Research article Special Issues

Using mathematical modeling to study the dynamics of Legionnaires' disease and consider management options


  • Received: 31 December 2024 Revised: 06 March 2025 Accepted: 18 March 2025 Published: 18 April 2025
  • Legionnaires' disease (LD) is a largely understudied and underreported pneumonic environmentally transmitted disease caused by the bacteria Legionella. It primarily occurs in places with poorly maintained artificial sources of water. There is currently a lack of mathematical models on the dynamics of LD. In this paper, we formulate a novel ordinary differential equation-based susceptible-exposed-infected-recovered (SEIR) model for LD. One issue with LD is the difficulty in its detection, as the majority of countries around the world lack the proper surveillance and diagnosis methods. Thus, there is not much publicly available data or literature on LD. We use parameter estimation for our model with one of the few outbreaks with time series data from Murcia, Spain in 2001. Furthermore, we apply a global sensitivity analysis to understand the contributions of parameters to our model output. To consider managing LD outbreaks, we explore implementing sanitizing individual sources of water by constructing an optimal control problem. Using our fitted model and the optimal control problem, we analyze how different parameters and controls might help manage LD outbreaks in the future.

    Citation: Mark Z. Wang, Christina J. Edholm, Lihong Zhao. Using mathematical modeling to study the dynamics of Legionnaires' disease and consider management options[J]. Mathematical Biosciences and Engineering, 2025, 22(5): 1226-1242. doi: 10.3934/mbe.2025045

    Related Papers:

  • Legionnaires' disease (LD) is a largely understudied and underreported pneumonic environmentally transmitted disease caused by the bacteria Legionella. It primarily occurs in places with poorly maintained artificial sources of water. There is currently a lack of mathematical models on the dynamics of LD. In this paper, we formulate a novel ordinary differential equation-based susceptible-exposed-infected-recovered (SEIR) model for LD. One issue with LD is the difficulty in its detection, as the majority of countries around the world lack the proper surveillance and diagnosis methods. Thus, there is not much publicly available data or literature on LD. We use parameter estimation for our model with one of the few outbreaks with time series data from Murcia, Spain in 2001. Furthermore, we apply a global sensitivity analysis to understand the contributions of parameters to our model output. To consider managing LD outbreaks, we explore implementing sanitizing individual sources of water by constructing an optimal control problem. Using our fitted model and the optimal control problem, we analyze how different parameters and controls might help manage LD outbreaks in the future.



