Loading [Contrib]/a11y/accessibility-menu.js

The effect of global travel on the spread of SARS

  • Received: 01 April 2005 Accepted: 29 June 2018 Published: 01 November 2005
  • MSC : 92D30.

  • The goal of this paper is to study the global spread of SARS. We propose a multiregional compartmental model using medical geography theory (central place theory) and regarding each outbreak zone (such as Hong Kong, Singapore, Toronto, and Beijing) as one region. We then study the effect of the travel of individuals (especially the infected and exposed ones) between regions on the global spread of the disease.

    Citation: Shigui Ruan, Wendi Wang, Simon A. Levin. The effect of global travel on the spread of SARS[J]. Mathematical Biosciences and Engineering, 2006, 3(1): 205-218. doi: 10.3934/mbe.2006.3.205

    Related Papers:

    [1] Shigui Ruan . Letter to the editors. Mathematical Biosciences and Engineering, 2009, 6(1): 207-208. doi: 10.3934/mbe.2009.6.207
    [2] Wenhao Chen, Guo Lin, Shuxia Pan . Propagation dynamics in an SIRS model with general incidence functions. Mathematical Biosciences and Engineering, 2023, 20(4): 6751-6775. doi: 10.3934/mbe.2023291
    [3] Xichao Duan, Sanling Yuan, Kaifa Wang . Dynamics of a diffusive age-structured HBV model with saturating incidence. Mathematical Biosciences and Engineering, 2016, 13(5): 935-968. doi: 10.3934/mbe.2016024
    [4] Fan Xia, Yanni Xiao, Peiyu Liu, Robert A. Cheke, Xuanya Li . Differences in how interventions coupled with effective reproduction numbers account for marked variations in COVID-19 epidemic outcomes. Mathematical Biosciences and Engineering, 2020, 17(5): 5085-5098. doi: 10.3934/mbe.2020274
    [5] Ran Zhang, Shengqiang Liu . Traveling waves for SVIR epidemic model with nonlocal dispersal. Mathematical Biosciences and Engineering, 2019, 16(3): 1654-1682. doi: 10.3934/mbe.2019079
    [6] Cuicui Jiang, Kaifa Wang, Lijuan Song . Global dynamics of a delay virus model with recruitment and saturation effects of immune responses. Mathematical Biosciences and Engineering, 2017, 14(5&6): 1233-1246. doi: 10.3934/mbe.2017063
    [7] Kazuo Yamazaki, Xueying Wang . Global stability and uniform persistence of the reaction-convection-diffusion cholera epidemic model. Mathematical Biosciences and Engineering, 2017, 14(2): 559-579. doi: 10.3934/mbe.2017033
    [8] Julien Arino, Fred Brauer, P. van den Driessche, James Watmough, Jianhong Wu . A final size relation for epidemic models. Mathematical Biosciences and Engineering, 2007, 4(2): 159-175. doi: 10.3934/mbe.2007.4.159
    [9] Tingting Xue, Long Zhang, Xiaolin Fan . Dynamic modeling and analysis of Hepatitis B epidemic with general incidence. Mathematical Biosciences and Engineering, 2023, 20(6): 10883-10908. doi: 10.3934/mbe.2023483
    [10] Jinhu Xu, Yicang Zhou . Global stability of a multi-group model with vaccination age, distributed delay and random perturbation. Mathematical Biosciences and Engineering, 2015, 12(5): 1083-1106. doi: 10.3934/mbe.2015.12.1083
  • The goal of this paper is to study the global spread of SARS. We propose a multiregional compartmental model using medical geography theory (central place theory) and regarding each outbreak zone (such as Hong Kong, Singapore, Toronto, and Beijing) as one region. We then study the effect of the travel of individuals (especially the infected and exposed ones) between regions on the global spread of the disease.


