inequal. Appl., 22 (2019), 601-617. |
1. | Abbas Kareem Wanas, Horadam polynomials for a new family of \lambda -pseudo bi-univalent functions associated with Sakaguchi type functions, 2021, 1012-9405, 10.1007/s13370-020-00867-1 | |
2. | Hari Mohan Srivastava, Ahmad Motamednezhad, Safa Salehian, Coefficients of a Comprehensive Subclass of Meromorphic Bi-Univalent Functions Associated with the Faber Polynomial Expansion, 2021, 10, 2075-1680, 27, 10.3390/axioms10010027 | |
3. | H. M. Srivastava, T. M. Seoudy, M. K. Aouf, A generalized conic domain and its applications to certain subclasses of multivalent functions associated with the basic (or q -) calculus, 2021, 6, 2473-6988, 6580, 10.3934/Math.2021388 | |
4. | H. M. Srivastava, T. M. Seoudy, M. K. Aouf, A generalized conic domain and its applications to certain subclasses of multivalent functions associated with the basic (or q -) calculus, 2021, 6, 2473-6988, 6580, 10.3934/math.2021388 | |
5. | Likai Liu, Rekha Srivastava, Jin-Lin Liu, Applications of Higher-Order q-Derivative to Meromorphic q-Starlike Function Related to Janowski Function, 2022, 11, 2075-1680, 509, 10.3390/axioms11100509 | |
6. | Wali Khan Mashwan, Bakhtiar Ahmad, Muhammad Ghaffar Khan, Saima Mustafa, Sama Arjika, Bilal Khan, A. M. Bastos Pereira, Pascu-Type Analytic Functions by Using Mittag-Leffler Functions in Janowski Domain, 2021, 2021, 1563-5147, 1, 10.1155/2021/1209871 | |
7. | Sheza. M. El-Deeb, Gangadharan Murugusundaramoorthy, Kaliyappan Vijaya, Alhanouf Alburaikan, Certain class of bi-univalent functions defined by quantum calculus operator associated with Faber polynomial, 2022, 7, 2473-6988, 2989, 10.3934/math.2022165 | |
8. | Ebrahim Analouei Adegani, Nak Eun Cho, Davood Alimohammadi, Ahmad Motamednezhad, Coefficient bounds for certain two subclasses of bi-univalent functions, 2021, 6, 2473-6988, 9126, 10.3934/math.2021530 | |
9. | Jie Zhai, Rekha Srivastava, Jin-Lin Liu, Faber Polynomial Coefficient Estimates of Bi-Close-to-Convex Functions Associated with Generalized Hypergeometric Functions, 2022, 10, 2227-7390, 3073, 10.3390/math10173073 | |
10. | Mohammad Faisal Khan, Certain new applications of Faber polynomial expansion for some new subclasses of \upsilon -fold symmetric bi-univalent functions associated with q -calculus, 2023, 8, 2473-6988, 10283, 10.3934/math.2023521 | |
11. | Daniel Breaz, Sheza El-Deeb, Seher Aydoǧan, Fethiye Sakar, The Yamaguchi–Noshiro Type of Bi-Univalent Functions Connected with the Linear q-Convolution Operator, 2023, 11, 2227-7390, 3363, 10.3390/math11153363 | |
12. | Sheza M. El-Deeb, Luminita-Ioana Cotîrlă, Coefficient Estimates for Quasi-Subordination Classes Connected with the Combination of q-Convolution and Error Function, 2023, 11, 2227-7390, 4834, 10.3390/math11234834 | |
13. | Ala Amourah, Abdullah Alsoboh, Daniel Breaz, Sheza M. El-Deeb, A Bi-Starlike Class in a Leaf-like Domain Defined through Subordination via q̧-Calculus, 2024, 12, 2227-7390, 1735, 10.3390/math12111735 | |
14. | Bilal Khan, H. M. Srivastava, Muhammad Tahir, Maslina Darus, Qazi Zahoor Ahmad, Nazar Khan, Applications of a certain q-integral operator to the subclasses of analytic and bi-univalent functions, 2021, 6, 2473-6988, 1024, 10.3934/math.2021061 | |
15. | Serap Bulut, Coefficient bounds for q-close-to-convex functions associated with vertical strip domain, 2024, 38, 0354-5180, 6003, 10.2298/FIL2417003B | |
16. | Gangadharan Murugusundaramoorthy, Alina Alb Lupas, Alhanouf Alburaikan, Sheza M. El-Deeb, Coefficient functionals for Sakaguchi-type-Starlike functions subordinated to the three-leaf function, 2025, 58, 2391-4661, 10.1515/dema-2025-0123 |