    加载中


    [1] World Health Organization (WHO), Legionellosis, 2022. Available from: https://www.who.int/news-room/fact-sheets/detail/legionellosis.
    [2] J. M. Kunz, H. Lawinger, S. Miko, M. Gerdes, M. Thuneibat, E. Hannapel, et al., Surveillance of waterborne disease outbreaks associated with drinking water—United States, 2015–2020, Surveillance Summ., 73 (2024), 1–23. http://doi.org/10.15585/mmwr.ss7301a1 doi: 10.15585/mmwr.ss7301a1
    [3] Occupational Safety and Health Administration (OSHA), Legionellosis (Legionnaires' Disease and Pontiac Fever). Available from: https://www.osha.gov/legionnaires-disease.
    [4] European Centre for Disease Prevention and Control (ECDC), Legionnaires' disease - annual epidemiological report for 2021, 2023. Available from: https://www.ecdc.europa.eu/en/publications-data/legionnaires-disease-annual-epidemiological-report-2021.
    [5] A. García-Fulgueiras, C. Navarro, D. Fenoll, J. García, P. González-Diego, T. Jiménez-Buñuales, et al., Legionnaires' disease outbreak in Murcia, Spain, Emerg. Infect. Dis., 9 (2003), 915–921. http://doi.org/10.3201/eid0908.030337 doi: 10.3201/eid0908.030337
    [6] O. Tello, C. Pelaz, A. Garcia-Fulgueiras, C. Joseph, J. Kool, J. Lee, et al., Update on the outbreak of legionnaires' disease in Murcia, Spain, Wkly. Releases (1997–2007), 5 (2001), 1714.
    [7] Centers for Disease Control and Prevention (CDC), Legionnaires' Disease, 2016. Available from: https://www.cdc.gov/legionella/downloads/fs-legionnaires.pdf.
    [8] B. S. Fields, R. F. Benson, R. E. Besser, Legionella and Legionnaires' disease: 25 years of investigation, Clin. Microbiol. Rev., 15 (2002), 506–526. https://doi.org/10.1128/cmr.15.3.506-526.2002 doi: 10.1128/cmr.15.3.506-526.2002
    [9] D. Viasus, V. Gaia, C. Manzur-Barbur, J. Carratalà, Legionnaires' disease: Update on diagnosis and treatment, Infect. Dis. Ther., 11 (2022), 973–986. https://doi.org/10.1007/s40121-022-00635-7 doi: 10.1007/s40121-022-00635-7
    [10] Centers for Disease Control and Prevention (CDC), Laboratory testing for Legionella, 2024. Available from: https://www.cdc.gov/legionella/php/laboratories/index.html.
    [11] J. W. Den Boer, E. P. F. Yzerman, Diagnosis of Legionella infection in Legionnaires' disease, Eur. J. Clin. Microbiol. Infect. Dis., 23 (2004), 871–878. https://doi.org/10.1007/s10096-004-1248-8 doi: 10.1007/s10096-004-1248-8
    [12] A. F. Smith, A. Huss, S. Dorevitch, L. Heijnen, V. H. Arntzen, M. Davies, et al., Multiple sources of the outbreak of Legionnaires' disease in Genesee County, Michigan, in 2014 and 2015, Environ. Health Perspect., 127 (2019), 127001. https://doi.org/10.1289/EHP5663 doi: 10.1289/EHP5663
    [13] K. A. Hamilton, C. N. Haas, Critical review of mathematical approaches for quantitative microbial risk assessment (QMRA) of legionella in engineered water systems: Research gaps and a new framework, Environ. Sci. Water Res. Technol., 2 (2016), 599–613. https://doi.org/10.1039/C6EW00023A doi: 10.1039/C6EW00023A
    [14] B. Prasad, K. A. Hamilton, C. N. Haas, Incorporating time-dose-response into legionella outbreak models, Risk Anal., 37 (2017), 291–304. https://doi.org/10.1111/risa.12630 doi: 10.1111/risa.12630
    [15] S. Zahran, S. P. McElmurry, P. E. Kilgore, D. Mushinski, J. Press, N. G. Love, et al., Assessment of the Legionnaires' disease outbreak in Flint, Michigan, PNAS, 115 (2018), E1730–E1739. https://doi.org/10.1073/pnas.1718679115 doi: 10.1073/pnas.1718679115
    [16] K. Miramontes, An Examination of Legionnaires' Disease Through the Lens of ODE Modeling, Scripps Senior Theses, 2022. Available from: https://scholarship.claremont.edu/scripps_theses/1897.
    [17] C. Edholm, B. Levy, A. Abebe, T. Marijani, S. Le Fevre, S. Lenhart, et al., A risk-structured mathematical model of buruli ulcer disease in Ghana, in Mathematics of Planet Earth, Springer, 5 (2019), 109–128. https://doi.org/10.1007/978-3-030-22044-0_5
    [18] World Health Organization (WHO), Buruli ulcer (Mycobacterium ulcerans infection), 2023. Available from: https://www.who.int/news-room/fact-sheets/detail/buruli-ulcer-(mycobacterium-ulcerans-infection).
    [19] E. Bonyah, I. Dontwi, F. Nyabadza, A theoretical model for the transmission dynamics of the Buruli ulcer with saturated treatment, Comput. Math. Methods Med., 2014 (2014), 576039. https://doi.org/10.1155/2014/576039 doi: 10.1155/2014/576039
    [20] A. Garchitorena, C. N. Ngonghala, G. Texier, J. Landier, S. Eyangoh, M. H. Bonds, et al., Environmental transmission of Mycobacterium ulcerans drives dynamics of Buruli ulcer in endemic regions of Cameroon, Sci. Rep., 5 (2015), 18055. https://doi.org/10.1038/srep18055 doi: 10.1038/srep18055