  • This article has been cited by:

    1. Thanate Dhirasakdanon, Horst R. Thieme, P. Van Den Driessche, A sharp threshold for disease persistence in host metapopulations, 2007, 1, 1751-3758, 363, 10.1080/17513750701605465
    2. Menachem Lachiany, Lewi Stone, A Vaccination Model for a Multi-City System, 2012, 74, 0092-8240, 2474, 10.1007/s11538-012-9762-9
    3. Wendi Wang, Xiao-Qiang Zhao, Threshold Dynamics for Compartmental Epidemic Models in Periodic Environments, 2008, 20, 1040-7294, 699, 10.1007/s10884-008-9111-8
    4. Arti Mishra, Sunita Gakkhar, Non-linear Dynamics of Two-Patch Model Incorporating Secondary Dengue Infection, 2018, 4, 2349-5103, 10.1007/s40819-017-0460-z
    5. Necibe Tuncer, Trang Le, Effect of air travel on the spread of an avian influenza pandemic to the United States, 2014, 7, 18745482, 27, 10.1016/j.ijcip.2014.02.001
    6. Nicola Perra, Duygu Balcan, Bruno Gonçalves, Alessandro Vespignani, Cécile Viboud, Towards a Characterization of Behavior-Disease Models, 2011, 6, 1932-6203, e23084, 10.1371/journal.pone.0023084
    7. Shahin Shakibaei, Gerard C. de Jong, Pelin Alpkökin, Taha H. Rashidi, Impact of the COVID-19 pandemic on travel behavior in Istanbul: A panel data analysis, 2021, 65, 22106707, 102619, 10.1016/j.scs.2020.102619
    8. Guihua Li, Wendi Wang, Kaifa Wang, Zhen Jin, Dynamic behavior of a parasite–host model with general incidence, 2007, 331, 0022247X, 631, 10.1016/j.jmaa.2006.09.015
    9. Tzai-Hung Wen, Ching-Shun Hsu, Ming-Che Hu, Evaluating neighborhood structures for modeling intercity diffusion of large-scale dengue epidemics, 2018, 17, 1476-072X, 10.1186/s12942-018-0131-2
    10. Nasir Salam, Shoeb Mustafa, Abdul Hafiz, Anis Ahmad Chaudhary, Farah Deeba, Shama Parveen, Global prevalence and distribution of coinfection of malaria, dengue and chikungunya: a systematic review, 2018, 18, 1471-2458, 10.1186/s12889-018-5626-z
    11. Vittoria Colizza, Alessandro Vespignani, Epidemic modeling in metapopulation systems with heterogeneous coupling pattern: Theory and simulations, 2008, 251, 00225193, 450, 10.1016/j.jtbi.2007.11.028
    12. Assessing the effect of non-pharmaceutical interventions on containing an emerging disease, 2012, 9, 1551-0018, 147, 10.3934/mbe.2012.9.147
    13. Alessandro Rizzo, Mattia Frasca, Maurizio Porfiri, Effect of individual behavior on epidemic spreading in activity-driven networks, 2014, 90, 1539-3755, 10.1103/PhysRevE.90.042801
    14. Alok Sagar Gautam, Nishit Pathak, Taufiq Ahamad, Poonam Semwal, A. A. Bourai, A. S. Rana, O. P. Nautiyal, Pandemic in India: Special reference to Covid-19 and its technological aspect, 2021, 24, 0972-0510, 387, 10.1080/09720510.2021.1879469
    15. Pierre Auger, Etienne Kouokam, Gauthier Sallet, Maurice Tchuente, Berge Tsanou, The Ross–Macdonald model in a patchy environment, 2008, 216, 00255564, 123, 10.1016/j.mbs.2008.08.010
    16. YE LI, Jiawei Xu, 2020, Chapter 15, 978-3-030-60106-5, 297, 10.1007/978-3-030-60107-2_15
    17. Daozhou Gao, How Does Dispersal Affect the Infection Size?, 2020, 80, 0036-1399, 2144, 10.1137/19M130652X
