Processing math: 100%
Research article Special Issues

Approximate controllability for a class of fractional semilinear system with instantaneous and non-instantaneous impulses

  • Received: 03 February 2023 Revised: 25 July 2024 Accepted: 17 August 2023 Published: 28 August 2024
  • This paper is mainly concerned with the existence of mild solutions and approximate controllability for a class of fractional semilinear systems with instantaneous and non-instantaneous impulses. By applying the Kuratowski measure of noncompactness and ρ-set contractive fixed-point theorem, the results for the considered system were obtained. In the end, an example was studied to support the main results.

    Citation: Yunhao Chu, Yansheng Liu. Approximate controllability for a class of fractional semilinear system with instantaneous and non-instantaneous impulses[J]. Mathematical Modelling and Control, 2024, 4(3): 273-285. doi: 10.3934/mmc.2024022

    Related Papers:

    [1] A. El-Mesady, Y. S. Hamed, M. S. Mohamed, H. Shabana . Partially balanced network designs and graph codes generation. AIMS Mathematics, 2022, 7(2): 2393-2412. doi: 10.3934/math.2022135
    [2] Adel Alahmadi, Tamador Alihia, Patrick Solé . The build up construction for codes over a non-commutative non-unitary ring of order 9. AIMS Mathematics, 2024, 9(7): 18278-18307. doi: 10.3934/math.2024892
    [3] Adel Alahmadi, Altaf Alshuhail, Patrick Solé . The mass formula for self-orthogonal and self-dual codes over a non-unitary commutative ring. AIMS Mathematics, 2023, 8(10): 24367-24378. doi: 10.3934/math.20231242
    [4] Hao Song, Yuezhen Ren, Ruihu Li, Yang Liu . Optimal quaternary Hermitian self-orthogonal [n,5] codes of n492. AIMS Mathematics, 2025, 10(4): 9324-9331. doi: 10.3934/math.2025430
    [5] Chaofeng Guan, Ruihu Li, Hao Song, Liangdong Lu, Husheng Li . Ternary quantum codes constructed from extremal self-dual codes and self-orthogonal codes. AIMS Mathematics, 2022, 7(4): 6516-6534. doi: 10.3934/math.2022363
    [6] Ganesh Gandal, R Mary Jeya Jothi, Narayan Phadatare . On very strongly perfect Cartesian product graphs. AIMS Mathematics, 2022, 7(2): 2634-2645. doi: 10.3934/math.2022148
    [7] Qiuyan Wang, Weixin Liu, Jianming Wang, Yang Yan . A class of nearly optimal codebooks and their applications in strongly regular Cayley graphs. AIMS Mathematics, 2024, 9(7): 18236-18246. doi: 10.3934/math.2024890
    [8] Jalal-ud-Din, Ehtasham-ul-Haq, Ibrahim M. Almanjahie, Ishfaq Ahmad . Enhancing probabilistic based real-coded crossover genetic algorithms with authentication of VIKOR multi-criteria optimization method. AIMS Mathematics, 2024, 9(10): 29250-29268. doi: 10.3934/math.20241418
    [9] Mohamed R. Zeen El Deen, Ghada Elmahdy . New classes of graphs with edge δ graceful labeling. AIMS Mathematics, 2022, 7(3): 3554-3589. doi: 10.3934/math.2022197
    [10] Xiying Zheng, Bo Kong, Yao Yu . Quantum codes from σ-dual-containing constacyclic codes over Rl,k. AIMS Mathematics, 2023, 8(10): 24075-24086. doi: 10.3934/math.20231227
  • This paper is mainly concerned with the existence of mild solutions and approximate controllability for a class of fractional semilinear systems with instantaneous and non-instantaneous impulses. By applying the Kuratowski measure of noncompactness and ρ-set contractive fixed-point theorem, the results for the considered system were obtained. In the end, an example was studied to support the main results.



    First we give the definitions of generalized fractional integral operators which are special cases of the unified integral operators defined in (1.9), (1.10).

    Definition 1.1. [1] Let f:[a,b]R be an integrable function. Also let g be an increasing and positive function on (a,b], having a continuous derivative g on (a,b). The left-sided and right-sided fractional integrals of a function f with respect to another function g on [a,b] of order μ where (μ)>0 are defined by:

    μgIa+f(x)=1Γ(μ)xa(g(x)g(t))μ1g(t)f(t)dt,x>a, (1.1)
    μgIbf(x)=1Γ(μ)bx(g(t)g(x))μ1g(t)f(t)dt, x<b, (1.2)

    where Γ(.) is the gamma function.

    Definition 1.2. [2] Let f:[a,b]R be an integrable function. Also let g be an increasing and positive function on (a,b], having a continuous derivative g on (a,b). The left-sided and right-sided fractional integrals of a function f with respect to another function g on [a,b] of order μ where (μ),k>0 are defined by:

    μgIka+f(x)=1kΓk(μ)xa(g(x)g(t))μk1g(t)f(t)dt,x>a, (1.3)
    μgIkbf(x)=1kΓk(μ)bx(g(t)g(x))μk1g(t)f(t)dt, x<b, (1.4)

    where Γk(.) is defined as follows [3]:

    Γk(x)=0tx1etkkdt,(x)>0. (1.5)

    A fractional integral operator containing an extended generalized Mittag-Leffler function in its kernel is defined as follows:

    Definition 1.3. [4] Let ω,μ,α,l,γ,cC, (μ),(α),(l)>0, (c)>(γ)>0 with p0, δ>0 and 0<kδ+(μ). Let fL1[a,b] and x[a,b]. Then the generalized fractional integral operators ϵγ,δ,k,cμ,α,l,ω,a+f and ϵγ,δ,k,cμ,α,l,ω,bf are defined by:

    (ϵγ,δ,k,cμ,α,l,ω,a+f)(x;p)=xa(xt)α1Eγ,δ,k,cμ,α,l(ω(xt)μ;p)f(t)dt, (1.6)
    (ϵγ,δ,k,cμ,α,l,ω,bf)(x;p)=bx(tx)α1Eγ,δ,k,cμ,α,l(ω(tx)μ;p)f(t)dt, (1.7)

    where

    Eγ,δ,k,cμ,α,l(t;p)=n=0βp(γ+nk,cγ)β(γ,cγ)(c)nkΓ(μn+α)tn(l)nδ (1.8)

    is the extended generalized Mittag-Leffler function and (c)nk is the Pochhammer symbol defined by (c)nk=Γ(c+nk)Γ(c).

    Recently, a unified integral operator is defined as follows:

    Definition 1.4. [5] Let f,g:[a,b]R, 0<a<b, be the functions such that f be positive and fL1[a,b], and g be differentiable and strictly increasing. Also let ϕx be an increasing function on [a,) and α,l,γ,c C, p,μ,δ 0 and 0<kδ+μ. Then for x[a,b] the left and right integral operators are defined by

    (gFϕ,γ,δ,k,cμ,α,l,a+f)(x,ω;p)=xaKyx(Eγ,δ,k,cμ,α,l,g;ϕ)f(y)d(g(y)), (1.9)
    (gFϕ,γ,δ,k,cμ,β,l,bf)(x,ω;p)=bxKxy(Eγ,δ,k,cμ,β,l,g;ϕ)f(y)d(g(y)), (1.10)

    where the involved kernel is defined by

    Kyx(Eγ,δ,k,cμ,α,l,g;ϕ)=ϕ(g(x)g(y))g(x)g(y)Eγ,δ,k,cμ,α,l(ω(g(x)g(y))μ;p). (1.11)

    For suitable settings of functions ϕ, g and certain values of parameters included in Mittag-Leffler function, several recently defined known fractional and conformable fractional integrals studied in [6,7,8,9,10,1,11,12,13,14,15,16,17] can be reproduced, see [18,Remarks 6&7].

    The aim of this study is to derive the bounds of all aforementioned integral operators in a unified form for (s,m)-convex functions. These bounds will hold particularly for m-convex, s-convex and convex functions and for almost all fractional and conformable integrals defined in [6,7,8,9,10,1,11,12,13,14,15,16,17].

    Definition 1.5. [19] A function f:[0,b]R,b>0 is said to be (s,m)-convex, where (s,m)[0,1]2 if

    f(tx+m(1t)y)tsf(x)+m(1t)sf(y) (1.12)

    holds for all x,y[0,b]andt[0,1].

    Remark 1. 1. If we take (s,m) = (1,m), then (1.12) gives the definition of m-convex function.

    2. If we take (s,m) = (1,1), then (1.12) gives the definition of convex function.

    3. If we take (s,m) = (1,0), then (1.12) gives the definition of star-shaped function.

    P1: Let g and ϕx be increasing functions. Then for x<t<y, x,y[a,b] the kernel Kyx(Eγ,δ,k,cμ,α,l,g;ϕ) satisfies the following inequality:

    Kxt(Eγ,δ,k,cμ,α,l,g;ϕ)g(t)Kxy(Eγ,δ,k,cμ,α,l,g;ϕ)g(t). (2.1)

    This can be obtained from the following two straightforward inequalities:

    ϕ(g(t)g(x))g(t)g(x)g(t)ϕ(g(y)g(x))g(y)g(x)g(t), (2.2)
    Eγ,δ,k,cμ,α,l(ω(g(t)g(x))μ;p)Eγ,δ,k,cμ,α,l(ω(g(y)g(x))μ;p). (2.3)

    The reverse of inequality (1.9) holds when g and ϕx are decreasing.

    P2: Let g and ϕx be increasing functions. If ϕ(0)=ϕ(0)=0, then for x,y[a,b],x<y,

    Kxy(Eγ,δ,k,cμ,α,l,g;ϕ)0.

    P3: For p,qR,

    Kxy(Eγ,δ,k,cμ,α,l,g;pϕ1+qϕ2)=pKxy(Eγ,δ,k,cμ,α,l,g;ϕ1)+qKxy(Eγ,δ,k,cμ,α,l,g;ϕ2).

    The upcoming section contains the results which deal with the bounds of several integral operators in a compact form by utilizing (s,m)-convex functions. A version of the Hadamard inequality in a compact form is presented, also a modulus inequality is given for differentiable function f such that |f| is (s,m)-convex function.

    In this section first we will state the main results. The following result provides upper bound of unified integral operators.

    Theorem 3.1. Let f:[a,b]R, 0a<b be a positive integrable (s,m)-convex function, m(0,1]. Let g:[a,b]R be differentiable and strictly increasing function, also let ϕx be an increasing function on [a,b]. If α,β,l,γ,cC, p,μ0,δ0 and 0<kδ+μ, then for x(a,b) the following inequality holds for unified integral operators:

    (gFϕ,γ,δ,k,cμ,α,l,a+f)(x,ω;p)+(gFϕ,γ,δ,k,cμ,β,l,bf)(x,ω;p)Kax(Eγ,δ,k,cμ,α,l,g;ϕ)(mf(xm)g(x)f(a)g(a)Γ(s+1)(xa)s(mf(xm)sIxg(a)f(a)sIa+g(x)))+Kxb(Eγ,δ,k,cμ,β,l,g;ϕ)(f(b)g(b)mf(xm)g(x)Γ(s+1)(bx)s(f(b)sIbg(x)mf(xm)sIx+g(b))). (3.1)

    Lemma 3.2. [20] Let f:[0,]R, be an (s,m)-convex function, m(0,1]. If f(x)=f(a+bxm), then the following inequality holds:

    f(a+b2)12s(1+m)f(x)x[a,b]. (3.2)

    The following result provides generalized Hadamard inequality for (s,m)-convex functions.

    Theorem 3.3. Under the assumptions of Theorem 3.1, in addition if f(x)=f(a+bxm), m(0,1], then the following inequality holds:

    2s(1+m)f(a+b2)((gFϕ,γ,δ,k,cμ,α,l,b1)(a,ω;p)+(gFϕ,γ,δ,k,cμ,β,l,a+1)(b,ω;p))(gFϕ,γ,δ,k,cμ,α,l,bf)(a,ω;p)+(gFϕ,γ,δ,k,cμ,β,l,a+f)(b,ω;p)(Kab(Eγ,δ,k,cμ,α,l,g;ϕ)+Kab(Eγ,δ,k,cμ,α,l,g;ϕ))(f(b)g(b)mf(am)g(a)Γ(s+1)(ba)s(f(b)sIbg(a)mf(am)sIa+g(b))). (3.3)

    Theorem 3.4. Let f:[a,b]R, 0a<b be a differentiable function. If |f| is (s,m)-convex, m(0,1] and g:[a,b]R be differentiable and strictly increasing function, also let ϕx be an increasing function on [a,b]. If α,β,l,γ,cC, p,μ0, δ0 and 0<kδ+μ, then for x(a,b) we have

    |(gFϕ,γ,δ,k,cμ,α,l,a+fg)(x,ω;p)+(gFϕ,γ,δ,k,cμ,β,l,bfg)(x,ω;p)|Kax(Eγ,δ,k,cμ,α,l,g;ϕ)(m|f(xm)|g(x)|f(a)|g(a)Γ(s+1)(xa)s(m|f(xm)|sIxg(a)|f(a)|sIa+g(x)))+Kxb(Eγ,δ,k,cμ,β,l,g;ϕ)(|f(b)|g(b)m|f(xm)|g(x)Γ(s+1)(bx)s(|f(b)|sIbg(x)m|f(xm)|sIx+g(b))), (3.4)

    where

    (gFϕ,γ,δ,k,cμ,α,l,a+fg)(x,ω;p):=xaKtx(Eγ,δ,k,cμ,α,l,g;ϕ)f(t)d(g(t)),
    (gFϕ,γ,δ,k,cμ,β,l,bfg)(x,ω;p):=bxKxt(Eγ,δ,k,cμ,α,l,g;ϕ)f(t)d(g(t)).

    In this section we give the proves of the results stated in aforementioned section.

    Proof of Theorem 3.1. By (P1), the following inequalities hold:

    Ktx(Eγ,δ,k,cμ,α,l,g;ϕ)g(t)Kax(Eγ,δ,k,cμ,α,l,g;ϕ)g(t), a<t<x, (4.1)
    Kxt(Eγ,δ,k,cμ,α,l,g;ϕ)g(t)Kxb(Eγ,δ,k,cμ,β,l,g;ϕ)g(t), x<t<b. (4.2)

    For (s,m)-convex function the following inequalities hold:

    f(t)(xtxa)sf(a)+m(taxa)sf(xm), a<t<x, (4.3)
    f(t)(txbx)sf(b)+m(btbx)sf(xm), x<t<b. (4.4)

    From (4.1) and (4.3), the following integral inequality holds true:

    xaKtx(Eγ,δ,k,cμ,α,l,g;ϕ)f(t)d(g(t))f(a)Kax(Eγ,δ,k,cμ,α,l,g;ϕ)×xa(xtxa)sd(g(t))+mf(xm)Kax(Eγ,δ,k,cμ,α,l,g;ϕ)xa(taxa)sd(g(t)). (4.5)

    Further the aforementioned inequality takes the form which involves Riemann-Liouville fractional integrals in the right hand side, provides the upper bound of unified left sided integral operator (1.1) as follows:

    (gFϕ,γ,δ,k,cμ,α,l,a+f)(x,ω;p)Kax(Eγ,δ,k,cμ,α,l,g;ϕ)(mf(xm)g(x)f(a)g(a)Γ(s+1)(xa)s(mf(xm)sIxg(a)f(a)sIa+g(x))). (4.6)

    On the other hand from (4.2) and (4.4), the following integral inequality holds true:

    bxKxt(Eγ,δ,k,cμ,α,l,g;ϕ)f(t)d(g(t))f(b)Kxb(Eγ,δ,k,cμ,β,l,g;ϕ)×bx(txbx)sd(g(t))+mf(xm)Kbx(Eγ,δ,k,cμ,α,l,g;ϕ)bx(btbx)sd(g(t)). (4.7)

    Further the aforementioned inequality takes the form which involves Riemann-Liouville fractional integrals in the right hand side, provides the upper bound of unified right sided integral operator (1.2) as follows:

    (gFϕ,γ,δ,k,cμ,β,l,bf)(x,ω;p)Kxb(Eγ,δ,k,cμ,β,l,g;ϕ)(f(b)g(b)mf(xm)g(x)Γ(s+1)(bx)s(f(b)sIbg(x)mf(xm)sIx+g(b))). (4.8)

    By adding (4.6) and (4.8), (3.1) can be obtained.

    Remark 2. (ⅰ) If we consider (s,m) = (1, 1) in (3.1), [18,Theorem 1] is obtained.

    (ⅱ) If we consider p=ω=0 in (3.1), [20,Theorem 1] is obtained.

    (ⅲ) If we consider ϕ(t)=Γ(α)tα, p=ω=0 and (s,m) = (1, 1) in (3.1), [21,Theorem 1] is obtained.

    (ⅳ) If we consider α=β in the result of (ⅲ), then [21,Corollary 1] is obtained.

    (ⅴ) If we consider ϕ(t)=tα, g(x)=x and m=1 in (3.1), then [22,Theorem 2.1] is obtained.

    (ⅵ) If we consider α=β in the result of (v), then [22,Corollary 2.1] is obtained.

    (ⅶ) If we consider ϕ(t)=Γ(α)tαkkΓk(α), (s,m) = (1, 1), g(x)=x and p=ω=0 in (3.1), then [23,Theorem 1] can be obtained.

    (ⅷ) If we consider α=β in the result of (ⅶ), then [23,Corollary 1] can be obtained.

    (ⅸ) If we consider ϕ(t)=Γ(α)tα, g(x)=x and p=ω=0 and (s,m) = (1, 1) in (3.1), then [24,Theorem 1] is obtained.

    (ⅹ) If we consider α=β in the result of (ⅸ), then [24,Corollary 1] can be obtained.

    (ⅹⅰ) If we consider α=β=1 and x=a or x=b in the result of (x), then [24,Corollary 2] can be obtained.

    (ⅹⅱ) If we consider α=β=1 and x=a+b2 in the result of (ⅹ), then [24,Corollary 3] can be obtained.

    Proof of Theorem 3.3. By (P1), the following inequalities hold:

    Kax(Eγ,δ,k,cμ,α,l,g;ϕ)g(x)Kab(Eγ,δ,k,cμ,α,l,g;ϕ)g(x), a<x<b, (4.9)
    Kxb(Eγ,δ,k,cμ,β,l,g;ϕ)g(x)Kab(Eγ,δ,k,cμ,α,l,g;ϕ)g(x) a<x<b. (4.10)

    For (s,m)-convex function f, the following inequality holds:

    f(x)(xaba)sf(b)+m(bxba)sf(am), a<x<b. (4.11)

    From (4.9) and (4.11), the following integral inequality holds true:

    baKax(Eγ,δ,k,cμ,α,l,g;ϕ)f(x)d(g(x))mf(am)Kab(Eγ,δ,k,cμ,α,l,g;ϕ)ba(bxba)sd(g(x))+f(b)Kab(Eγ,δ,k,cμ,α,l,g;ϕ)ba(xaba)sd(g(x)).

    Further the aforementioned inequality takes the form which involves Riemann-Liouville fractional integrals in the right hand side, provides the upper bound of unified right sided integral operator (1.1) as follows:

    (gFϕ,γ,δ,k,cμ,α,l,bf)(a,ω;p)Kab(Eγ,δ,k,cμ,α,l,g;ϕ)(f(b)g(b)mf(am)g(a)Γ(s+1)(ba)s(f(b)sIbg(a)mf(am)sIa+g(b))). (4.12)

    On the other hand from (4.9) and (4.11), the following inequality holds which involves Riemann-Liouville fractional integrals on the right hand side and estimates of the integral operator (1.2):

    (gFϕ,γ,δ,k,cμ,β,l,a+f)(b,ω;p)Kab(Eγ,δ,k,cμ,α,l,g;ϕ)(f(b)g(b)mf(am)g(a)Γ(s+1)(ba)s(f(b)sIbg(a)mf(am)sIa+g(b))). (4.13)

    By adding (4.12) and (4.13), following inequality can be obtained:

    (gFϕ,γ,δ,k,cμ,α,l,bf)(a,ω;p)+(gFϕ,γ,δ,k,cμ,β,l,a+f)(b,ω;p)(Kab(Eγ,δ,k,cμ,α,l,g;ϕ)+Kab(Eγ,δ,k,cμ,α,l,g;ϕ))(f(b)g(b)mf(am)g(a)Γ(α+1)(ba)s(f(b)sIbg(b)mf(am)sIa+g(b))). (4.14)

    Multiplying both sides of (3.2) by Kax(Eγ,δ,k,cμ,α,l,g;ϕ)g(x), and integrating over [a,b] we have

    f(a+b2)baKax(Eγ,δ,k,cμ,α,l,g;ϕ)d(g(x))(12s)(1+m)baKab(Eγ,δ,k,cμ,α,l,g;ϕ)f(x)d(g(x)).

    From Definition 1.4, the following inequality is obtained:

    f(a+b2)2s(1+m)(gFϕ,γ,δ,k,cμ,α,l,b1)(a,ω;p)(gFϕ,γ,δ,k,cμ,α,l,bf)(a,ω;p). (4.15)

    Similarly multiplying both sides of (3.2) by Kxb(Eγ,δ,k,cμ,β,l,g;ϕ)g(x), and integrating over [a,b] we have

    f(a+b2)2s(1+m)(gFϕ,γ,δ,k,cμ,β,l,a+1)(b,ω;p)(gFϕ,γ,δ,k,cμ,β,l,a+f)(b,ω;p). (4.16)

    By adding (4.15) and (4.16) the following inequality is obtained:

    f(a+b2)2s(1+m)((gFϕ,γ,δ,k,cμ,β,l,a+1)(b,ω;p)+(gFϕ,γ,δ,k,cμ,α,l,b1)(a,ω;p))(gFϕ,γ,δ,k,cμ,β,l,a+f)(b,ω;p)+(gFϕ,γ,δ,k,cμ,α,l,bf)(a,ω;p). (4.17)

    Using (4.14) and (4.17), inequality (3.3) can be obtained, this completes the proof.

    Remark 3. (ⅰ) If we consider (s,m) = (1, 1) in (3.3), [18,Theorem 2] is obtained.

    (ⅱ) If we consider p=ω=0 in (3.3), [20,Theorem 3] is obtained.

    (ⅲ) If we consider ϕ(t)=Γ(α)tα+1, p=ω=0 and (s,m) = (1, 1) in (3.3), [21,Theorem 3] is obtained.

    (ⅳ) If we consider α=β in the result of (iii), then [21,Corollary 3] is obtained.

    (ⅴ) If we consider ϕ(t)=tα+1, g(x)=x and m=1 in (3.3), then [22,Theorem 2.4] is obtained.

    (ⅵ) If we consider α=β in the result of (v), then [22,Corollary 2.6] is obtained.

    (ⅶ) If we consider ϕ(t)=Γ(α)tαk+1, (s,m) = (1, 1), g(x)=x and p=ω=0 in (3.3), then [23,Theorem 3] can be obtained.

    (ⅷ) If we consider α=β in the result of (ⅶ), then [23,Corollary 6] can be obtained.

    (ⅸ) If we consider ϕ(t)=Γ(α)tα+1, p=ω=0, (s,m)=1 and g(x)=x in (3.3), [24,Theorem 3] can be obtained.

    (ⅹ) If we consider α=β in the result of (ⅸ), [24,Corrolary 6] can be obtained.

    Proof of Theorem 3.4. For (s,m)-convex function the following inequalities hold:

    |f(t)|(xtxa)s|f(a)|+m(taxa)s|f(xm)|, a<t<x, (4.18)
    |f(t)|(txbx)s|f(b)|+m(btbx)s|f(xm)|, x<t<b. (4.19)

    From (4.1) and (4.18), the following inequality is obtained:

    |(gFϕ,γ,δ,k,cμ,α,l,a+(fg))(x,ω;p)|Kax(Eγ,δ,k,cμ,α,l,g;ϕ)(xa)s×((xa)s(m|f(xm)|g(x)|f(a)|g(a))Γ(s+1)(m|f(xm)|sIxg(a)|f(a)|sIa+g(x))). (4.20)

    Similarly, from (4.2) and (4.19), the following inequality is obtained:

    |(gFϕ,γ,δ,k,cμ,β,l,b(fg))(x,ω;p)|Kxb(Eγ,δ,k,cμ,β,l,g;ϕ)(bx)s×((bx)s(|f(b)|g(b)mf|(xm)|g(x))Γ(s+1)(|f(b)|sIbg(x)mf|(xm)|sIx+g(b))). (4.21)

    By adding (4.20) and (4.21), inequality (3.4) can be achieved.

    Remark 4. (ⅰ) If we consider (s,m) = (1, 1) in (3.4), then [18,Theorem 3] is obtained.

    (ⅱ) If we consider p=ω=0 in (3.4), then [20,Theorem 2] is obtained.

    (ⅲ) If we consider ϕ(t)=Γ(α)tα+1, p=ω=0 and (s,m) = (1, 1) in (3.4), then [21,Theorem 2] is obtained.

    (ⅳ) If we consider α=β in the result of (iii), then [21,Corollary 2] is obtained.

    (ⅴ) If we consider ϕ(t)=tα, g(x)=x and m=1 in (3.4), then [22,Theorem 2.3] is obtained.

    (ⅵ) If we consider α=β in the result of (v), then [22,Corollary 2.5] is obtained.

    (ⅶ) If we consider ϕ(t)=Γ(α)tαk+1, (s,m) = (1, 1), g(x)=x and p=ω=0 in (3.4), then [23,Theorem 2] can be obtained.

    (ⅷ) If we consider α=β in the result of (ⅶ), then [23,Corollary 4] can be obtained.

    (ⅸ) If we consider α=β=k=1 and x=a+b2, in the result of (ⅷ), then [23,Corollary 5] can be obtained.

    (ⅹ) If we consider ϕ(t)=Γ(α)tα+1, g(x)=x and p=ω=0 and (s,m) = (1, 1) in (3.4), then [24,Theorem 2] is obtained.

    (ⅹⅰ) If we consider α=β in the result of (x), then [24,Corollary 5] can be obtained.

    In this section, we have established boundedness and continuity of unified integral operators for m-convex and convex functions.

    Theorem 5.1. Under the assumptions of Theorem 1, the following inequality holds for m-convex functions:

    (gFϕ,γ,δ,k,cμ,α,l,a+f)(x,ω;p)+(gFϕ,γ,δ,k,cμ,β,l,bf)(x,ω;p)Kax(Eγ,δ,k,cμ,α,l,g;ϕ)(g(x)g(a))(mf(xm)+f(a))+Kxb(Eγ,δ,k,cμ,β,l,g;ϕ)(g(b)g(x))(mf(xm)+f(b)). (5.1)

    Proof. If we put s=1 in (4.5), we have

    xaKtx(Eγ,δ,k,cμ,α,l,g;ϕ)f(t)d(g(t))f(a)Kax(Eγ,δ,k,cμ,α,l,g;ϕ)×xa(xtxa)d(g(t))+mf(xm)Kax(Eγ,δ,k,cμ,α,l,g;ϕ)xa(taxa)d(g(t)). (5.2)

    Further from simplification of (5.2), the following inequality holds:

    (gFϕ,γ,δ,k,cμ,α,l,a+f)(x,ω;p)Kax(Eγ,δ,k,cμ,α,l,g;ϕ)(g(x)g(a))(mf(xm)+f(a)). (5.3)

    Similarly from (4.8), the following inequality holds:

    (gFϕ,γ,δ,k,cμ,β,l,bf)(x,ω;p)Kxb(Eγ,δ,k,cμ,β,l,g;ϕ)(g(b)g(x))(mf(xm)+f(b)). (5.4)

    From (5.3) and (5.4), (5.1) can be obtained.

    Theorem 5.2. With assumptions of Theorem 4, if fL[a,b], then unified integral operators for m-convex functions are bounded and continuous.

    Proof. From (5.3) we have

    |(gFϕ,γ,δ,k,cμ,α,l,a+f)(x,ω;p)|Kab(Eγ,δ,k,cμ,α,l,g;ϕ)(g(b)g(a))(m+1)f,

    which further gives

    |(gFϕ,γ,δ,k,cμ,α,l,a+f)(x,ω;p)|Kf,

    where K=(g(b)g(a))(m+1)Kab(Eγ,δ,k,cμ,α,l,g;ϕ).

    Similarly, from (5.4) the following inequality holds:

    |(gFϕ,γ,δ,k,cμ,β,l,bf)(x,ω;p)|Kf.

    Hence the boundedness is followed, further from linearity the continuity of (1.9) and (1.10) is obtained.

    Corollary 1. If we take m=1 in Theorem 5, then unified integral operators for convex functions are bounded and continuous and following inequalities hold:

    |(gFϕ,γ,δ,k,cμ,α,l,a+f)(x,ω;p)|Kf,
    |(gFϕ,γ,δ,k,cμ,β,l,bf)(x,ω;p)|Kf,

    where K=2(g(b)g(a))Kab(Eγ,δ,k,cμ,α,l,g;ϕ).

    This paper has explored bounds of a unified integral operator for (s,m)-convex functions. These bounds are obtained in a compact form which have further interesting consequences with respect to fractional and conformable integrals for convex, m-convex and s-convex functions. Furthermore by applying Theorems 3.1, 3.3 and 3.4 several associated results can be derived for different kinds of fractional integral operators of convex, m-convex and s-convex functions.

    This work was sponsored in part by Social Science Planning Fund of Liaoning Province of China(L15AJL001, L16BJY011, L18AJY001), Scientific Research Fund of The Educational Department of Liaoning Province(2017LNZD07, 2016FRZD03), Scientific Research Fund of University of science and technology Liaoning(2016RC01, 2016FR01)

    The authors declare that no competing interests exist.



    [1] V. Lakshmikantham, P. S. Simeonov, Theory of impulsive differential equations, World Scientific Publishing, 1989. https://doi.org/10.1142/0906
    [2] X. Li, T. Caraballo, R. Rakkiyappan, X. Han, On the stability of impulsive functional differential equations with infinite delays, Math. Methods Appl. Sci., 38 (2015), 3130–3140. https://doi.org/10.1002/mma.3303 doi: 10.1002/mma.3303
    [3] E. Hernˊandez, D. O'Regan, On a new class of abstract impulsive differential equations, Proc. Amer. Math. Soc., 141 (2013), 1641–1649. https://doi.org/10.1090/s0002-9939-2012-11613-2 doi: 10.1090/s0002-9939-2012-11613-2
    [4] Y. Liu, D. O'Regan, Controllability of impulsive functional differential systems with nonlocal conditions, Electron. J. Differ. Equations, 194 (2013), 1–10. https://doi:10.3934/cpaa.2013.12.2319 doi: 10.3934/cpaa.2013.12.2319
    [5] P. Chen, X. Zhang, Y. Li, Existence of mild solutions to partial differential equations with non-instantaneous impulses, Electron. J. Differ. Equations, 241 (2016), 1–11.
    [6] X. Xu, Y. Liu, H. Li, F. E. Alsaadi, Robust set stabilization of Boolean control networks with impulsive effects, Nonlinear Anal., 24 (2018), 553–567. https://doi.org/10.15388/na.2018.4.6 doi: 10.15388/na.2018.4.6
    [7] S. Kumar, S. M. Abdal, Approximate controllability for a class of instantaneous and non-instantaneous impulsive semilinear systems, J. Dyn. Control Syst., 28 (2022), 725–737. https://doi.org/10.1007/s10883-021-09540-7 doi: 10.1007/s10883-021-09540-7
    [8] Y. Tian, M. Zhang, Variational method to differential equations with instantaneous and non-instantaneous impulses, Appl. Math. Lett., 94 (2019), 160–165. https://doi.org/10.1016/j.aml.2019.02.034 doi: 10.1016/j.aml.2019.02.034
    [9] W. Yao, Existence and multiplicity of solutions for three-point boundary value problems with instantaneous and noninstantaneous impulses, Bound. Value Probl., 2023 (2023), 15. https://doi.org/10.1186/s13661-023-01702-9 doi: 10.1186/s13661-023-01702-9
    [10] S. Kumar, S. Yadav, Approximate controllability of stochastic delay differential systems driven by Poisson jumps with instantaneous and noninstantaneous impulses, Asian J. Control, 25 (2023), 4039–4057. https://doi.org/10.1002/asjc.3039 doi: 10.1002/asjc.3039
    [11] X. Li, X. Yang, T. Huang, Persistence of delayed cooperative models: impulsive control method, Appl. Math. Comput., 32 (2019), 294–305. https://doi.org/10.1016/j.amc.2018.09.003 doi: 10.1016/j.amc.2018.09.003
    [12] Y. Liu, Y. Zheng, H. Li, F. E. Alsaadi, B. Ahmad, Control design for output tracking of delayed Boolean control networks, J. Comput. Appl. Math., 327 (2018), 188–195. https://doi.org/10.1016/j.cam.2017.06.016 doi: 10.1016/j.cam.2017.06.016
    [13] N. Hakkar, R. Dhayal, A. Debbouche, D. F. M. Torres, Approximate controllability of delayed fractional stochastic differential systems with mixed noise and impulsive effects, Fractal Fract., 7 (2023), 104. https://doi.org/10.3390/fractalfract7020104 doi: 10.3390/fractalfract7020104
    [14] R. Hilfer, Applications of fractional calculus in physics, World Scientific Publishing, 2000. https://doi.org/10.1142/3779
    [15] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier, 1989. https://doi.org/10.1016/s0304-0208(06)x8001-5
    [16] I. Podlubny, Mathematics in science and engineering, Academic Press, Inc., 1993. https://doi.org/10.1016/s0076-5392(97)80012-4
    [17] Y. Zhou, J. Wang, L. Zhang, Basic theory of fractional differential equations, World Scientific Publishing, 2017. https://doi.org/10.1142/9789814579902-0006
    [18] M. Li, A. Debbouche, J. Wang, Relative controllability in fractional differential equations with pure delay, Math. Methods Appl. Sci., 4 (2018), 8906–8914. https://doi.org/10.1002/mma.4651 doi: 10.1002/mma.4651
    [19] R. Dhayal, M. Malik, Approximate controllability of fractional stochastic differential equations driven by Rosenblatt process with non-instantaneous impulses, Chaos Solitons Fract., 151 (2021), 111292. https://doi.org/10.1016/j.chaos.2021.111292 doi: 10.1016/j.chaos.2021.111292
    [20] X. Wang, D. Luo, Q. Zhu, Ulam-Hyers stability of caputo type fuzzy fractional differential equations with time-delays, Chaos Solitons Fract., 156 (2022), 111822. https://doi.org/10.1016/j.chaos.2022.111822 doi: 10.1016/j.chaos.2022.111822
    [21] Z. M. Ge, W. R. Jhuang, Chaos, control and synchronization of a fractional order rotational mechanical system with a centrifugal governor, Chaos Solitons Fract., 33 (2007), 270–289. https://doi.org/10.1016/j.chaos.2005.12.040 doi: 10.1016/j.chaos.2005.12.040
    [22] H. Cheng, R. Yuan, The stability of the equilibria of the Allen-Cahn equation with fractional diffusion, Appl. Anal., 98 (2019), 600–610. https://doi.org/10.1080/00036811.2017.1399360 doi: 10.1080/00036811.2017.1399360
    [23] J. Jia, H. Wang, A fast finite volume method for conservative space-time fractional diffusion equations discretized on space-time locally refined meshes, Comput. Math. Appl., 78 (2019), 1345–1356. https://doi.org/10.1016/j.camwa.2019.04.003 doi: 10.1016/j.camwa.2019.04.003
    [24] C. A. Monje, Y. Q. Chen, B. M. Vinagre, D. Xue, V. Feliu, Fractional-order systems and controls: fundamentals and applications, Springer Science Business Media, 2010. https://doi.org/10.1007/978-1-84996-335-0
    [25] S. Kumar, S. M. Abdal, Approximate controllability for a class of instantaneous and non-instantaneous impulsive semilinear systems, J. Dyn. Control Syst., 28 (2022), 725–737. https://doi.org/10.1007/s10883-021-09540-7 doi: 10.1007/s10883-021-09540-7
    [26] R. Dhayal, M. Malik, S. Abbas, A. Debbouche, Optimal controls for second-order stochastic differential equations driven by mixed-fractional Brownian motion with impulses, Math. Methods Appl. Sci., 43 (2020), 4107–4124. https://doi.org/10.1002/mma.6177 doi: 10.1002/mma.6177
    [27] K. Karthikeyan, A. Debbouche, D. F. M. Torres, Analysis of Hilfer fractional integro-differential equations with almost sectorial operators, Fractal Fract., 5 (2021), 22. https://doi.org/10.3390/fractalfract5010022 doi: 10.3390/fractalfract5010022
    [28] M. Feˇckan, J. R. Wang, Y. Zhou, On the new concept of solutions and existence results for impulsive fractional evolution equations, Dyn. Partial Differ. Equations, 8 (2011), 345–361. https://doi.org/10.4310/dpde.2011.v8.n4.a3 doi: 10.4310/dpde.2011.v8.n4.a3
    [29] M. M. El-Borai, Some probability densities and fundamental solutions of fractional evolution equations, Chaos Solitons Fract., 14 (2002), 433–440. https://doi.org/10.1016/s0960-0779(01)00208-9 doi: 10.1016/s0960-0779(01)00208-9
    [30] N. I. Mahmudov, S. Zorlu, On the approximate controllability of fractional evolution equations with compact analytic semigroup, J. Comput. Appl. Math., 259 (2014), 194–204. https://doi.org/10.1016/j.cam.2013.06.015 doi: 10.1016/j.cam.2013.06.015
    [31] J. Banaś, On measures of noncompactness in Banach spaces, Comment. Math. Univ. Carol., 21 (1980), 131–143.
    [32] H. P. Heinz, On the behaviour of measures of noncompactness with respect to differentiation and integration of vector-valued functions, Nonlinear Anal., 7 (1983), 1351–1371. https://doi.org/10.1016/0362-546x(83)90006-8 doi: 10.1016/0362-546x(83)90006-8
    [33] D. Bothe, Multivalued perturbations of m-accretive differential inclusions, Isr. J. Math., 108 (1998), 109–138. https://doi.org/10.1007/bf02783044 doi: 10.1007/bf02783044
    [34] X. Zhang, P. Chen, Fractional evolution equation nonlocal problems with noncompact semigroups, Comput. Math. Appl., 36 (2016), 123–137. https://doi.org/10.7494/opmath.2016.36.1.123 doi: 10.7494/opmath.2016.36.1.123
    [35] R. Sakthivel, Y. Ren, N. I. Mahmudov, On the approximate controllability of semilinear fractional differential systems, Math. Methods Appl. Sci., 62 (2011), 1451–1459. https://doi.org/10.1016/j.camwa.2011.04.040 doi: 10.1016/j.camwa.2011.04.040
    [36] J. P. Dauer, N. I. Mahmudov, Approximate controllability of semilinear functional equations in Hilbert spaces, J. Math. Anal. Appl., 273 (2002), 310–327. https://doi.org/10.1016/s0022-247x(02)00225-1 doi: 10.1016/s0022-247x(02)00225-1
  • This article has been cited by:

    1. A. El-Mesady, Omar Bazighifan, Mehar Ali Malik, Construction of Mutually Orthogonal Graph Squares Using Novel Product Techniques, 2022, 2022, 2314-4785, 1, 10.1155/2022/9722983
    2. A. El-Mesady, Omar Bazighifan, S. S. Askar, Serena Matucci, A Novel Approach for Cyclic Decompositions of Balanced Complete Bipartite Graphs into Infinite Graph Classes, 2022, 2022, 2314-8888, 1, 10.1155/2022/9308708
    3. A. El-Mesady, Omar Bazighifan, Qasem Al-Mdallal, On infinite circulant-balanced complete multipartite graphs decompositions based on generalized algorithmic approaches, 2022, 61, 11100168, 11267, 10.1016/j.aej.2022.04.022
    4. R. Praveen, P. Pabitha, A secure lightweight fuzzy embedder based user authentication scheme for internet of medical things applications, 2023, 10641246, 1, 10.3233/JIFS-223617
    5. A. El-Mesady, Omar Bazighifan, H. M. Shabana, Gohar Ali, On Graph-Transversal Designs and Graph-Authentication Codes Based on Mutually Orthogonal Graph Squares, 2022, 2022, 2314-4785, 1, 10.1155/2022/8992934
    6. A. El-Mesady, Omar Bazighifan, Miaochao Chen, Decompositions of Circulant-Balanced Complete Multipartite Graphs Based on a Novel Labelling Approach, 2022, 2022, 2314-8888, 1, 10.1155/2022/2017936
    7. C. Beaula, P. Venugopal, B. Praba, Xuanlong Ma, Block Encryption and Decryption of a Sentence Using Decomposition of the Turan Graph, 2023, 2023, 2314-4785, 1, 10.1155/2023/7588535
    8. Ahmed El-Mesady, Tasneem Farahat, Ramadan El-Shanawany, Aleksandr Y. Romanov, On Orthogonal Double Covers and Decompositions of Complete Bipartite Graphs by Caterpillar Graphs, 2023, 16, 1999-4893, 320, 10.3390/a16070320
    9. Muhammad Awais, Zulfiqar Ahmed, Waseem Khalid, Ebenezer Bonyah, Tareq Al-shami, Analysis of Zigzag and Rhombic Benzenoid Systems via Irregularity Indices, 2023, 2023, 2314-4785, 1, 10.1155/2023/4833683
    10. Yash M Dalal, Spandana N Raj, Supreeth S, Shruthi G, Yerriswamy T, Arun Biradar, 2023, Comparative Approach to Secure Data Over Cloud Computing Environment, 979-8-3503-4314-4, 1, 10.1109/CSITSS60515.2023.10334187
    11. Ce Shi, Tatsuhiro Tsuchiya, Chengmin Wang, Separable detecting arrays, 2024, 9, 2473-6988, 34806, 10.3934/math.20241657
    12. Anam Zahid, Faisal Kamiran, Samar Abbas, Bilal Qureshi, Asim Karim, Data-Driven Uplift Modeling, 2025, 13, 2169-3536, 62462, 10.1109/ACCESS.2025.3557468
    13. Chengmin Wang, Ce Shi, Tatsuhiro Tsuchiya, Quanrui Zhang, Detecting arrays on graphs, 2025, 33, 2688-1594, 3328, 10.3934/era.2025147
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(755) PDF downloads(39) Cited by(0)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog