1.
|
Thanate Dhirasakdanon, Horst R. Thieme, P. Van Den Driessche,
A sharp threshold for disease persistence in host metapopulations,
2007,
1,
1751-3758,
363,
10.1080/17513750701605465
|
|
2.
|
Menachem Lachiany, Lewi Stone,
A Vaccination Model for a Multi-City System,
2012,
74,
0092-8240,
2474,
10.1007/s11538-012-9762-9
|
|
3.
|
Wendi Wang, Xiao-Qiang Zhao,
Threshold Dynamics for Compartmental Epidemic Models in Periodic Environments,
2008,
20,
1040-7294,
699,
10.1007/s10884-008-9111-8
|
|
4.
|
Arti Mishra, Sunita Gakkhar,
Non-linear Dynamics of Two-Patch Model Incorporating Secondary Dengue Infection,
2018,
4,
2349-5103,
10.1007/s40819-017-0460-z
|
|
5.
|
Necibe Tuncer, Trang Le,
Effect of air travel on the spread of an avian influenza pandemic to the United States,
2014,
7,
18745482,
27,
10.1016/j.ijcip.2014.02.001
|
|
6.
|
Nicola Perra, Duygu Balcan, Bruno Gonçalves, Alessandro Vespignani, Cécile Viboud,
Towards a Characterization of Behavior-Disease Models,
2011,
6,
1932-6203,
e23084,
10.1371/journal.pone.0023084
|
|
7.
|
Shahin Shakibaei, Gerard C. de Jong, Pelin Alpkökin, Taha H. Rashidi,
Impact of the COVID-19 pandemic on travel behavior in Istanbul: A panel data analysis,
2021,
65,
22106707,
102619,
10.1016/j.scs.2020.102619
|
|
8.
|
Guihua Li, Wendi Wang, Kaifa Wang, Zhen Jin,
Dynamic behavior of a parasite–host model with general incidence,
2007,
331,
0022247X,
631,
10.1016/j.jmaa.2006.09.015
|
|
9.
|
Tzai-Hung Wen, Ching-Shun Hsu, Ming-Che Hu,
Evaluating neighborhood structures for modeling intercity diffusion of large-scale dengue epidemics,
2018,
17,
1476-072X,
10.1186/s12942-018-0131-2
|
|
10.
|
Nasir Salam, Shoeb Mustafa, Abdul Hafiz, Anis Ahmad Chaudhary, Farah Deeba, Shama Parveen,
Global prevalence and distribution of coinfection of malaria, dengue and chikungunya: a systematic review,
2018,
18,
1471-2458,
10.1186/s12889-018-5626-z
|
|
11.
|
Vittoria Colizza, Alessandro Vespignani,
Epidemic modeling in metapopulation systems with heterogeneous coupling pattern: Theory and simulations,
2008,
251,
00225193,
450,
10.1016/j.jtbi.2007.11.028
|
|
12.
|
Assessing the effect of non-pharmaceutical interventions on containing an emerging disease,
2012,
9,
1551-0018,
147,
10.3934/mbe.2012.9.147
|
|
13.
|
Alessandro Rizzo, Mattia Frasca, Maurizio Porfiri,
Effect of individual behavior on epidemic spreading in activity-driven networks,
2014,
90,
1539-3755,
10.1103/PhysRevE.90.042801
|
|
14.
|
Alok Sagar Gautam, Nishit Pathak, Taufiq Ahamad, Poonam Semwal, A. A. Bourai, A. S. Rana, O. P. Nautiyal,
Pandemic in India: Special reference to Covid-19 and its technological aspect,
2021,
24,
0972-0510,
387,
10.1080/09720510.2021.1879469
|
|
15.
|
Pierre Auger, Etienne Kouokam, Gauthier Sallet, Maurice Tchuente, Berge Tsanou,
The Ross–Macdonald model in a patchy environment,
2008,
216,
00255564,
123,
10.1016/j.mbs.2008.08.010
|
|
16.
|
YE LI, Jiawei Xu,
2020,
Chapter 15,
978-3-030-60106-5,
297,
10.1007/978-3-030-60107-2_15
|
|
17.
|
Daozhou Gao,
How Does Dispersal Affect the Infection Size?,
2020,
80,
0036-1399,
2144,
10.1137/19M130652X
|
|
18.
|
Zi Sang, Zhipeng Qiu, Qingkai Kong, Yun Zou,
2012,
Optimal control strategy for an multi-regional epidemic model,
978-1-4673-1397-1,
5007,
10.1109/WCICA.2012.6359427
|
|
19.
|
Santiago Alvarez-Munoz, Nicolas Upegui-Porras, Arlen P. Gomez, Gloria Ramirez-Nieto,
Key Factors That Enable the Pandemic Potential of RNA Viruses and Inter-Species Transmission: A Systematic Review,
2021,
13,
1999-4915,
537,
10.3390/v13040537
|
|
20.
|
Yukihiko Nakata,
On the global stability of a delayed epidemic model with transport-related infection,
2011,
12,
14681218,
3028,
10.1016/j.nonrwa.2011.05.004
|
|
21.
|
Simone Bianco, Leah B. Shaw,
Asymmetry in the Presence of Migration Stabilizes Multistrain Disease Outbreaks,
2011,
73,
0092-8240,
248,
10.1007/s11538-010-9541-4
|
|
22.
|
Duygu Balcan, Alessandro Vespignani,
Invasion threshold in structured populations with recurrent mobility patterns,
2012,
293,
00225193,
87,
10.1016/j.jtbi.2011.10.010
|
|
23.
|
Youping Yang, Yanni Xiao,
The effects of population dispersal and pulse vaccination on disease control,
2010,
52,
08957177,
1591,
10.1016/j.mcm.2010.06.024
|
|
24.
|
Yuying Wang, Yanni Xiao,
An epidemic model on the dispersal networks at population and individual levels,
2015,
32,
0916-7005,
641,
10.1007/s13160-015-0189-1
|
|
25.
|
Divine Wanduku, G.S. Ladde,
Global properties of a two-scale network stochastic delayed human epidemic dynamic model,
2012,
13,
14681218,
794,
10.1016/j.nonrwa.2011.08.017
|
|
26.
|
C. Heffernan,
Climate change and multiple emerging infectious diseases,
2018,
234,
10900233,
43,
10.1016/j.tvjl.2017.12.021
|
|
27.
|
Tim K Mackey, Bryan A Liang,
Lessons from SARS and H1N1/A: Employing a WHO–WTO forum to promote optimal economic-public health pandemic response,
2012,
33,
0197-5897,
119,
10.1057/jphp.2011.51
|
|
28.
|
ABHISHEK SENAPATI, TRIDIP SARDAR, JOYDEV CHATTOPADHYAY,
A CHOLERA METAPOPULATION MODEL INTERLINKING MIGRATION WITH INTERVENTION STRATEGIES — A CASE STUDY OF ZIMBABWE (2008–2009),
2019,
27,
0218-3390,
185,
10.1142/S0218339019500098
|
|
29.
|
L. J. S. Allen, B. M. Bolker, Y. Lou, A. L. Nevai,
Asymptotic Profiles of the Steady States for an SIS Epidemic Patch Model,
2007,
67,
0036-1399,
1283,
10.1137/060672522
|
|
30.
|
Diána Knipl,
2016,
Chapter 24,
978-3-319-30377-2,
255,
10.1007/978-3-319-30379-6_24
|
|
31.
|
Junli Liu, Zhenguo Bai, Tailei Zhang,
A periodic two-patch SIS model with time delay and transport-related infection,
2018,
437,
00225193,
36,
10.1016/j.jtbi.2017.10.011
|
|
32.
|
Glenn E. Lahodny, Linda J. S. Allen,
Probability of a Disease Outbreak in Stochastic Multipatch Epidemic Models,
2013,
75,
0092-8240,
1157,
10.1007/s11538-013-9848-z
|
|
33.
|
Luosheng Wen, Bin Long, Xin Liang, Fengling Zeng,
The Global Behavior of a Periodic Epidemic Model with Travel between Patches,
2012,
2012,
1085-3375,
1,
10.1155/2012/295060
|
|
34.
|
Remina Maimaitijiang, Qiangsheng He, Yanan Wu, Jennifer Z. H. Bouey, Ahoua Koné, Yucheng Liang, Chun Hao, Jiong Tu, Jing Gu, Yuantao Hao,
Assessment of the health status and health service perceptions of international migrants coming to Guangzhou, China, from high-, middle- and low-income countries,
2019,
15,
1744-8603,
10.1186/s12992-019-0449-y
|
|
35.
|
Alessandro Rizzo, Maurizio Porfiri,
2017,
Chapter 14,
978-981-10-5286-6,
317,
10.1007/978-981-10-5287-3_14
|
|
36.
|
Hossein Kheiri, Mohsen Jafari,
Stability analysis of a fractional order model for the HIV/AIDS epidemic in a patchy environment,
2019,
346,
03770427,
323,
10.1016/j.cam.2018.06.055
|
|
37.
|
Ying-Hen Hsieh, P. van den Driessche, Lin Wang,
Impact of Travel Between Patches for Spatial Spread of Disease,
2007,
69,
0092-8240,
1355,
10.1007/s11538-006-9169-6
|
|
38.
|
Bing Xiao, Bingwen Liu,
Exponential convergence of an epidemic model with continuously distributed delays,
2008,
48,
08957177,
541,
10.1016/j.mcm.2007.10.008
|
|
39.
|
Jing Li, Xingfu Zou,
Dynamics of an epidemic model with non-local infections for diseases with latency over a patchy environment,
2010,
60,
0303-6812,
645,
10.1007/s00285-009-0280-9
|
|
40.
|
Alessandro Rizzo, Biagio Pedalino, Maurizio Porfiri,
A network model for Ebola spreading,
2016,
394,
00225193,
212,
10.1016/j.jtbi.2016.01.015
|
|
41.
|
Daozhou Gao,
Travel Frequency and Infectious Diseases,
2019,
79,
0036-1399,
1581,
10.1137/18M1211957
|
|
42.
|
Divine Wanduku,
Complete global analysis of a two-scale network SIRS epidemic dynamic model with distributed delay and random perturbations,
2017,
294,
00963003,
49,
10.1016/j.amc.2016.09.001
|
|
43.
|
Vittoria Colizza, Alain Barrat, Marc Barthélemy, Alessandro Vespignani,
Predictability and epidemic pathways in global outbreaks of infectious diseases: the SARS case study,
2007,
5,
1741-7015,
10.1186/1741-7015-5-34
|
|
44.
|
D. P. Moualeu, S. Bowong, B. Tsanou, A. Temgoua,
A patchy model for the transmission dynamics of tuberculosis in sub-Saharan Africa,
2018,
6,
2195-268X,
122,
10.1007/s40435-017-0310-1
|
|
45.
|
Pengyan Liu, Hong-Xu Li,
GLOBAL STABILITY OF AUTONOMOUS AND NONAUTONOMOUS HEPATITIS B VIRUS MODELS IN PATCHY ENVIRONMENT,
2020,
10,
2156-907X,
1771,
10.11948/20190191
|
|
46.
|
Phillip Schumm, Caterina Scoglio, Qian Zhang, Duygu Balcan,
Global epidemic invasion thresholds in directed cattle subpopulation networks having source, sink, and transit nodes,
2015,
367,
00225193,
203,
10.1016/j.jtbi.2014.12.007
|
|
47.
|
C. Cosner, J.C. Beier, R.S. Cantrell, D. Impoinvil, L. Kapitanski, M.D. Potts, A. Troyo, S. Ruan,
The effects of human movement on the persistence of vector-borne diseases,
2009,
258,
00225193,
550,
10.1016/j.jtbi.2009.02.016
|
|
48.
|
Wendi Wang, Xiao-Qiang Zhao,
Basic Reproduction Numbers for Reaction-Diffusion Epidemic Models,
2012,
11,
1536-0040,
1652,
10.1137/120872942
|
|
49.
|
Diána H. Knipl, Gergely Röst, Jianhong Wu,
Epidemic Spread and Variation of Peak Times in Connected Regions Due to Travel-Related Infections---Dynamics of an Antigravity-Type Delay Differential Model,
2013,
12,
1536-0040,
1722,
10.1137/130914127
|
|
50.
|
Yongzhen Pei, Li Changguo, Qianyong Wu, Yunfei Lv,
Successive Vaccination and Difference in Immunity of a Delay SIR Model with a General Incidence Rate,
2014,
2014,
1085-3375,
1,
10.1155/2014/678723
|
|
51.
|
Burcu Adivar, Ebru Selin Selen,
Review of research studies on population specific epidemic disasters,
2013,
22,
0965-3562,
243,
10.1108/DPM-09-2012-0107
|
|
52.
|
W. Wang,
Modeling Adaptive Behavior in Influenza Transmission,
2012,
7,
0973-5348,
253,
10.1051/mmnp/20127315
|
|
53.
|
Folashade Agusto, Amy Goldberg, Omayra Ortega, Joan Ponce, Sofya Zaytseva, Suzanne Sindi, Sally Blower,
2021,
Chapter 5,
978-3-030-57128-3,
83,
10.1007/978-3-030-57129-0_5
|
|
54.
|
Xinxin Wang, Shengqiang Liu, Lin Wang, Weiwei Zhang,
An Epidemic Patchy Model with Entry–Exit Screening,
2015,
77,
0092-8240,
1237,
10.1007/s11538-015-0084-6
|
|
55.
|
Guy Howard, Jamie Bartram, Clarissa Brocklehurst, John M. Colford, Federico Costa, David Cunliffe, Robert Dreibelbis, Joseph Neil Spindel Eisenberg, Barbara Evans, Rosina Girones, Steve Hrudey, Juliet Willetts, Caradee Y. Wright,
COVID-19: urgent actions, critical reflections and future relevance of ‘WaSH’: lessons for the current and future pandemics,
2020,
18,
1477-8920,
613,
10.2166/wh.2020.162
|
|
56.
|
Alicia N. M. Kraay, James Trostle, Andrew F. Brouwer, William Cevallos, Joseph N. S. Eisenberg,
Determinants of Short-term Movement in a Developing Region and Implications for Disease Transmission,
2018,
29,
1044-3983,
117,
10.1097/EDE.0000000000000751
|
|
57.
|
Margaux Marie Isabelle Meslé, Ian Melvyn Hall, Robert Matthew Christley, Steve Leach, Jonathan Michael Read,
The use and reporting of airline passenger data for infectious disease modelling: a systematic review,
2019,
24,
1560-7917,
10.2807/1560-7917.ES.2019.24.31.1800216
|
|
58.
|
ShaoBo Zhong, QuanYi Huang, DunJiang Song,
Simulation of the spread of infectious diseases in a geographical environment,
2009,
52,
1006-9313,
550,
10.1007/s11430-009-0044-9
|
|
59.
|
Wendi Wang, Xiao-Qiang Zhao,
An Epidemic Model with Population Dispersal and Infection Period,
2006,
66,
0036-1399,
1454,
10.1137/050622948
|
|
60.
|
Adisak Denphedtnong, Settapat Chinviriyasit, Wirawan Chinviriyasit,
On the dynamics of SEIRS epidemic model with transport-related infection,
2013,
245,
00255564,
188,
10.1016/j.mbs.2013.07.001
|
|
61.
|
Divine Wanduku, G. S. Ladde,
The Global Analysis of a Stochastic Two-Scale Network Epidemic Dynamic Model with Varying Immunity Period,
2017,
05,
2327-4352,
1150,
10.4236/jamp.2017.55101
|
|
62.
|
Shi Zhao, Chris T. Bauch, Daihai He,
Strategic decision making about travel during disease outbreaks: a game theoretical approach,
2018,
15,
1742-5689,
20180515,
10.1098/rsif.2018.0515
|
|
63.
|
Qianqian Cui, Zhipeng Qiu, Ling Ding,
An SIR epidemic model with vaccination in a patchy environment,
2017,
14,
1551-0018,
1141,
10.3934/mbe.2017059
|
|
64.
|
Honglu Ji, Huan Tong, Jingge Wang, Dan Yan, Zangyi Liao, Ying Kong,
The effectiveness of travel restriction measures in alleviating the COVID-19 epidemic: evidence from Shenzhen, China,
2021,
0269-4042,
10.1007/s10653-021-00920-3
|
|
65.
|
Jin Wang,
Mathematical Models for Cholera Dynamics—A Review,
2022,
10,
2076-2607,
2358,
10.3390/microorganisms10122358
|
|
66.
|
Shabnam Rezapour, Atefe Baghaian, Nazanin Naderi, Juan P. Sarmiento,
Infection transmission and prevention in metropolises with heterogeneous and dynamic populations,
2023,
304,
03772217,
113,
10.1016/j.ejor.2021.09.016
|
|
67.
|
Linghui He, Jian Li, Jianping Sun,
How to promote sustainable travel behavior in the post COVID-19 period: A perspective from customized bus services,
2023,
12,
20460430,
19,
10.1016/j.ijtst.2021.11.001
|
|
68.
|
Ziqiang Cheng, Jin Wang,
Modeling epidemic flow with fluid dynamics,
2022,
19,
1551-0018,
8334,
10.3934/mbe.2022388
|
|
69.
|
Qiao Zhuang, Jin Wang,
A spatial epidemic model with a moving boundary,
2021,
6,
24680427,
1046,
10.1016/j.idm.2021.08.005
|
|
70.
|
M. R. Vinagre, G. Blé, L. Esteva,
Dynamical Analysis of a Model for Secondary Infection of the Dengue,
2023,
0971-3514,
10.1007/s12591-022-00628-5
|
|
71.
|
Brooks Butler, Ciyuan Zhang, Ian Walter, Nishant Nair, Raphael Stern, Philip E. Pare,
2021,
The Effect of Population Flow on Epidemic Spread: Analysis and Control,
978-1-6654-3659-5,
4260,
10.1109/CDC45484.2021.9683081
|
|
72.
|
Youshan Tao, Michael Winkler,
Analysis of a chemotaxis-SIS epidemic model with unbounded infection force,
2023,
71,
14681218,
103820,
10.1016/j.nonrwa.2022.103820
|
|
73.
|
Qiumeng Li, Weipan Xu,
The impact of COVID-19 on bike-sharing travel pattern and flow structure: evidence from Wuhan,
2022,
15,
1752-1378,
477,
10.1093/cjres/rsac005
|
|
74.
|
Wen Zhang, Rui Xie, Xuefan Dong, Jian Li, Peng Peng, Ernesto DR Santibanez Gonzalez,
SEIR-FMi: A coronavirus disease epidemiological model based on intra-city movement, inter-city movement and medical resource investment,
2022,
149,
00104825,
106046,
10.1016/j.compbiomed.2022.106046
|
|
75.
|
Olukayode Fasominu, Oyeladun Okunromade, Oyeronke Oyebanji, Christopher T. Lee, Adejare Atanda, Ibrahim Mamadu, Ifeanyi Okudo, Ebere Okereke, Elsie Ilori, Chikwe Ihekweazu,
Reviewing Health Security Capacities in Nigeria Using the Updated WHO Joint External Evaluation and WHO Benchmarks Tool: Experience from a Country-Led Self-Assessment Exercise,
2022,
20,
2326-5094,
74,
10.1089/hs.2021.0095
|
|
76.
|
Lan Meng, Wei Zhu,
Analysis of SEIR epidemic patch model with nonlinear incidence rate, vaccination and quarantine strategies,
2022,
200,
03784754,
489,
10.1016/j.matcom.2022.04.027
|
|
77.
|
Weicai Ma, Peng Zhang, Xin Zhao, Leyang Xue,
The coupled dynamics of information dissemination and SEIR-based epidemic spreading in multiplex networks,
2022,
588,
03784371,
126558,
10.1016/j.physa.2021.126558
|
|
78.
|
Kanglin Chen, Ruth Steiner,
Longitudinal and spatial analysis of Americans’ travel distances following COVID-19,
2022,
110,
13619209,
103414,
10.1016/j.trd.2022.103414
|
|
79.
|
Hitomi Nakanishi, Yasuko Hassall Kobayashi,
2023,
9780323997706,
15,
10.1016/B978-0-323-99770-6.00006-5
|
|
80.
|
Julien Arino,
2022,
Chapter 2,
978-3-030-85052-4,
25,
10.1007/978-3-030-85053-1_2
|
|
81.
|
Stefan Gössling,
Risks, resilience, and pathways to sustainable aviation: A COVID-19 perspective,
2020,
89,
09696997,
101933,
10.1016/j.jairtraman.2020.101933
|
|
82.
|
Zhenzhen Lu, YangQuan Chen, Yongguang Yu, Guojian Ren, Conghui Xu, Weiyuan Ma, Xiangyun Meng,
The effect mitigation measures for COVID-19 by a fractional-order SEIHRDP model with individuals migration,
2023,
132,
00190578,
582,
10.1016/j.isatra.2022.12.006
|
|
83.
|
Wei Gou, Zhen Jin, Hao Wang,
Hopf bifurcation for general network-organized reaction-diffusion systems and its application in a multi-patch predator-prey system,
2023,
346,
00220396,
64,
10.1016/j.jde.2022.11.026
|
|
84.
|
Devi Prasad Dash, Aruna Kumar Dash, Narayan Sethi,
Understanding the Pandenomics: Indian Aviation Industry and Its Uncertainty Absorption,
2021,
69,
0019-4662,
729,
10.1177/00194662211013211
|
|
85.
|
Shuang Chen, Jicai Huang,
Destabilization of synchronous periodic solutions for patch models,
2023,
364,
00220396,
378,
10.1016/j.jde.2023.03.041
|
|
86.
|
Linghui He, Jian Li, Yuntao Guo, Jianping Sun,
Commuters’ intention to choose customized bus during COVID-19 pandemic: Insights from a two-phase comparative analysis,
2023,
33,
2214367X,
100627,
10.1016/j.tbs.2023.100627
|
|
87.
|
Ziqiang Cheng, Jin Wang,
A two-phase fluid model for epidemic flow,
2023,
24680427,
10.1016/j.idm.2023.07.001
|
|
88.
|
Maoxing Liu, Yuhang Li,
Dynamics analysis of an SVEIR epidemic model in a patchy environment,
2023,
20,
1551-0018,
16962,
10.3934/mbe.2023756
|
|
89.
|
Christoph Aluttis, Thomas Krafft, Helmut Brand,
Global health in the European Union – a review from an agenda-setting perspective,
2014,
7,
1654-9716,
10.3402/gha.v7.23610
|
|
90.
|
Bin-Guo Wang, Jiangqian Zhang,
Dynamics of an almost periodic epidemic model with non-local infections and latency in a patchy environment,
2024,
0,
1531-3492,
0,
10.3934/dcdsb.2024008
|
|
91.
|
Yuhang Li, Yongzheng Sun, Maoxing Liu,
Analysis of a patch epidemic model incorporating population migration and entry–exit screening,
2024,
14,
2158-3226,
10.1063/5.0196679
|
|
92.
|
Xia Li, Andrea L. Bertozzi, P. Jeffrey Brantingham, Yevgeniy Vorobeychik,
Optimal policy for control of epidemics with constrained time intervals and region-based interactions,
2024,
19,
1556-1801,
867,
10.3934/nhm.2024039
|
|
93.
|
Folashade B. Agusto, Jaimie Drum, Ning Cai,
Modeling the Effects of Ehrlichia chaffeensis and Movement on Dogs,
2024,
2024,
1076-2787,
10.1155/2024/6878662
|
|
94.
|
2022,
9781394322596,
61,
10.1002/9781394322596.ch4
|
|
95.
|
Daniel Ugochukwu Nnaji, Phineas Roy Kiogora, Joseph Mung’atu, Nnaemeka Stanley Aguegboh,
Spatio-temporal analysis of cholera spread: a mathematical approach using fluid dynamics,
2024,
2363-6203,
10.1007/s40808-024-02151-8
|
|
96.
|
Sassou Abraham, Ezekiel Dangbé, Damakoa Irépran, Antoine Perasso,
Mathematical modeling and analysis of the effect of vaccination and temperature on the dynamic transmission of coronavirus disease 2019 (COVID-19),
2025,
13,
2195-268X,
10.1007/s40435-025-01688-5
|
|
97.
|
Brooks A. Butler, Raphael Stern, Philip E. Paré,
Analysis and Applications of Population Flows in a Networked SEIRS Epidemic Process,
2024,
11,
2327-4697,
6664,
10.1109/TNSE.2024.3468991
|
|