    18. Zi Sang, Zhipeng Qiu, Qingkai Kong, Yun Zou, 2012, Optimal control strategy for an multi-regional epidemic model, 978-1-4673-1397-1, 5007, 10.1109/WCICA.2012.6359427
    19. Santiago Alvarez-Munoz, Nicolas Upegui-Porras, Arlen P. Gomez, Gloria Ramirez-Nieto, Key Factors That Enable the Pandemic Potential of RNA Viruses and Inter-Species Transmission: A Systematic Review, 2021, 13, 1999-4915, 537, 10.3390/v13040537
    20. Yukihiko Nakata, On the global stability of a delayed epidemic model with transport-related infection, 2011, 12, 14681218, 3028, 10.1016/j.nonrwa.2011.05.004
    21. Simone Bianco, Leah B. Shaw, Asymmetry in the Presence of Migration Stabilizes Multistrain Disease Outbreaks, 2011, 73, 0092-8240, 248, 10.1007/s11538-010-9541-4
    22. Duygu Balcan, Alessandro Vespignani, Invasion threshold in structured populations with recurrent mobility patterns, 2012, 293, 00225193, 87, 10.1016/j.jtbi.2011.10.010
    23. Youping Yang, Yanni Xiao, The effects of population dispersal and pulse vaccination on disease control, 2010, 52, 08957177, 1591, 10.1016/j.mcm.2010.06.024
    24. Yuying Wang, Yanni Xiao, An epidemic model on the dispersal networks at population and individual levels, 2015, 32, 0916-7005, 641, 10.1007/s13160-015-0189-1
    25. Divine Wanduku, G.S. Ladde, Global properties of a two-scale network stochastic delayed human epidemic dynamic model, 2012, 13, 14681218, 794, 10.1016/j.nonrwa.2011.08.017
    26. C. Heffernan, Climate change and multiple emerging infectious diseases, 2018, 234, 10900233, 43, 10.1016/j.tvjl.2017.12.021
    27. Tim K Mackey, Bryan A Liang, Lessons from SARS and H1N1/A: Employing a WHO–WTO forum to promote optimal economic-public health pandemic response, 2012, 33, 0197-5897, 119, 10.1057/jphp.2011.51
    28. ABHISHEK SENAPATI, TRIDIP SARDAR, JOYDEV CHATTOPADHYAY, A CHOLERA METAPOPULATION MODEL INTERLINKING MIGRATION WITH INTERVENTION STRATEGIES — A CASE STUDY OF ZIMBABWE (2008–2009), 2019, 27, 0218-3390, 185, 10.1142/S0218339019500098
    29. L. J. S. Allen, B. M. Bolker, Y. Lou, A. L. Nevai, Asymptotic Profiles of the Steady States for an SIS Epidemic Patch Model, 2007, 67, 0036-1399, 1283, 10.1137/060672522
    30. Diána Knipl, 2016, Chapter 24, 978-3-319-30377-2, 255, 10.1007/978-3-319-30379-6_24
    31. Junli Liu, Zhenguo Bai, Tailei Zhang, A periodic two-patch SIS model with time delay and transport-related infection, 2018, 437, 00225193, 36, 10.1016/j.jtbi.2017.10.011
    32. Glenn E. Lahodny, Linda J. S. Allen, Probability of a Disease Outbreak in Stochastic Multipatch Epidemic Models, 2013, 75, 0092-8240, 1157, 10.1007/s11538-013-9848-z
    33. Luosheng Wen, Bin Long, Xin Liang, Fengling Zeng, The Global Behavior of a Periodic Epidemic Model with Travel between Patches, 2012, 2012, 1085-3375, 1, 10.1155/2012/295060
    34. Remina Maimaitijiang, Qiangsheng He, Yanan Wu, Jennifer Z. H. Bouey, Ahoua Koné, Yucheng Liang, Chun Hao, Jiong Tu, Jing Gu, Yuantao Hao, Assessment of the health status and health service perceptions of international migrants coming to Guangzhou, China, from high-, middle- and low-income countries, 2019, 15, 1744-8603, 10.1186/s12992-019-0449-y
    35. Alessandro Rizzo, Maurizio Porfiri, 2017, Chapter 14, 978-981-10-5286-6, 317, 10.1007/978-981-10-5287-3_14
    36. Hossein Kheiri, Mohsen Jafari, Stability analysis of a fractional order model for the HIV/AIDS epidemic in a patchy environment, 2019, 346, 03770427, 323, 10.1016/j.cam.2018.06.055
    37. Ying-Hen Hsieh, P. van den Driessche, Lin Wang, Impact of Travel Between Patches for Spatial Spread of Disease, 2007, 69, 0092-8240, 1355, 10.1007/s11538-006-9169-6
    38. Bing Xiao, Bingwen Liu, Exponential convergence of an epidemic model with continuously distributed delays, 2008, 48, 08957177, 541, 10.1016/j.mcm.2007.10.008
    39. Jing Li, Xingfu Zou, Dynamics of an epidemic model with non-local infections for diseases with latency over a patchy environment, 2010, 60, 0303-6812, 645, 10.1007/s00285-009-0280-9
    40. Alessandro Rizzo, Biagio Pedalino, Maurizio Porfiri, A network model for Ebola spreading, 2016, 394, 00225193, 212, 10.1016/j.jtbi.2016.01.015
    41. Daozhou Gao, Travel Frequency and Infectious Diseases, 2019, 79, 0036-1399, 1581, 10.1137/18M1211957
    42. Divine Wanduku, Complete global analysis of a two-scale network SIRS epidemic dynamic model with distributed delay and random perturbations, 2017, 294, 00963003, 49, 10.1016/j.amc.2016.09.001
    43. Vittoria Colizza, Alain Barrat, Marc Barthélemy, Alessandro Vespignani, Predictability and epidemic pathways in global outbreaks of infectious diseases: the SARS case study, 2007, 5, 1741-7015, 10.1186/1741-7015-5-34
    44. D. P. Moualeu, S. Bowong, B. Tsanou, A. Temgoua, A patchy model for the transmission dynamics of tuberculosis in sub-Saharan Africa, 2018, 6, 2195-268X, 122, 10.1007/s40435-017-0310-1
    45. Pengyan Liu, Hong-Xu Li, GLOBAL STABILITY OF AUTONOMOUS AND NONAUTONOMOUS HEPATITIS B VIRUS MODELS IN PATCHY ENVIRONMENT, 2020, 10, 2156-907X, 1771, 10.11948/20190191
    46. Phillip Schumm, Caterina Scoglio, Qian Zhang, Duygu Balcan, Global epidemic invasion thresholds in directed cattle subpopulation networks having source, sink, and transit nodes, 2015, 367, 00225193, 203, 10.1016/j.jtbi.2014.12.007
    47. C. Cosner, J.C. Beier, R.S. Cantrell, D. Impoinvil, L. Kapitanski, M.D. Potts, A. Troyo, S. Ruan, The effects of human movement on the persistence of vector-borne diseases, 2009, 258, 00225193, 550, 10.1016/j.jtbi.2009.02.016
    48. Wendi Wang, Xiao-Qiang Zhao, Basic Reproduction Numbers for Reaction-Diffusion Epidemic Models, 2012, 11, 1536-0040, 1652, 10.1137/120872942
    49. Diána H. Knipl, Gergely Röst, Jianhong Wu, Epidemic Spread and Variation of Peak Times in Connected Regions Due to Travel-Related Infections---Dynamics of an Antigravity-Type Delay Differential Model, 2013, 12, 1536-0040, 1722, 10.1137/130914127
    50. Yongzhen Pei, Li Changguo, Qianyong Wu, Yunfei Lv, Successive Vaccination and Difference in Immunity of a Delay SIR Model with a General Incidence Rate, 2014, 2014, 1085-3375, 1, 10.1155/2014/678723
    51. Burcu Adivar, Ebru Selin Selen, Review of research studies on population specific epidemic disasters, 2013, 22, 0965-3562, 243, 10.1108/DPM-09-2012-0107
    52. W. Wang, Modeling Adaptive Behavior in Influenza Transmission, 2012, 7, 0973-5348, 253, 10.1051/mmnp/20127315
    53. Folashade Agusto, Amy Goldberg, Omayra Ortega, Joan Ponce, Sofya Zaytseva, Suzanne Sindi, Sally Blower, 2021, Chapter 5, 978-3-030-57128-3, 83, 10.1007/978-3-030-57129-0_5
    54. Xinxin Wang, Shengqiang Liu, Lin Wang, Weiwei Zhang, An Epidemic Patchy Model with Entry–Exit Screening, 2015, 77, 0092-8240, 1237, 10.1007/s11538-015-0084-6
    55. Guy Howard, Jamie Bartram, Clarissa Brocklehurst, John M. Colford, Federico Costa, David Cunliffe, Robert Dreibelbis, Joseph Neil Spindel Eisenberg, Barbara Evans, Rosina Girones, Steve Hrudey, Juliet Willetts, Caradee Y. Wright, COVID-19: urgent actions, critical reflections and future relevance of ‘WaSH’: lessons for the current and future pandemics, 2020, 18, 1477-8920, 613, 10.2166/wh.2020.162
    56. Alicia N. M. Kraay, James Trostle, Andrew F. Brouwer, William Cevallos, Joseph N. S. Eisenberg, Determinants of Short-term Movement in a Developing Region and Implications for Disease Transmission, 2018, 29, 1044-3983, 117, 10.1097/EDE.0000000000000751
    57. Margaux Marie Isabelle Meslé, Ian Melvyn Hall, Robert Matthew Christley, Steve Leach, Jonathan Michael Read, The use and reporting of airline passenger data for infectious disease modelling: a systematic review, 2019, 24, 1560-7917, 10.2807/1560-7917.ES.2019.24.31.1800216
    58. ShaoBo Zhong, QuanYi Huang, DunJiang Song, Simulation of the spread of infectious diseases in a geographical environment, 2009, 52, 1006-9313, 550, 10.1007/s11430-009-0044-9
    59. Wendi Wang, Xiao-Qiang Zhao, An Epidemic Model with Population Dispersal and Infection Period, 2006, 66, 0036-1399, 1454, 10.1137/050622948
    60. Adisak Denphedtnong, Settapat Chinviriyasit, Wirawan Chinviriyasit, On the dynamics of SEIRS epidemic model with transport-related infection, 2013, 245, 00255564, 188, 10.1016/j.mbs.2013.07.001
    61. Divine Wanduku, G. S. Ladde, The Global Analysis of a Stochastic Two-Scale Network Epidemic Dynamic Model with Varying Immunity Period, 2017, 05, 2327-4352, 1150, 10.4236/jamp.2017.55101
    62. Shi Zhao, Chris T. Bauch, Daihai He, Strategic decision making about travel during disease outbreaks: a game theoretical approach, 2018, 15, 1742-5689, 20180515, 10.1098/rsif.2018.0515
    63. Qianqian Cui, Zhipeng Qiu, Ling Ding, An SIR epidemic model with vaccination in a patchy environment, 2017, 14, 1551-0018, 1141, 10.3934/mbe.2017059
    64. Honglu Ji, Huan Tong, Jingge Wang, Dan Yan, Zangyi Liao, Ying Kong, The effectiveness of travel restriction measures in alleviating the COVID-19 epidemic: evidence from Shenzhen, China, 2021, 0269-4042, 10.1007/s10653-021-00920-3
    65. Jin Wang, Mathematical Models for Cholera Dynamics—A Review, 2022, 10, 2076-2607, 2358, 10.3390/microorganisms10122358
    66. Shabnam Rezapour, Atefe Baghaian, Nazanin Naderi, Juan P. Sarmiento, Infection transmission and prevention in metropolises with heterogeneous and dynamic populations, 2023, 304, 03772217, 113, 10.1016/j.ejor.2021.09.016
    67. Linghui He, Jian Li, Jianping Sun, How to promote sustainable travel behavior in the post COVID-19 period: A perspective from customized bus services, 2023, 12, 20460430, 19, 10.1016/j.ijtst.2021.11.001
    68. Ziqiang Cheng, Jin Wang, Modeling epidemic flow with fluid dynamics, 2022, 19, 1551-0018, 8334, 10.3934/mbe.2022388
    69. Qiao Zhuang, Jin Wang, A spatial epidemic model with a moving boundary, 2021, 6, 24680427, 1046, 10.1016/j.idm.2021.08.005
    70. M. R. Vinagre, G. Blé, L. Esteva, Dynamical Analysis of a Model for Secondary Infection of the Dengue, 2023, 0971-3514, 10.1007/s12591-022-00628-5
    71. Brooks Butler, Ciyuan Zhang, Ian Walter, Nishant Nair, Raphael Stern, Philip E. Pare, 2021, The Effect of Population Flow on Epidemic Spread: Analysis and Control, 978-1-6654-3659-5, 4260, 10.1109/CDC45484.2021.9683081
    72. Youshan Tao, Michael Winkler, Analysis of a chemotaxis-SIS epidemic model with unbounded infection force, 2023, 71, 14681218, 103820, 10.1016/j.nonrwa.2022.103820
    73. Qiumeng Li, Weipan Xu, The impact of COVID-19 on bike-sharing travel pattern and flow structure: evidence from Wuhan, 2022, 15, 1752-1378, 477, 10.1093/cjres/rsac005
    74. Wen Zhang, Rui Xie, Xuefan Dong, Jian Li, Peng Peng, Ernesto DR Santibanez Gonzalez, SEIR-FMi: A coronavirus disease epidemiological model based on intra-city movement, inter-city movement and medical resource investment, 2022, 149, 00104825, 106046, 10.1016/j.compbiomed.2022.106046
    75. Olukayode Fasominu, Oyeladun Okunromade, Oyeronke Oyebanji, Christopher T. Lee, Adejare Atanda, Ibrahim Mamadu, Ifeanyi Okudo, Ebere Okereke, Elsie Ilori, Chikwe Ihekweazu, Reviewing Health Security Capacities in Nigeria Using the Updated WHO Joint External Evaluation and WHO Benchmarks Tool: Experience from a Country-Led Self-Assessment Exercise, 2022, 20, 2326-5094, 74, 10.1089/hs.2021.0095
    76. Lan Meng, Wei Zhu, Analysis of SEIR epidemic patch model with nonlinear incidence rate, vaccination and quarantine strategies, 2022, 200, 03784754, 489, 10.1016/j.matcom.2022.04.027
    77. Weicai Ma, Peng Zhang, Xin Zhao, Leyang Xue, The coupled dynamics of information dissemination and SEIR-based epidemic spreading in multiplex networks, 2022, 588, 03784371, 126558, 10.1016/j.physa.2021.126558
    78. Kanglin Chen, Ruth Steiner, Longitudinal and spatial analysis of Americans’ travel distances following COVID-19, 2022, 110, 13619209, 103414, 10.1016/j.trd.2022.103414
    79. Hitomi Nakanishi, Yasuko Hassall Kobayashi, 2023, 9780323997706, 15, 10.1016/B978-0-323-99770-6.00006-5
    80. Julien Arino, 2022, Chapter 2, 978-3-030-85052-4, 25, 10.1007/978-3-030-85053-1_2
    81. Stefan Gössling, Risks, resilience, and pathways to sustainable aviation: A COVID-19 perspective, 2020, 89, 09696997, 101933, 10.1016/j.jairtraman.2020.101933
    82. Zhenzhen Lu, YangQuan Chen, Yongguang Yu, Guojian Ren, Conghui Xu, Weiyuan Ma, Xiangyun Meng, The effect mitigation measures for COVID-19 by a fractional-order SEIHRDP model with individuals migration, 2023, 132, 00190578, 582, 10.1016/j.isatra.2022.12.006
    83. Wei Gou, Zhen Jin, Hao Wang, Hopf bifurcation for general network-organized reaction-diffusion systems and its application in a multi-patch predator-prey system, 2023, 346, 00220396, 64, 10.1016/j.jde.2022.11.026
    84. Devi Prasad Dash, Aruna Kumar Dash, Narayan Sethi, Understanding the Pandenomics: Indian Aviation Industry and Its Uncertainty Absorption, 2021, 69, 0019-4662, 729, 10.1177/00194662211013211
    85. Shuang Chen, Jicai Huang, Destabilization of synchronous periodic solutions for patch models, 2023, 364, 00220396, 378, 10.1016/j.jde.2023.03.041
    86. Linghui He, Jian Li, Yuntao Guo, Jianping Sun, Commuters’ intention to choose customized bus during COVID-19 pandemic: Insights from a two-phase comparative analysis, 2023, 33, 2214367X, 100627, 10.1016/j.tbs.2023.100627
    87. Ziqiang Cheng, Jin Wang, A two-phase fluid model for epidemic flow, 2023, 24680427, 10.1016/j.idm.2023.07.001
    88. Maoxing Liu, Yuhang Li, Dynamics analysis of an SVEIR epidemic model in a patchy environment, 2023, 20, 1551-0018, 16962, 10.3934/mbe.2023756
    89. Christoph Aluttis, Thomas Krafft, Helmut Brand, Global health in the European Union – a review from an agenda-setting perspective, 2014, 7, 1654-9716, 10.3402/gha.v7.23610
    90. Bin-Guo Wang, Jiangqian Zhang, Dynamics of an almost periodic epidemic model with non-local infections and latency in a patchy environment, 2024, 0, 1531-3492, 0, 10.3934/dcdsb.2024008
    91. Yuhang Li, Yongzheng Sun, Maoxing Liu, Analysis of a patch epidemic model incorporating population migration and entry–exit screening, 2024, 14, 2158-3226, 10.1063/5.0196679
    92. Xia Li, Andrea L. Bertozzi, P. Jeffrey Brantingham, Yevgeniy Vorobeychik, Optimal policy for control of epidemics with constrained time intervals and region-based interactions, 2024, 19, 1556-1801, 867, 10.3934/nhm.2024039
    93. Folashade B. Agusto, Jaimie Drum, Ning Cai, Modeling the Effects of Ehrlichia chaffeensis and Movement on Dogs, 2024, 2024, 1076-2787, 10.1155/2024/6878662
    94. 2022, 9781394322596, 61, 10.1002/9781394322596.ch4
    95. Daniel Ugochukwu Nnaji, Phineas Roy Kiogora, Joseph Mung’atu, Nnaemeka Stanley Aguegboh, Spatio-temporal analysis of cholera spread: a mathematical approach using fluid dynamics, 2024, 2363-6203, 10.1007/s40808-024-02151-8
    96. Sassou Abraham, Ezekiel Dangbé, Damakoa Irépran, Antoine Perasso, Mathematical modeling and analysis of the effect of vaccination and temperature on the dynamic transmission of coronavirus disease 2019 (COVID-19), 2025, 13, 2195-268X, 10.1007/s40435-025-01688-5
    97. Brooks A. Butler, Raphael Stern, Philip E. Paré, Analysis and Applications of Population Flows in a Networked SEIRS Epidemic Process, 2024, 11, 2327-4697, 6664, 10.1109/TNSE.2024.3468991
  • Reader Comments
  • © 2006 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4101) PDF downloads(693) Cited by(96)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog