Citation: Naila Mehreen, Matloob Anwar. Some inequalities via Ψ-Riemann-Liouville fractional integrals[J]. AIMS Mathematics, 2019, 4(5): 1403-1415. doi: 10.3934/math.2019.5.1403
[1] | Saad Ihsan Butt, Artion Kashuri, Muhammad Umar, Adnan Aslam, Wei Gao . Hermite-Jensen-Mercer type inequalities via Ψ-Riemann-Liouville k-fractional integrals. AIMS Mathematics, 2020, 5(5): 5193-5220. doi: 10.3934/math.2020334 |
[2] | Yousaf Khurshid, Muhammad Adil Khan, Yu-Ming Chu . Conformable integral version of Hermite-Hadamard-Fejér inequalities via η-convex functions. AIMS Mathematics, 2020, 5(5): 5106-5120. doi: 10.3934/math.2020328 |
[3] | M. Emin Özdemir, Saad I. Butt, Bahtiyar Bayraktar, Jamshed Nasir . Several integral inequalities for (α, s,m)-convex functions. AIMS Mathematics, 2020, 5(4): 3906-3921. doi: 10.3934/math.2020253 |
[4] | Yousaf Khurshid, Muhammad Adil Khan, Yu-Ming Chu . Conformable fractional integral inequalities for GG- and GA-convex functions. AIMS Mathematics, 2020, 5(5): 5012-5030. doi: 10.3934/math.2020322 |
[5] | Muhammad Uzair Awan, Nousheen Akhtar, Artion Kashuri, Muhammad Aslam Noor, Yu-Ming Chu . 2D approximately reciprocal ρ-convex functions and associated integral inequalities. AIMS Mathematics, 2020, 5(5): 4662-4680. doi: 10.3934/math.2020299 |
[6] | Muhammad Amer Latif, Mehmet Kunt, Sever Silvestru Dragomir, İmdat İşcan . Post-quantum trapezoid type inequalities. AIMS Mathematics, 2020, 5(4): 4011-4026. doi: 10.3934/math.2020258 |
[7] | Hengxiao Qi, Muhammad Yussouf, Sajid Mehmood, Yu-Ming Chu, Ghulam Farid . Fractional integral versions of Hermite-Hadamard type inequality for generalized exponentially convexity. AIMS Mathematics, 2020, 5(6): 6030-6042. doi: 10.3934/math.2020386 |
[8] | Ghulam Farid, Saira Bano Akbar, Shafiq Ur Rehman, Josip Pečarić . Boundedness of fractional integral operators containing Mittag-Leffler functions via (s,m)-convexity. AIMS Mathematics, 2020, 5(2): 966-978. doi: 10.3934/math.2020067 |
[9] | Tekin Toplu, Mahir Kadakal, İmdat İşcan . On n-Polynomial convexity and some related inequalities. AIMS Mathematics, 2020, 5(2): 1304-1318. doi: 10.3934/math.2020089 |
[10] | Gou Hu, Hui Lei, Tingsong Du . Some parameterized integral inequalities for p-convex mappings via the right Katugampola fractional integrals. AIMS Mathematics, 2020, 5(2): 1425-1445. doi: 10.3934/math.2020098 |
It is being known that the Hermite-Hadamard inequality [6,7] for a convex function ⋎:I→R on an interval I is
⋎(a1+a22)≤1a2−a1∫a2a1⋎(z)dz≤⋎(a1)+⋎(a2)2, | (1.1) |
for all a1,a2∈I with a1<a2. Inequality (1.1) is then revised for several generalized convex functions. For more precise data see [1,3,9,10,14,16].
Definition 1.1 ([8]). Let s∈(0,1]. A function ⋎:I⊂R0→R0, where R0=[0,∞), is called s-convex in the second sense, if
⋎(ra1+(1−r)a2)≤rs⋎(a1)+(1−r)s⋎(a2), | (1.2) |
for all a1,a2∈I and r∈[0,1].
Dragomir et al. [4] proved following inequality for s-convex functions.
Theorem 1.1 ([4]). Let s∈(0,1) and ⋎:R0→R0 is s-convex in the second sense. Let a1,a2∈[0,∞), a1≤a2. If ⋎∈L1[a1,a2], then
2s−1⋎(a1+a22)≤1a2−a1∫a2a1⋎(z)dz≤⋎(a1)+⋎(a2)s+1. | (1.3) |
In 1995, Dragomir et al. [5] defined following class of functions.
Definition 1.2 ([5]). A mapping ⋎:I→R belongs to the class P(I), if it is non-negative and satisfy the following inequality:
⋎(ra1+(1−r)a2)≤⋎(a1)+⋎(a2), | (1.4) |
for all a1,a2∈I and r∈[0,1].
Theorem 1.2 ([5]). Let ⋎∈P(I), a1,a2∈I and ⋎∈L1[a1,a2], then
⋎(a1+a22)≤2a2−a1∫a2a1⋎(z)dz≤2(⋎(a1)+⋎(a2)). | (1.5) |
Fractional Hermite-Hadamard inequalities for the Riemann-Liouville, the Hadamard fractional integrals, the conformable, new conformable fractional integrals and the Katugampola fractional integrals have been studied. For examples see [2,11,15,17,18,19]. Liu et al. [13] established Hermite-Hadamard type inequalities for ψ-Riemann-Liouville fractional integrals via convex functions.
Definition 1.3 ([12,21]) Let (a1,a2)(−∞≤a1<a2≤∞) be a finite or infinite real interval and β>0. Let ψ(x) is an increasing and positive monotone function on (a1,a2] with continuous derivative on (a1,a2). Then the left and right-sided ψ-Riemann-Liouville fractional integrals of a function ⋎ with respect to ψ on [a1,a2] are defined by
Iβ:ψa1+⋎(t)=1Γ(β)∫ta1ψ′(z)(ψ(t)−ψ(z))β−1⋎(z)dz, |
Iβ:ψa2−⋎(t)=1Γ(β)∫a2tψ′(z)(ψ(z)−ψ(t))β−1⋎(z)dz, |
respectively; with Gamma function Γ(⋅).
Lemma 1.1 ([13]). Let ⋎:[a1,a2]→R be a differentiable mapping, for 0≤a1<a2, and ⋎∈L1[a1,a2]. Let ψ(x) is an increasing and positive monotone function on (a1,a2], with continuous derivative ψ′(x) on (a1,a2) and β∈(0,1). Then the following equality for fractional integral holds:
⋎(a1)+⋎(a2)2−Γ(β+1)2(a2−a1)β[Iβ:ψψ−1(a1)+(⋎∘ψ)(ψ−1(a2))+Iβ:ψψ−1(a2)−(⋎∘ψ)(ψ−1(a1))]=12(a2−a1)β∫ψ−1(a2)ψ−1(a1)[(ψ(z)−a1)β−(a2−ψ(z))β](⋎′∘ψ)(z)ψ′(z)dz. | (1.6) |
Lemma 1.2 ([13]). Let ⋎:[a1,a2]→R be a differentiable mapping, for 0≤a1<a2, and ⋎∈L1[a1,a2]. Let ψ(x) is an increasing and positive monotone function on (a1,a2], with continuous derivative ψ′(x) on (a1,a2) and β∈(0,1). Then the following equality for fractional integral holds:
Γ(β+1)2(a2−a1)β[Iβ:ψψ−1(a1)+(⋎∘ψ)(ψ−1(a2))+Iβ:ψψ−1(a2)−(⋎∘ψ)(ψ−1(a1))]−⋎(a1+a22)=∫ψ−1(a2)ψ−1(a1)k(⋎′∘ψ)(z)ψ′(z)dz+12(a2−a1)β∫ψ−1(a2)ψ−1(a1)[(ψ(z)−a1)β−(a2−ψ(z))β](⋎′∘ψ)(z)ψ′(z)dz, | (1.7) |
where
k={12,ψ−1(a1+a22)≤z≤ψ−1(a2), −12, ψ−1(a1)<z<ψ−1(a1+a22). |
In this paper, we studied some inequalities for functions belonging to P(I) and s-convex functions in second sense via ψ-Riemann-Liouville fractional integrals.
First we establish the Hermite-Hadamard inequality via ψ-Riemann-Liouville fractional integrals.
Theorem 2.1. Let ⋎:[a1,a2]→R be a positive function, for 0≤a1<a2, and ⋎∈L1[a1,a2]. Let ψ(z) is an increasing and positive monotone function on (a1,a2], with continuous derivative ψ′(z) on (a1,a2). Let ⋎ is s-convex function, then following inequalities for fractional integral hold:
2s−1⋎(a1+a22)≤Γ(β+1)2(a2−a1)β[Iβ:ψψ−1(a1)+(⋎∘ψ)(ψ−1(a2))+Iβ:ψψ−1(a2)−(⋎∘ψ)(ψ−1(a1))]≤(ββ+s+βB(β,s+1))(⋎(a1)+⋎(a2)2), | (2.1) |
where B is Beta function defined as B(a1,a2)=∫10za1−1(1−z)a2−1dz.
Proof. Since ⋎ is s-convex, we have
⋎(u+v2)≤⋎(u)+⋎(v)2s. |
Let u=ra1+(1−r)a2 and v=ra2+(1−r)a1, we get
2s⋎(a1+a22)≤⋎(ra1+(1−r)a2)+⋎(ra2+(1−r)a1). | (2.2) |
Multiplying by rβ−1 on both sides of inequality (2.2), and then integrating with respect to r over [0,1], implies
2sβ⋎(a1+a22)≤∫10rβ−1⋎(ra1+(1−r)a2)dr+∫10rβ−1⋎(ra2+(1−r)a1)dr. | (2.3) |
Now consider,
Γ(β+1)2(a2−a1)β[Iβ:ψψ−1(a1)+(⋎∘ψ)(ψ−1(a2))+Iβ:ψψ−1(a2)−(⋎∘ψ)(ψ−1(a1))]=Γ(β+1)2(a2−a1)βΓ(β)[∫ψ−1(a2)ψ−1(a1)ψ′(z)(a2−ψ(z))β−1(⋎∘ψ)(z)dz+∫ψ−1(a2)ψ−1(a1)ψ′(z)(ψ(z)−a1)β−1(⋎∘ψ)(z)dz]=β2[∫ψ−1(a2)ψ−1(a1)(a2−ψ(z)a2−a1)β−1⋎(ψ(z))ψ′(z)a2−a1dz+∫ψ−1(a2)ψ−1(a1)(ψ(z)−a1a2−a1)β−1⋎(ψ(z))ψ′(z)a2−a1dz]=β2[∫10⋎(ra1+(1−r)a2)dr+∫10⋎(ra2+(1−r)a1)dr]≥2s−1⋎(a1+a22), | (2.4) |
by using (2.3). Thus first inequality of (2.1) is proved.
For next, we again use s-convexity of ⋎, that is,
⋎(ra1+(1−r)a2)≤rs⋎(a1)+(1−r)s⋎(a2), |
and
⋎(ra2+(1−r)a1)≤rs⋎(a2)+(1−r)s⋎(a1). |
By adding
⋎(ra1+(1−r)a2)+⋎(ra2+(1−r)a1)≤(rs+(1−r)s)(⋎(a1)+⋎(a2)). | (2.5) |
Multiplying by rβ−1 on both sides of inequality (2.5), and then integrating with respect to r over [0,1], implies
∫10rβ−1⋎(ra1+(1−r)a2)dr+∫10rβ−1⋎(ra2+(1−r)a1)dr≤(1β+s+B(β,s+1))(⋎(a1)+⋎(a2)). |
By multiplying β2 on both sides of above inequality we get,
Γ(β+1)2(a2−a1)β[Iβ:ψψ−1(a1)+(⋎∘ψ)(ψ−1(a2))+Iβ:ψψ−1(a2)−(⋎∘ψ)(ψ−1(a1))]≤(ββ+s+βB(β,s+1))(⋎(a1)+⋎(a2)2). |
Hence the proof is completed.
Remark 2.1. Under the similar assumptions of Theorem 2.1.
1. For s=1, we get Theorem 2.1 in [13].
2. For ψ(z)=z, we get Theorem 3 in [20].
3. For ψ(z)=z and β=1, the inequality (2.1) becomes inequality (1.3).
4. For ψ(z)=z and β=s=1, the inequality (2.1) becomes inequality (1.1).
For the next two results we use Lemma 1.1 and Lemma 1.2, respectively.
Theorem 2.2. Let ⋎:[a1,a2]→R be a differentiable mapping, for 0≤a1<a2. Let ψ(z) is an increasing and positive monotone function on (a1,a2], with continuous derivative ψ′(z) on (a1,a2) and β∈(0,1). If |⋎′|q is s-convex for some fixed s∈(0,1) and q≥1, then the following inequality for fractional integral holds:
|⋎(a1)+⋎(a2)2−Γ(β+1)2(a2−a1)β[Iβ:ψψ−1(a1)+(⋎∘ψ)(ψ−1(a2))+Iβ:ψψ−1(a2)−(⋎∘ψ)(ψ−1(a1))]|≤a2−a12[2β+1(1−12β)]q−1q×{B12(s+1,β+1)−B12(β+1,s+1)+2β+s−1(β+s+1)2β+s}1q(|⋎′(a1)|q+|⋎′(a2)|q)1q, | (2.6) |
where Bu is incomplete Beta function defined as:
Bu(a1,a2)=∫u0za1−1(1−z)a2−1dz,u∈(0,1). |
Proof. First note that, for every z∈(ψ−1(a1),ψ−1(a2)), we have a1<ψ(z)<a2. Let r=a2−ψ(z)a2−a1, then we have ψ(z)=ra1+(1−r)a2. Applying Lemma 1.1 and s-convexity of |⋎′|, we obtain
|⋎(a1)+⋎(a2)2−Γ(β+1)2(a2−a1)β[Iβ:ψψ−1(a1)+(⋎∘ψ)(ψ−1(a2))+Iβ:ψψ−1(a2)−(⋎∘ψ)(ψ−1(a1))]|≤12(a2−a1)β∫ψ−1(a2)ψ−1(a1)|(ψ(z)−a1)β−(a2−ψ(z))β||(⋎′∘ψ)(z)|dψ(z)=a2−a12∫10|(1−r)β−rβ||⋎′(ra1+(1−r)a2)|dr≤a2−a12∫10|(1−r)β−rβ|[rs|⋎′(a2)+(1−r)s|⋎′(a2)|]dr=a2−a12[∫120[(1−r)β−rβ][rs|⋎′(a2)+(1−r)s|⋎′(a2)|]dr+∫112[rβ−(1−r)β][rs|⋎′(a2)+(1−r)s|⋎′(a2)|]dr]. | (2.7) |
Since
∫120rs(1−r)βdr=∫112rβ(1−r)sdr=B12(s+1,β+1), |
∫120rβ(1−r)sdr=∫112rs(1−r)βdr=B12(β+1,s+1), |
∫120rβ+sdr=∫112(1−r)β+sdr=12β+s+1(β+s+1), |
and
∫120(1−r)β+sdr=∫112rβ+sdr=1β+s+1−12β+s+1(β+s+1). |
By substituting above integral values in (2.7) and after some simplification we get the required inequality (2.6) for q=1.
Now consider the case when q>1. Again using Lemma 1.1, power mean inequality and the s-convexity of |⋎′|q on [a1,a2], we get
|⋎(a1)+⋎(a2)2−Γ(β+1)2(a2−a1)β[Iβ:ψψ−1(a1)+(⋎∘ψ)(ψ−1(a2))+Iβ:ψψ−1(a2)−(⋎∘ψ)(ψ−1(a1))]|≤12(a2−a1)β∫ψ−1(a2)ψ−1(a1)|(ψ(z)−a1)β−(a2−ψ(z))β||(⋎′∘ψ)(z)|dψ(z)=a2−a12∫10|(1−r)β−rβ||⋎′(ra1+(1−r)a2)|dr=a2−a12(∫10|(1−r)β−rβ|dr)1−1q(∫10|(1−r)β−rβ||⋎′(ra1+(1−r)a2)|qdr)1q=a2−a12(∫10|(1−r)β−rβ|dr)q−1q×(∫10|(1−r)β−rβ|[rs|⋎′(a2)|q+(1−r)s⋎′(a2)|q]dr)1q=a2−a12[2β+1(1−12β)]q−1q×{B12(s+1,β+1)−B12(β+1,s+1)+2β+s−1(β+s+1)2β+s}1q(|⋎′(a1)|q+|⋎(a2)|q)1q. | (2.8) |
This completes the proof.
Remark 2.2. Under the similar assumptions of Theorem 2.2.
1. For s=1 and q=1, we get Theorem 3.4 in [13].
2. For ψ(z)=z, we get Theorem 4 in [20].
Theorem 2.3. Let ⋎:[a1,a2]→R be a differentiable mapping, for 0≤a1<a2. Let ψ(z) is an increasing and positive monotone function on (a1,a2], with continuous derivative ψ′(z) on (a1,a2) and β∈(0,1). If |⋎′| is s-convex for some fixed s∈(0,1), then the following inequality for fractional integral holds:
|Γ(β+1)2(a2−a1)β[Iβ:ψψ−1(a1)+(⋎∘ψ)(ψ−1(a2))+Iβ:ψψ−1(a2)−(⋎∘ψ)(ψ−1(a1))]−⋎(a1+a22)|≤⋎(a2)−⋎(a1)2+a2−a12{B12(s+1,β+1)−B12(β+1,s+1)+2β+s−1(β+s+1)2β+s}(|⋎′(a1)|+|⋎′(a2)|). | (2.9) |
Proof. From Lemma 1.2 and the s-convexity of |⋎′|, we have
|Γ(β+1)2(a2−a1)β[Iβ:ψψ−1(a1)+(⋎∘ψ)(ψ−1(a2))+Iβ:ψψ−1(a2)−(⋎∘ψ)(ψ−1(a1))]−⋎(a1+a22)|=|∫ψ−1(a2)ψ−1(a1)k(⋎′∘ψ)(z)ψ′(z)dz+12(a2−a1)β∫ψ−1(a2)ψ−1(a1)[(ψ(z)−a1)β−(a2−ψ(z))β](⋎′∘ψ)(z)ψ′(z)dz|≤|∫ψ−1(a2)ψ−1(a1)k(⋎′∘ψ)(z)ψ′(z)dz|+|12(a2−a1)β∫ψ−1(a2)ψ−1(a1)[(ψ(z)−a1)β−(a2−ψ(z))β](⋎′∘ψ)(z)ψ′(z)dz|:=H1+H2, | (2.10) |
where
H1:=|∫ψ−1(a2)ψ−1(a1)k(⋎′∘ψ)(z)ψ′(z)dz|, |
H2:=|12(a2−a1)β∫ψ−1(a2)ψ−1(a1)[(ψ(z)−a1)β−(a2−ψ(z))β](⋎′∘ψ)(z)ψ′(z)dz|, |
and k is defined as in Lemma 1.2. Note that
H1=⋎(a2)−⋎(a1)2, | (2.11) |
and from Theorem 2.2 for the case q=1, we have
H2≤a2−a12{B12(s+1,β+1)−B12(β+1,s+1)+2β+s−1(β+s+1)2β+s}(|⋎′(a1)|+|⋎(a2)|). | (2.12) |
Hence by using (2.11) and (2.12) in (2.10), we get (2.9).
Remark 2.3. By taking s=1 in (2.9), we get inequality (9) in [13].
First we establish the Hermite-Hadamard inequality via ψ-Riemann-Liouville fractional integrals.
Theorem 3.1. Let ⋎:[a1,a2]→R be a positive function, for 0≤a1<a2, and ⋎∈L1[a1,a2]. Let ψ(z) is an increasing and positive monotone function on (a1,a2], with continuous derivative ψ′(z) on (a1,a2). Let ⋎∈P(I) is, then following inequalities for fractional integral hold:
12⋎(a1+a22)≤Γ(β+1)2(a2−a1)β[Iβ:ψψ−1(a1)+(⋎∘ψ)(ψ−1(a2))+Iβ:ψψ−1(a2)−(⋎∘ψ)(ψ−1(a1))]≤[⋎(a1)+⋎(a2)]. | (3.1) |
Proof. Since the function ⋎ belongs to the class P(I), we have
⋎(u+v2)≤⋎(u)+⋎(v). |
Let u=ra1+(1−r)a2 and u=ra2+(1−r)a1, we get
⋎(a1+a22)≤⋎(ra1+(1−r)a2)+⋎(ra2+(1−r)a1). | (3.2) |
Multiplying by rβ−1 on both sides of inequality (2.2), and then integrating with respect to r over [0,1], implies
12β⋎(a1+a22)≤12[∫10rβ−1⋎(ra1+(1−r)a2)dr+∫10rβ−1⋎(ra2+(1−r)a1)dr]. | (3.3) |
Now consider,
Γ(β+1)2(a2−a1)β[Iβ:ψψ−1(a1)+(⋎∘ψ)(ψ−1(a2))+Iβ:ψψ−1(a2)−(⋎∘ψ)(ψ−1(a1))]=Γ(β+1)2(a2−a1)βΓ(β)[∫ψ−1(a2)ψ−1(a1)ψ′(z)(a2−ψ(z))β−1(⋎∘ψ)(z)dz+∫ψ−1(a2)ψ−1(a1)ψ′(z)(ψ(z)−a1)β−1(⋎∘ψ)(z)dz]=β2[∫ψ−1(a2)ψ−1(a1)(a2−ψ(z)a2−a1)β−1⋎(ψ(z))ψ′(z)a2−a1dz+∫ψ−1(a2)ψ−1(a1)(ψ(z)−a1a2−a1)β−1⋎(ψ(z))ψ′(z)a2−a1dz]=β2[∫10⋎(ra1+(1−r)a2)dr+∫10⋎(ra2+(1−r)a1)dr]≥12⋎(a1+a22), | (3.4) |
by using (3.3). Thus first inequality of (3.1) is proved.
For next, again using the property of ⋎∈P(I), that is,
⋎(ra1+(1−r)a2)≤⋎(a1)+⋎(a2), |
and
⋎(ra2+(1−r)a1)≤⋎(a2)+⋎(a1). |
By adding
⋎(ra1+(1−r)a2)+⋎(ra2+(1−r)a1)≤2(⋎(a1)+⋎(a2)). | (3.5) |
Multiplying by rβ−1 on both sides of inequality (3.5), and then integrating with respect to r over [0,1], implies
12[∫10rβ−1⋎(ra1+(1−r)a2)dr+∫10rβ−1⋎(ra2+(1−r)a1)dr]≤1β(⋎(a1)+⋎(a2)). |
That is,
Γ(β+1)2(a2−a1)β[Iβ:ψψ−1(a1)+(⋎∘ψ)(ψ−1(a2))+Iβ:ψψ−1(a2)−(⋎∘ψ)(ψ−1(a1))]≤[⋎(a1)+⋎(a2)]. |
This completes the proof.
Remark 3.1. By taking β=1 and ψ(z)=z in (3.1), we get inequality 3.2 of Theorem 3.1 in [5].
Theorem 3.2. Let ⋎:[a1,a2]→R be a differentiable mapping, for 0≤a1<a2. Let ψ(z) is an increasing and positive monotone function on (a1,a2], with continuous derivative ψ′(z) on (a1,a2) and β∈(0,1). If |⋎′|∈P(I), then the following inequality for fractional integral holds:
|⋎(a1)+⋎(a2)2−Γ(β+1)2(a2−a1)β[Iβ:ψψ−1(a1)+(⋎∘ψ)(ψ−1(a2))+Iβ:ψψ−1(a2)−(⋎∘ψ)(ψ−1(a1))]|≤a2−a12[2β+1(1−12β)](|⋎′(a1)|+|⋎′(a2)|). | (3.6) |
Proof. Again using Lemma 1.1 and the property of |⋎′| on [a1,a2], we get
|⋎(a1)+⋎(a2)2−Γ(β+1)2(a2−a1)β[Iβ:ψψ−1(a1)+(⋎∘ψ)(ψ−1(a2))+Iβ:ψψ−1(a2)−(⋎∘ψ)(ψ−1(a1))]|≤12(a2−a1)β∫ψ−1(a2)ψ−1(a1)|(ψ(z)−a1)β−(a2−ψ(z))β||(⋎′∘ψ)(z)|dψ(z)=a2−a12∫10|(1−r)β−rβ||⋎′(ra1+(1−r)a2)|dr≤a2−a12∫10|(1−r)β−rβ|[|⋎′(a2)|+⋎′(a2)|]dr=a2−a12[2β+1(1−12β)](|⋎′(a1)|+|⋎(a2)|). | (3.7) |
Since
∫120(1−r)βdr=∫112rβdr=1β+1−1(β+1)2β+1, |
∫120rβdr=∫112(1−r)βdr=1(β+1)2β+1. |
This completes the proof.
Theorem 3.3. Let ⋎:[a1,a2]→R be a differentiable mapping, for 0≤a1<a2. Let ψ(z) is an increasing and positive monotone function on (a1,a2], with continuous derivative ψ′(z) on (a1,a2) and β∈(0,1). If |⋎′|∈P(I), then the following inequality for fractional integral holds:
|Γ(β+1)2(a2−a1)β[Iβ:ψψ−1(a1)+(⋎∘ψ)(ψ−1(a2))+Iβ:ψψ−1(a2)−(⋎∘ψ)(ψ−1(a1))]−⋎(a1+a22)|≤⋎(a2)−⋎(a1)2+a2−a12[2β+1(1−12β)](|⋎′(a1)|+|⋎′(a2)|). | (3.8) |
Proof. From Lemma 1.2 and the property of |⋎′| on [a1,a2], we have
|Γ(β+1)2(a2−a1)β[Iβ:ψψ−1(a1)+(⋎∘ψ)(ψ−1(a2))+Iβ:ψψ−1(a2)−(⋎∘ψ)(ψ−1(a1))]−⋎(a1+a22)|=|∫ψ−1(a2)ψ−1(a1)k(⋎′∘ψ)(z)ψ′(z)dz+12(a2−a1)β∫ψ−1(a2)ψ−1(a1)[(ψ(z)−a1)β−(a2−ψ(z))β](⋎′∘ψ)(z)ψ′(z)dz|≤|∫ψ−1(a2)ψ−1(a1)k(⋎′∘ψ)(z)ψ′(z)dz|+|12(a2−a1)β∫ψ−1(a2)ψ−1(a1)[(ψ(z)−a1)β−(a2−ψ(z))β](⋎′∘ψ)(z)ψ′(z)dz|:=H3+H4, | (3.9) |
where
H3:=|∫ψ−1(a2)ψ−1(a1)k(⋎′∘ψ)(z)ψ′(z)dz|, |
H4:=|12(a2−a1)β∫ψ−1(a2)ψ−1(a1)[(ψ(z)−a1)β−(a2−ψ(z))β](⋎′∘ψ)(z)ψ′(z)dz|, |
and k is defined as in Lemma 1.2. Note that
H3=⋎(a2)−⋎(a1)2, | (3.10) |
and from Theorem 3.2, we have
H4≤a2−a12[2β+1(1−12β)](|⋎′(a1)|+|⋎(a2)|). | (3.11) |
Hence by using (3.10) and (3.11) in (3.9), we get (3.8).
Consider the following special means of real numbers a1, a2 such that a1≠a2.
(1). The arithmetic mean
A=A(a1,a2)=a1+a22. |
(2). The p-logarithmic mean
Lp=Lp(a1,a2)=(ap+12−ap+11(p+1)(a2−a1))1p, p∈R∖{−1,0}. |
Proposition 4.1. Let a1,a2∈R+, a1<a2 and 0<s<1, then
|A(as1,as2)−Lss(a1,a2)|≤a2−a12[s22s+s(s+1)(s+2)2s]A(as−11,as−12). |
Proof. Apply Theorem 2.2 with ⋎=zs, ψ(z)=z and β=q=1, we get the required result.
Proposition 4.2. Let a1,a2∈R+, a1<a2 and 0<s<1, then
|Lss(a1,a2)−As(a1,a2)|≤A(as1,as2)−a2−a12[s(s2s+1)(s+1)(s+2)2s−1]A(as−11,as−12). |
Proof. Apply Theorem 2.3 with ⋎=zs, ψ(z)=z and β=q=1, we get the required result.
Proposition 4.3. Let a1,a2∈R+, a1<a2, then
|A(a21,a22)−L22(a1,a2)|≤a22−a212. |
Proof. Apply Theorem 3.2 with ⋎=z2, ψ(z)=z and β=1, we get the required result.
Proposition 4.4. Let a1,a2∈R+, a1<a2, then
|L22(a1,a2)−A2(a1,a2)|≤A(a21,a22)−a22−a212. |
Proof. Apply Theorem 3.3 with ⋎=z2, ψ(z)=z and β=1, we get the required result.
This research article is supported by National University of Sciences and Technology(NUST), Islamabad, Pakistan.
The authors declare that there is no interest regarding the publication of this paper.
[1] | M. Avci, H. Kavurmaci, M. E. Ozdemir, New inequalities of Hermite-Hadamard type via sconvex functions in the second sense with applications, Appl. Math. Comput., 217 (2011), 5171-5176. |
[2] | F. Chen, Extension of the Hermite-Hadamard inequality for harmonically convex functions via fractional integrals, Appl. Math. Comput., 268 (2015), 121-128. |
[3] |
F. Chen, S. Wu, Several complementary inequalities to inequalities of Hermite-Hadamard type for s-convex functions, J. Nonlinear Sci. Appl., 9 (2016), 705-716. doi: 10.22436/jnsa.009.02.32
![]() |
[4] | S. S. Dragomir, S. Fitzpatrick, The Hadamard's inequality for s-convex functions in the second sense, Demonstratio Math., 32 (1999), 687-696. |
[5] | S. S. Dragomir, J. Pecaric, L. E. Persson, Some inequalities of Hadamard type, Soochow J. Math., 21 (1995), 335-341. |
[6] | J. Hadamard, Étude sur les propriétés des fonctions entières et en particulier d'une fonction considérée par Riemann, J. Math. Pures Appl., (1893), 171-215. |
[7] | Ch. Hermite, Sur deux limites d'une integrale denie, Mathesis., 3 (1883), 82. |
[8] |
H. Hudzik, L. Maligranda, Some remarks on s-convex functions, Aequationes Math., 48 (1994), 100-111. doi: 10.1007/BF01837981
![]() |
[9] | I. Iscan, Hermite-Hadamard type inequalities for harmonically convex functions, Hacet. J. Math. Stat., 43 (2014), 935-942. |
[10] | I. Iscan, Hermite-Hadamard type inequalities for p-convex functions, Int. J. Ana. Appl., 11 (2016), 137-145. |
[11] |
M. Jleli, D. O'Regan, B. Samet, On Hermite-Hadamard type inequalities via generalized fractional integrals, Turk. J. Math., 40 (2016), 1221-1230. doi: 10.3906/mat-1507-79
![]() |
[12] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Amsterdam: Elsevier Science, 2006. |
[13] | K. Liu, J. Wang, D. O'Regan, On the Hermite-Hadamard type inequality for Ψ-Riemann-Liouville fractional integrals via convex functions, J. Inequal. Appl., 2019 (2019), 27. |
[14] | C. P. Niculescu, L. E. Persson, Convex Functions and Their Applications. A Contemporary Approach, 2 Eds., New York: Springer, 2018. |
[15] |
N. Mehreen, M. Anwar, Hermite-Hadamard and Hermite-Hadamard-Fejer type inequalities for p-convex functions via new fractional conformable integral operators, J. Math. Compt. Sci., 19 (2019), 230-240. doi: 10.22436/jmcs.019.04.02
![]() |
[16] | N. Mehreen, M. Anwar, Hermite-Hadamard type inequalities via exponentially p-convex functions and exponentially s-convex functions in second sense with applications, J. Inequal. Appl., 2019 (2019), 92. |
[17] | N. Mehreen, M. Anwar, Integral inequalities for some convex functions via generalized fractional integrals, J. Inequal. Appl., 2018 (2018), 208. |
[18] |
M. Z. Sarikaya, E. Set, H. Yaldiz, et al., Hermite-Hadamard's inequlities for fractional integrals and related fractional inequalitis, Math. Comput. Modelling, 57 (2013), 2403-2407. doi: 10.1016/j.mcm.2011.12.048
![]() |
[19] | E. Set, M. Z. Sarikaya, A. Gozpinar, Some Hermite-Hadamard type inequalities for convex functions via conformable fractional integrals and related inequalities, Creat. Math. Inform., Accepted paper, 2017. |
[20] |
E. Set, M. Z. Sarikaya, M. E. Ozdemir, et al., The Hermite-Hadamard's inequality for some convex functions via fractional integrals and related results, J. Appl. Math. Stat. Inform., 10 (2014), 69-83. doi: 10.2478/jamsi-2014-0014
![]() |
[21] |
J. V. C. Sousa, E. C. Oliveira, On the Ψ-Hilfer fractional derivative, Commun. Nonlinear Sci. Numer. Simulat., 60 (2018), 72-91. doi: 10.1016/j.cnsns.2018.01.005
![]() |
1. | Naila Mehreen, Matloob Anwar, On some Hermite–Hadamard type inequalities for $tgs$-convex functions via generalized fractional integrals, 2020, 2020, 1687-1847, 10.1186/s13662-019-2457-x | |
2. | Yong Zhao, Haiwei Sang, Weicheng Xiong, Zhongwei Cui, Hermite–Hadamard-type inequalities involving ψ-Riemann–Liouville fractional integrals via s-convex functions, 2020, 2020, 1029-242X, 10.1186/s13660-020-02389-7 | |
3. | Naila Mehreen, Matloob Anwar, Hermite–Hadamard and Hermite–Hadamard–Fejer type inequalities for p-convex functions via conformable fractional integrals, 2020, 2020, 1029-242X, 10.1186/s13660-020-02363-3 | |
4. | Naila Mehreen, Matloob Anwar, Some new inequalities via s-convex functions on time scales, 2021, 13, 2066-7752, 239, 10.2478/ausm-2021-0014 |