Forest transitions, characterized by dynamic shifts between forest, agricultural, and abandoned lands, are complex phenomena. This study developed a stochastic differential equation model to capture the intricate dynamics of these transitions. We established the existence of global positive solutions for the model and conducted numerical analyses to assess the impact of model parameters on deforestation incentives. To address the challenge of parameter estimation, we proposed a novel deep learning approach that estimates all model parameters from a single sample containing time-series observations of forest and agricultural land proportions. This innovative approach enables us to understand forest transition dynamics and deforestation trends at any future time.
Citation: Satoshi Kumabe, Tianyu Song, Tôn Việt Tạ. Stochastic forest transition model dynamics and parameter estimation via deep learning[J]. Mathematical Biosciences and Engineering, 2025, 22(5): 1243-1262. doi: 10.3934/mbe.2025046
Forest transitions, characterized by dynamic shifts between forest, agricultural, and abandoned lands, are complex phenomena. This study developed a stochastic differential equation model to capture the intricate dynamics of these transitions. We established the existence of global positive solutions for the model and conducted numerical analyses to assess the impact of model parameters on deforestation incentives. To address the challenge of parameter estimation, we proposed a novel deep learning approach that estimates all model parameters from a single sample containing time-series observations of forest and agricultural land proportions. This innovative approach enables us to understand forest transition dynamics and deforestation trends at any future time.
| [1] |
P. Meyfroidt, E. F. Lambin, Global forest transition: Prospects for an end to deforestation, Annu. Rev. Environ. Resour., 36 (2011), 343–371. https://doi.org/10.1146/annurev-environ-090710-143732 doi: 10.1146/annurev-environ-090710-143732
|
| [2] | A. S. Mather, The forest transition, Area, 24 (1992), 367–379. |
| [3] |
T. K. Rudel, O. T. Coomes, E. Moran, F. Achard, A. Angelsen, J. Xu, et al., Forest transitions: Toward a global understanding of land use change, Global Environ. Change, 15 (2005), 23–31. https://doi.org/10.1016/j.gloenvcha.2004.11.001 doi: 10.1016/j.gloenvcha.2004.11.001
|
| [4] |
R. Walker, S. A. Drzyzga, Y. Li, J. Qi, M. Caldas, E. Arima, et al., A behavioral model of landscape change in the Amazon Basin: The colonist case, Ecol. Appl., 14 (2004), 299–312. https://doi.org/10.1890/01-6004 doi: 10.1890/01-6004
|
| [5] |
E. F. Lambin, P. Meyfroidt, Land use transitions: Socio-ecological feedback versus socio-economic change, Land Use Policy, 27 (2010), 108–118. https://doi.org/10.1016/j.landusepol.2009.09.003 doi: 10.1016/j.landusepol.2009.09.003
|
| [6] |
A. Satake, T. K. Rudel, Modeling the forest transition: Forest scarcity and ecosystem service hypotheses, Ecol. Appl., 17 (2007), 2024–2036. https://doi.org/10.1890/07-0283.1 doi: 10.1890/07-0283.1
|
| [7] |
T. K. Rudel, P. Meyfroidt, R. Chazdon, F. Bongers, S. Sloan, H. R. Grau, et al., Whither the forest transition? Climate change, policy responses, and redistributed forests in the twenty-first century, Ambio, 49 (2020), 74–84. https://doi.org/10.1007/s13280-018-01143-0 doi: 10.1007/s13280-018-01143-0
|
| [8] |
I. Iriarte-Goñi, M. I. Ayuda, Should forest transition theory include effects on forest fires? The case of Spain in the second half of the twentieth century, Land Use Policy, 76 (2018), 789–797. https://doi.org/10.1016/j.landusepol.2018.03.009 doi: 10.1016/j.landusepol.2018.03.009
|
| [9] | L. J. S. Allen, An Introduction to Stochastic Processes with Applications to Biology, Pearson Education, 2003. |
| [10] | X. Mao, Stochastic Differential Equations and Applications, Horwood Publishing, 2008. |
| [11] |
Y. Gao, M. Banerjee, V. T. Ta, Dynamics of infectious diseases in predator–prey populations: A stochastic model, sustainability, and invariant measure, Math. Comput. Simul., 227 (2025), 103–120. https://doi.org/10.1016/j.matcom.2024.07.031 doi: 10.1016/j.matcom.2024.07.031
|
| [12] |
D. A. Hartono, T. H. L. Nguyen, V. T. Ta, A stochastic differential equation model for predator-avoidance fish schooling, Math. Biosci., 367 (2024), 109112. https://doi.org/10.1016/j.mbs.2023.109112 doi: 10.1016/j.mbs.2023.109112
|
| [13] |
M. Raissi, P. Perdikaris, G. E. Karniadakis, Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations, J. Comput. Phys., 378 (2019), 686–707. https://doi.org/10.1016/j.jcp.2018.10.045 doi: 10.1016/j.jcp.2018.10.045
|
| [14] | A. Friedman, Stochastic Differential Equations and Applications, Dover Publications, 2006. |
| [15] | L. Arnold, Stochastic Differential Equations: Theory and Applications, Wiley-Interscience, 1974. |
| [16] |
V. T. Ta, T. H. L. Nguyen, A. Yagi, A sustainability condition for stochastic forest model, Commun. Pure Appl. Anal., 16 (2017), 699–718. https://doi.org/10.3934/cpaa.2017034 doi: 10.3934/cpaa.2017034
|
| [17] | P. E. Kloeden, E. Platen, H. Schurz, Numerical Solution of SDE Through Computer Experiments, Springer, 2003. |
| [18] | A. Zhang, Z. C. Lipton, M. Li, A. J. Smola, Dive into Deep Learning, Cambridge University Press, 2023. |