    [21] F. Nyabadza, E. Bonyah, On the transmission dynamics of Buruli ulcer in Ghana: Insights through a mathematical model, BMC Res. Notes, 8 (2015), 656. https://doi.org/10.1186/s13104-015-1619-5 doi: 10.1186/s13104-015-1619-5
    [22] C. Nyarko, P. Nyarko, I. Ampofi, E. Asante, Modelling transmission of Buruli Ulcer in the central region of Ghana, Math. Modell. Appl., 5 (2020), 221–230.
    [23] E. Che, E. Numfor, S. Lenhart, A. A. Yakubu, Mathematical modeling of the influence of cultural practices on cholera infections in Cameroon, Math. Biosci. Eng., 18 (2021), 8374–8391. https://doi.org/10.3934/mbe.2021415 doi: 10.3934/mbe.2021415
    [24] E. Howerton, K. Dahlin, C. J. Edholm, L. Fox, M. Reynolds, B. Hollingsworth, et al., The effect of governance structures on optimal control of two-patch epidemic models, J. Math. Biol., 87 (2023), 74. https://doi.org/10.1007/s00285-023-02001-8 doi: 10.1007/s00285-023-02001-8
    [25] M. R. Kelly Jr., J. H. Tien, M. C. Eisenberg, S. Lenhart, The impact of spatial arrangements on epidemic disease dynamics and intervention strategies, J. Biol. Dyn., 10 (2016), 222–249. https://doi.org/10.1080/17513758.2016.1156172 doi: 10.1080/17513758.2016.1156172
    [26] J. H. Tien, D. J. D. Earn, Multiple transmission pathways and disease dynamics in a waterborne pathogen model, Bull. Math. Biol., 72 (2010), 1506–1533. https://doi.org/10.1007/s11538-010-9507-6 doi: 10.1007/s11538-010-9507-6
    [27] X. Wang, J. Wang, Analysis of cholera epidemics with bacterial growth and spatial movement, J. Biol. Dyn., 9 (2015), 233–261. https://doi.org/10.1080/17513758.2014.974696 doi: 10.1080/17513758.2014.974696
    [28] J. R. Egan, I. M. Hall, D. J. Lemon, S. Leach, Modeling Legionnaires' disease outbreaks: Estimating the timing of an aerosolized release using symptom-onset dates, Epidemiology, 22 (2011), 188–198. https://doi.org/10.1097/EDE.0b013e31820937c6 doi: 10.1097/EDE.0b013e31820937c6
    [29] The National Health Service (NHS), Legionnaires' disease, 2023. Available from: https://www.nhs.uk/conditions/legionnaires-disease/.
    [30] P. Van den Driessche, J. Watmough, Further notes on the basic reproduction number, in Mathematical Epidemiology, Springer, 1945 (2008), 159–178. https://doi.org/10.1007/978-3-540-78911-6_6
    [31] P. Van den Driessche, J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29–48. https://doi.org/10.1016/S0025-5564(02)00108-6 doi: 10.1016/S0025-5564(02)00108-6
    [32] T. Lupia, S. Corcione, N. Shbaklo, B. Rizzello, I. De Benedetto, E. Concialdi, et al., Legionella pneumophila infections during a 7-year retrospective analysis (2016–2022): Epidemiological, clinical features and outcomes in patients with Legionnaires' disease, Microorganisms, 11 (2023), 498. https://doi.org/10.3390/microorganisms11020498 doi: 10.3390/microorganisms11020498
    [33] W. H. Fleming, R. Rishel, Optimal Deterministic and Stochastic Control, Springer, 1975.
    [34] L. S. Pontryagin, V. G. Boltyanskiy, R. V. Gamkrelidze, E. F. Mishchenko, The Mathematical Theory of Optimal Processes, Wiley, 1962.
    [35] C. J. Edholm, B. Levy, L. Spence, F. B. Agusto, F. Chirove, C. W. Chukwu, et al., A vaccination model for COVID-19 in Gauteng, South Africa, Infect. Dis. Modell., 7 (2022), 333–345. https://doi.org/10.1016/j.idm.2022.06.002 doi: 10.1016/j.idm.2022.06.002
    [36] S. Marino, I. B. Hogue, C. J. Ray, D. E. Kirschner, A methodology for performing global uncertainty and sensitivity analysis in systems biology, J. Theor. Biol., 254 (2008), 178–196. https://doi.org/10.1016/j.jtbi.2008.04.011 doi: 10.1016/j.jtbi.2008.04.011
    [37] S. Lenhart, J. T. Workman, Optimal Control Applied to Biological Models, Chapman and Hall/CRC, 2007. https://doi.org/10.1201/9781420011418
    [38] N. Phin, F. Parry-Ford, T. Harrison, H. R. Stagg, N. Zhang, K. Kumar, et al., Epidemiology and clinical management of Legionnaires' disease, Lancet Infect. Dis., 14 (2014), 1011–1021. https://doi.org/10.1016/S1473-3099(14)70713-3 doi: 10.1016/S1473-3099(14)70713-3
    [39] M. Riccò, S. Peruzzi, S. Ranzieri, P. G. Giuri, Epidemiology of Legionnaires' disease in Italy, 2004–2019: A summary of available evidence, Microorganisms, 9 (2021), 2180. https://doi.org/10.3390/microorganisms9112180 doi: 10.3390/microorganisms9112180
    [40] C. M. Hunter, S. W. Salandy, J. C. Smith, C. Edens, B. Hubbard, Racial disparities in incidence of Legionnaires' disease and social determinants of health: A narrative review, Public Health Rep., 137 (2022), 660–671. https://doi.org/10.1177/00333549211026781 doi: 10.1177/00333549211026781
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1521) PDF downloads(94) Cited by(0)

Article outline

Figures and Tables

Figures(6)  /  Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog