1.
|
Radhouane Fekih-Salem, Claude Lobry, Tewfik Sari,
A density-dependent model of competition for one resource in the chemostat,
2017,
286,
00255564,
104,
10.1016/j.mbs.2017.02.007
|
|
2.
|
Y. Daoud, N. Abdellatif, T. Sari, J. Harmand, A. Morozov,
Steady state analysis of a syntrophic model: the effect of a new input substrate concentration,
2018,
13,
0973-5348,
31,
10.1051/mmnp/2018037
|
|
3.
|
Emily Harvey, Jeffrey Heys, Tomáš Gedeon,
Quantifying the effects of the division of labor in metabolic pathways,
2014,
360,
00225193,
222,
10.1016/j.jtbi.2014.07.011
|
|
4.
|
Tomas Gedeon, Patrick Murphy,
Dynamics of Simple Food Webs,
2015,
77,
0092-8240,
1833,
10.1007/s11538-015-0106-4
|
|
5.
|
Marion Weedermann, Gail S. K. Wolkowicz, Joanna Sasara,
Optimal biogas production in a model for anaerobic digestion,
2015,
81,
0924-090X,
1097,
10.1007/s11071-015-2051-z
|
|
6.
|
Chaoqun Xu, Sanling Yuan, Tonghua Zhang,
Sensitivity analysis and feedback control of noise-induced extinction for competition chemostat model with mutualism,
2018,
505,
03784371,
891,
10.1016/j.physa.2018.04.040
|
|
7.
|
Hassan Khassehkhan, Hermann Eberl,
A Computational Study of Amensalistic Control of Listeria monocytogenes by Lactococcus lactis under Nutrient Rich Conditions in a Chemostat Setting,
2016,
5,
2304-8158,
61,
10.3390/foods5030061
|
|
8.
|
M.J. Wade, J. Harmand, B. Benyahia, T. Bouchez, S. Chaillou, B. Cloez, J.-J. Godon, B. Moussa Boudjemaa, A. Rapaport, T. Sari, R. Arditi, C. Lobry,
Perspectives in mathematical modelling for microbial ecology,
2016,
321,
03043800,
64,
10.1016/j.ecolmodel.2015.11.002
|
|
9.
|
Miled El Hajji,
How can inter-specific interferences explain coexistence or confirm the competitive exclusion principle in a chemostat?,
2018,
11,
1793-5245,
1850111,
10.1142/S1793524518501115
|
|
10.
|
Tewfik Sari, Jérôme Harmand,
A model of a syntrophic relationship between two microbial species in a chemostat including maintenance,
2016,
275,
00255564,
1,
10.1016/j.mbs.2016.02.008
|
|
11.
|
T. Sari, M.J. Wade,
Generalised approach to modelling a three-tiered microbial food-web,
2017,
291,
00255564,
21,
10.1016/j.mbs.2017.07.005
|
|
12.
|
Sarra Nouaoura, Radhouane Fekih-Salem, Nahla Abdellatif, Tewfik Sari,
Mathematical analysis of a three-tiered food-web in the chemostat,
2020,
0,
1553-524X,
0,
10.3934/dcdsb.2020369
|
|
13.
|
Sarra Nouaoura, Nahla Abdellatif, Radhouane Fekih-Salem, Tewfik Sari,
Mathematical Analysis of a Three-Tiered Model of Anaerobic Digestion,
2021,
81,
0036-1399,
1264,
10.1137/20M1353897
|
|
14.
|
Sarra Nouaoura, Radhouane Fekih-Salem, Nahla Abdellatif, Tewfik Sari,
Operating diagrams for a three-tiered microbial food web in the chemostat,
2022,
85,
0303-6812,
10.1007/s00285-022-01812-5
|
|
15.
|
Radhouane Fekih-Salem, Yessmine Daoud, Nahla Abdellatif, Tewfik Sari,
A Mathematical Model of Anaerobic Digestion with Syntrophic Relationship, Substrate Inhibition, and Distinct Removal Rates,
2021,
20,
1536-0040,
1621,
10.1137/20M1376480
|
|
16.
|
Amer Hassan Albargi, Miled El Hajji,
Mathematical analysis of a two-tiered microbial food-web model for the anaerobic digestion process,
2023,
20,
1551-0018,
6591,
10.3934/mbe.2023283
|
|
17.
|
Hajji ME,
How the competitive exclusion principle can be validated using optical density measurements collected on artificially reconstituted soil ecosystems,
2019,
001,
10.17352/ojeb.000009
|
|
18.
|
Tewfik Sari,
Best Operating Conditions for Biogas Production in Some Simple Anaerobic Digestion Models,
2022,
10,
2227-9717,
258,
10.3390/pr10020258
|
|
19.
|
Abdulrahman Ali Alsolami, Miled El Hajji,
Mathematical Analysis of a Bacterial Competition in a Continuous Reactor in the Presence of a Virus,
2023,
11,
2227-7390,
883,
10.3390/math11040883
|
|
20.
|
Tewfik Sari, Boumediene Benyahia,
The operating diagram for a two-step anaerobic digestion model,
2021,
105,
0924-090X,
2711,
10.1007/s11071-021-06722-7
|
|
21.
|
Carlos Martínez, Eugenio Cinquemani, Hidde de Jong, Jean-Luc Gouzé,
Optimal protein production by a synthetic microbial consortium: coexistence, distribution of labor, and syntrophy,
2023,
87,
0303-6812,
10.1007/s00285-023-01935-3
|
|
22.
|
Amer Hassan Albargi, Miled El Hajji,
Bacterial Competition in the Presence of a Virus in a Chemostat,
2023,
11,
2227-7390,
3530,
10.3390/math11163530
|
|
23.
|
Miled El Hajji,
Mathematical modeling for anaerobic digestion under the influence of leachate recirculation,
2023,
8,
2473-6988,
30287,
10.3934/math.20231547
|
|
24.
|
Juan Carlos Arceo, Olivier Bernard, Jean-Luc Gouze,
2022,
Bacteria Mutualism in a Chemostat: Analysis and Optimization with Interval Detector,
978-1-6654-6761-2,
3225,
10.1109/CDC51059.2022.9992750
|
|
25.
|
M. Guo, W. Shen, M. Zhou, Y. Song, J. Liu, W. Xiong, Y. Gao,
Safety and efficacy of carbamazepine in the treatment of trigeminal neuralgia: A metanalysis in biomedicine,
2024,
21,
1551-0018,
5335,
10.3934/mbe.2024235
|
|
26.
|
Tewfik Sari,
Commensalism and syntrophy in the chemostat: a unifying graphical approach,
2024,
9,
2473-6988,
18625,
10.3934/math.2024907
|
|
27.
|
Nabil Ben Ali, Nahla Abdellatif,
Stability and bifurcations in a model of chemostat with two inter‐connected inhibitions and a negative feedback loop,
2024,
0170-4214,
10.1002/mma.10349
|
|
28.
|
Lin Wang, Linlin Bu, Jianhua Wu,
Dynamics of a diffusive model in the anaerobic digestion process,
2025,
142,
10075704,
108523,
10.1016/j.cnsns.2024.108523
|
|
29.
|
Nabil Ben Ali, Nahla Abdellatif,
Stability of density-dependent model with indirect feedback and biomass inhibition,
2025,
1431-7613,
10.1007/s12064-025-00440-z
|
|