Graph convolutional networks (GCN) have been widely utilized in Alzheimer's disease (AD) classification research due to its ability to automatically learn robust and powerful feature representations. Inter-patient relationships are effectively captured by constructing patients magnetic resonance imaging (MRI) data as graph data, where nodes represent individuals and edges denote the relationships between them. However, the performance of GCNs might be constrained by the construction of the graph adjacency matrix, thereby leading to learned features potentially overlooking intrinsic correlations among patients, which ultimately causes inaccurate disease classifications. To address this issue, we propose an Alzheimer's disease Classification network based on MRI utilizing diffusion maps for multi-scale feature fusion in graph convolution. This method aims to tackle the problem of features neglecting intrinsic relationships among patients while integrating features from diffusion mapping with different neighbor counts to better represent patients and achieve an accurate AD classification. Initially, the diffusion maps method conducts diffusion information in the feature space, thus breaking free from the constraints of diffusion based on the adjacency matrix. Subsequently, the diffusion features with different neighbor counts are merged, and a self-attention mechanism is employed to adaptively adjust the weights of diffusion features at different scales, thereby comprehensively and accurately capturing patient characteristics. Finally, metric learning techniques enhance the similarity of node features within the same category in the graph structure and bring node features of different categories more distant from each other. This study aims to enhance the classification accuracy of AD, by providing an effective tool for early diagnosis and intervention. It offers valuable information for clinical decisions and personalized treatment. Experimentation on the publicly accessible Alzheimer's disease neuroimaging initiative (ADNI) dataset validated our method's competitive performance across various AD-related classification tasks. Compared to existing methodologies, our approach captures patient characteristics more effectively and demonstrates superior generalization capabilities.
Citation: Zhi Yang, Kang Li, Haitao Gan, Zhongwei Huang, Ming Shi, Ran Zhou. An Alzheimer's Disease classification network based on MRI utilizing diffusion maps for multi-scale feature fusion in graph convolution[J]. Mathematical Biosciences and Engineering, 2024, 21(1): 1554-1572. doi: 10.3934/mbe.2024067
[1] | Yitian Wang, Xiaoping Liu, Yuxuan Chen . Semilinear pseudo-parabolic equations on manifolds with conical singularities. Electronic Research Archive, 2021, 29(6): 3687-3720. doi: 10.3934/era.2021057 |
[2] | Yaning Li, Yuting Yang . The critical exponents for a semilinear fractional pseudo-parabolic equation with nonlinear memory in a bounded domain. Electronic Research Archive, 2023, 31(5): 2555-2567. doi: 10.3934/era.2023129 |
[3] | Mingyou Zhang, Qingsong Zhao, Yu Liu, Wenke Li . Finite time blow-up and global existence of solutions for semilinear parabolic equations with nonlinear dynamical boundary condition. Electronic Research Archive, 2020, 28(1): 369-381. doi: 10.3934/era.2020021 |
[4] | Jun Zhou . Initial boundary value problem for a inhomogeneous pseudo-parabolic equation. Electronic Research Archive, 2020, 28(1): 67-90. doi: 10.3934/era.2020005 |
[5] | Qianqian Zhu, Yaojun Ye, Shuting Chang . Blow-up upper and lower bounds for solutions of a class of higher order nonlinear pseudo-parabolic equations. Electronic Research Archive, 2024, 32(2): 945-961. doi: 10.3934/era.2024046 |
[6] | Fanqi Zeng, Wenli Geng, Ke An Liu, Boya Wang . Differential Harnack estimates for the semilinear parabolic equation with three exponents on Rn. Electronic Research Archive, 2025, 33(1): 142-157. doi: 10.3934/era.2025008 |
[7] | Yang Cao, Qiuting Zhao . Initial boundary value problem of a class of mixed pseudo-parabolic Kirchhoff equations. Electronic Research Archive, 2021, 29(6): 3833-3851. doi: 10.3934/era.2021064 |
[8] | Milena Dimova, Natalia Kolkovska, Nikolai Kutev . Global behavior of the solutions to nonlinear Klein-Gordon equation with critical initial energy. Electronic Research Archive, 2020, 28(2): 671-689. doi: 10.3934/era.2020035 |
[9] | Lianbing She, Nan Liu, Xin Li, Renhai Wang . Three types of weak pullback attractors for lattice pseudo-parabolic equations driven by locally Lipschitz noise. Electronic Research Archive, 2021, 29(5): 3097-3119. doi: 10.3934/era.2021028 |
[10] | Hui Yang, Futao Ma, Wenjie Gao, Yuzhu Han . Blow-up properties of solutions to a class of p-Kirchhoff evolution equations. Electronic Research Archive, 2022, 30(7): 2663-2680. doi: 10.3934/era.2022136 |
Graph convolutional networks (GCN) have been widely utilized in Alzheimer's disease (AD) classification research due to its ability to automatically learn robust and powerful feature representations. Inter-patient relationships are effectively captured by constructing patients magnetic resonance imaging (MRI) data as graph data, where nodes represent individuals and edges denote the relationships between them. However, the performance of GCNs might be constrained by the construction of the graph adjacency matrix, thereby leading to learned features potentially overlooking intrinsic correlations among patients, which ultimately causes inaccurate disease classifications. To address this issue, we propose an Alzheimer's disease Classification network based on MRI utilizing diffusion maps for multi-scale feature fusion in graph convolution. This method aims to tackle the problem of features neglecting intrinsic relationships among patients while integrating features from diffusion mapping with different neighbor counts to better represent patients and achieve an accurate AD classification. Initially, the diffusion maps method conducts diffusion information in the feature space, thus breaking free from the constraints of diffusion based on the adjacency matrix. Subsequently, the diffusion features with different neighbor counts are merged, and a self-attention mechanism is employed to adaptively adjust the weights of diffusion features at different scales, thereby comprehensively and accurately capturing patient characteristics. Finally, metric learning techniques enhance the similarity of node features within the same category in the graph structure and bring node features of different categories more distant from each other. This study aims to enhance the classification accuracy of AD, by providing an effective tool for early diagnosis and intervention. It offers valuable information for clinical decisions and personalized treatment. Experimentation on the publicly accessible Alzheimer's disease neuroimaging initiative (ADNI) dataset validated our method's competitive performance across various AD-related classification tasks. Compared to existing methodologies, our approach captures patient characteristics more effectively and demonstrates superior generalization capabilities.
In this paper, we consider the following initial boundary value problem of semilinear pseudo-parabolic equations with conical degeneration
ut−ΔBut−ΔBu=|u|p−1u, (xb,˜x)∈intB,t>0, | (1.1) |
u(xb,˜x,0)=u0, (xb,˜x)∈intB, | (1.2) |
u(0,˜x,t)=0, (0,˜x)∈∂B,t≥0, | (1.3) |
where
ΔB=∇2B=(xb∂xb)2+∂2x1+...+∂2xl, |
which is the totally characteristic degeneracy operators on a stretched conical manifold, and
The classical pseudo-parabolic equation
ut−Δut−Δu=|u|p−1u, x∈Ω,t>0, | (1.4) |
defined on a bounded domain
It is well known that equation (1.4) in the domains contained in classical Euclidean space with regular boundary has been well investigated. Cao et al. [9] considered the Cauchy problem of following model
∂∂tu−k∂Δu∂t=Δu+up, x∈Rn,t>0, |
and obtained the critical global existence exponent and the critical Fujita exponent by integral representation and contraction mapping principle. Subsequently, its uniqueness was proved by Khomrutai in [27] for the case
ut−kΔut=Δu+|x|σup, x∈Rn,t>0, |
and achieved the global existence and blowup in finite time of solutions with the critical Fujita exponent and the second critical exponent respectively. They also showed that the inhomogeneous term
∂tu−Δ∂tu=Δu+V(x,t)up, x∈Rn,t>0, |
where
∂∂tu−k∂Δu∂t=Δu+up+f(x), x∈Rn,t>0, |
and revealed that small perturbation may develop large variation of solutions as time evolves. We also recommend that the reader refer to [43] to learn more about the effects of the power index of nonlinearity on the dynamical behavior of the solution. Different from above studies that focus on the influence of the nonlinearities especially the power index on the global well-posedness of the solution, [50,49,36] comprehensively studied equation (1.4) by considering the influences of the initial data on the global well-posedness and corresponding properties of solution. Depending on the potential well depth, they classified the initial data to subcritical initial energy level
∂tu−Δu−Δ∂tu=uln|u|, x∈Ω,t>0 |
and proved the global existence and the finite time blow up of solutions under the subcritical and critical initial energy case, respectively. Focusing on the high initial energy level, Xu and Wang et al [51] studied the problem proposed in [50] and gave a sufficient condition on initial data leading to blow up in finite time by the potential well method, at the same time, they also estimated the upper bound of the blowup time. As an important method to reveal the influence of initial data on the dynamical behavior of solutions, the potential well theory can be applied not only to the study of the problem of parabolic equations, but also to the study of the problem for various types of nonlinear evolution equations or systems. Xu and Lian et al [48] investigated the global well-posedness of solutions for coupled parabolic systems in the variational framework, and the initial data leading to the global existence or finite time blow up of the solution are divided. Chen and Xu [15] considered a class of damped fourth-order nonlinear wave equations with logarithmic sources. By examining the effect of weak nonlinear sources on the blow up of the solution, they revealed the confrontation mechanism between the damping structure and the nonlinear source and found the initial data that caused the solution to blow up in infinite time. For related results of polynomial nonlinear sources, we refer to [52]. Furthermore, we suggest the readers refer to [53] for the study of high order nonlinear wave equations, [54,34] for the study of damped nonlinear wave equation problems using improved potential well methods at high initial energy levels, and so on, which are representative recent results, of course we can not list all of the results obtained by the potential well theory here due to the huge amount.
Actually, geometric singularities have attracted considerable interest and have become the focus of extensive physical and mathematical research in recent years. To find static solutions of Einstein's equations coupled to brane sources, Michele [39] studied the generalizations of the so-called "football" shaped extra dimensions scenario to include two codimension branes, which can be transformed into the mathematical problem of solving the Liouville equation with singularities, where the function space he constructed can be described as a sphere with conical singularities at the brane locations. After that some cone solitons (in the case of compact surfaces) were found by Hamilton [25], where cone singularities also arise naturally on the study of such kind of solitons. Not only being widely applied in cosmology and physics, the cone singular manifold itself also brings a lot of interesting topics to pure mathematics, such as the analytic proof of the cobordism theorem [31]. Conical singularities become a hotspot mainly for reasons of two aspects. Firstly, a manifold with conical singularities is one of the most fundamental stratified spaces and the investigation on it is motivated by the desire of understanding the dynamic behavior of the solution of nonlinear evolution equations on such stratified space. Topologically these spaces are of iterated cone type, in which, due to the conical singularity, the classical differential operator cannot be applied to such manifolds. Secondly, the methods developed for the domains with smooth boundaries cannot be directly applied to domains with singularities. It is a challenge and also an interesting problem in the community to restitute the conclusions established on the smooth domain for the problems defined on the conical space.
Inspired by above, it is natural to bring some ideas and develop techniques to establish a comprehensive understanding of operator theory on the manifolds with conical singularities, which was first explored by Kondrat'ev in [29] by introducing the celebrated Mellin-Sobolev spaces
ut=Δum+V(x)up, x∈D,t>0 |
in a cone
ut−Δum=f(u,t), x∈D,t>0 | (1.5) |
Roidos and Schrohe [44] obtained some results about the existence, uniqueness and maximal
As a differential operator reflecting the diffusion form on the conical singular manifold, the emergence of the cone operator
−ΔBu=|u|p−1u, x∈intB, |
and obtained the existence of non-trivial weak solution. Moreover, they also established the well-known cone Sobolev inequality and Poincar
In order to understand the effect of different initial data belonging to
ut−ΔBu=|u|p−1u, x∈intB,t>0, |
and obtained not only the existence of global solutions with exponential decay, but also the blow up in finite time under low initial energy level and critical initial energy level. Recently, Mohsen and Morteza [1] studied the semilinear conical-degenerate parabolic equation
∂tu−ΔBu+V(x)u=g(x)|u|p−1u, x∈intB,t>0, |
where
Our goal is to obtian local and global well-posedness of solutions to problem (1.1)-(1.3). In details, by the potential well method, we classify the initial datum and give a threshold condition, which tells us that as long as the initial datum falls into the specified invariant set and the initial energy satisfies
The content of this paper is arranged as follows. In Section 2, we give the geometric description of conical singularities, the definitions of the weighted Sobolev spaces and several propositions of the manifold with conical singularities. Then we introduce the potential well structure for problem (1.1)-(1.3) and prove a series of corresponding properties in Section 3. Section 4 is concerned with the local existence and uniqueness theory. In Section 5, we not only prove the invariant manifolds, global existence and decay of solutions to describe the corresponding asymptotic behavior, but also prove the finite time blow up of solutions and estimate the lower bound of blowup time in Theorem 5.2. In Section 6, we give a sufficient condition to obtain the finite time blow up of the solution in Theorem 6.4. In particular, we also estimate the upper bound of the blowup time of the solution. Finally, some remarks and acknowledgements about this paper are given.
In this section, main definitions of the manifold with conical singularities together with a brief description of its properties are given, for more details we refer to [45,18] and the references therein. Furthermore, we introduce some functional inequalities on the manifold with conical singularity, for more applications of these inequalities one can refer to [12,13].
For
XΔ={ˆx∈R1+l | ˆx=0 or ˆx|ˆx|∈X}. |
The polar coordinates
Now we extend it to a more general situation by describing the singular space associated with a manifold with conical singularities. A finite dimensional manifold
a)
b) Any
By above assumptions we can define the stretched manifold associated with
B−B0≅B−∂B:=intB. |
Furthermore, the restriction of this diffeomorphism to
The typical differential operators on a manifold with conical singularities, i.e., the so-called Fuchsian type operators in a neighborhood of
A:=x−μbμ∑k=0ak(xb)(−xb∂∂xb)k |
with
Definition 2.1 (The space
Hm,γp(Rn+):={u∈D′(Rn+) | xNp−γb(xb∂xb)k∂α˜xu∈Lp(Rn+)} |
for any
Therefore,
‖u‖Hm,γp(Rn+)=∑k+|α|≤m(∫R+∫RNxNb|x−γb(xb∂xb)k∂α˜xu(xb,˜x)|pdxbxbd˜x)1p. |
Definition 2.2 ([45] The space
(ⅰ) Let
‖u‖Hm,γp(X∧)=(N∑j=1‖(1×χ∗j)−1ψju‖pHm,γp(Rn+))1p, |
where
(ⅱ) Let
Hm,γp(B)={u∈Wm,ploc(intB) | ωu∈Hm,γp,0(X∧)} |
for any cut-off function
Hm,γp,0(B)=[ω]Hm,γp,0(X∧)+[1−ω]Wm,p0(intB), |
where the classical Sobolev space
Proposition 1 (Cone Sobolev inequality [12]). Assuming
‖u‖Lγ∗p∗(Rn+)≤c1‖(xb∂xb)u‖Lγp(Rn+)+(c1+c2)n∑i=1‖∂xiu‖Lγp(Rn+)+c2c3‖u‖Lγp(Rn+) | (2.1) |
holds, where
c1=(n−1)pn(n−p), |
c2=(n−1)p|(n−1)−(γ−1)(n−1)pn−p|1nn(n−p) |
and
c3=(n−1)pn−p. |
Moreover, for
‖u‖Lγ∗p∗(Rn+)≤C∗‖u‖H1,γp,0(Rn+), |
where
Proposition 2 (Cone Poincar
‖u(xb,˜x)‖Lγp(B)≤c‖∇Bu(xb,˜x)‖Lγp(B), |
where the optimal constant
Proposition 3 (Cone Hölder inequality [13]). If
∫B|uv|dxbxbd˜x≤(∫B|u|pdxbxbd˜x)1p(∫B|v|p′dxbxbd˜x)1p′. |
Proposition 4 (Eigenvalue problem [13]). There exist
{−ΔBψk=λkψk, (xb,˜x)∈intB,ψk=0, (xb,˜x)∈∂B, |
admits a non-trivial solution in
In order to state our main results, we shall introduce some definitions and notations as follows. In the sequel, for convenience we denote
(u,v)B=∫Buvdxbxbd˜x and ‖u‖Lnpp(B)=(∫B|u|pdxbxbd˜x)1p. |
Furthermore, we denote
Throughout the paper,
Definition 3.1. (Weak solution). A function
(ⅰ)
(ⅱ)
(ⅲ) for any
∫But(t)ηdxbxbd˜x+∫B∇But(t)∇Bηdxbxbd˜x+∫B∇Bu(t)∇Bηdxbxbd˜x |
=∫B|u(t)|p−1u(t)ηdxbxbd˜x |
holds for a.e.
Let us introduce the following functionals on the cone Sobolev space
J(u)=12∫B|∇Bu|2dxbxbd˜x−1p+1∫B|u|p+1dxbxbd˜x | (3.1) |
and the so-called Nehari functional
I(u)=∫B|∇Bu|2dxbxbd˜x−∫B|u|p+1dxbxbd˜x. | (3.2) |
Then
The weak solution
∫t0‖ut(τ)‖2H1,n22,0(B)dτ+J(u(t))=J(u0), 0≤t<T. | (3.3) |
By making use of the functionals above, we define the potential well depth
d=inf | (3.4) |
where the Nehari manifold
\begin{align} \mathcal{N} = \left\{u\in\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})\ \Big|\ I(u(t)) = 0,\int_{\mathbb{B}}|\nabla_{\mathbb{B}}u(t)|^{2}\frac{{\rm d}x_b}{x_b}{\rm d}\widetilde{x}\neq0\right\} \end{align} | (3.5) |
separates the whole space
\begin{align} \mathcal{N}_{+} = \left\{u\in\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})\ \Big|\ I(u(t)) > 0\right\} \end{align} | (3.6) |
and
\begin{align} \mathcal{N}_{-} = \left\{u\in\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})\ \Big|\ I(u(t)) < 0\right\}. \end{align} | (3.7) |
Furthermore, we introduce the following potential well
\begin{align} \mathcal{W}: = \mathcal{N}_{+} \cup \{0\} \end{align} | (3.8) |
and the outside of the corresponding potential well
\begin{align} \mathcal{V}: = \mathcal{N}_{-}. \end{align} | (3.9) |
Now, we give some corresponding properties of the potential well as follows.
Lemma 3.2 (The properties of the energy functional
(i)
(ii) there exist a unique
(iii)
(iv)
Proof. (ⅰ) From the definition of
\begin{align*} j(\lambda) = J(\lambda u) = \frac{\lambda^{2}}{2}\int_{\mathbb{B}}|\nabla_{\mathbb{B}}u|^{2}\frac{{\rm d}x_b}{x_b}{\rm d}\widetilde{x}-\frac{\lambda^{p+1}}{p+1} \int_{\mathbb{B}}|u|^{p+1}\frac{{\rm d}x_b}{x_b}{\rm d}\widetilde{x}, \end{align*} |
which gives
(ⅱ) An easy calculation shows that
\begin{align} j'(\lambda) = \lambda\left(\int_{\mathbb{B}}|\nabla_{\mathbb{B}}u|^{2}\frac{{\rm d}x_b}{x_b}{\rm d}\widetilde{x}-\lambda^{p-1} \int_{\mathbb{B}}|u|^{p+1}\frac{{\rm d}x_b}{x_b}{\rm d}\widetilde{x}\right). \end{align} | (3.10) |
Then taking
\begin{align*} \lambda^{*} = \left(\frac{\int_{\mathbb{B}}|\nabla_{\mathbb{B}}u|^{2}\frac{{\rm d}x_b}{x_b}{\rm d}\widetilde{x}}{\int_{\mathbb{B}}|u|^{p+1} \frac{{\rm d}x_b}{x_b}{\rm d}\widetilde{x}}\right)^{\frac{1}{p-1}} > 0. \end{align*} |
(ⅲ) By a direct calculation, (3.10) gives
(ⅳ) The conclusion follows from
\begin{align*} i(\lambda) = I(\lambda u) = \lambda^{2}\int_{\mathbb{B}}|\nabla_{\mathbb{B}}u|^{2}\frac{{\rm d}x_b}{x_b}{\rm d}\widetilde{x}-\lambda^{p+1} \int_{\mathbb{B}}|u|^{p+1}\frac{{\rm d}x_b}{x_b}{\rm d}\widetilde{x} = \lambda j'(\lambda). \end{align*} |
Next we give the relationship between
Lemma 3.3 (The properties of the Nehari functional
(i) If
(ii) If
(iii) If
Proof. (ⅰ) From
\begin{align*} \int_{\mathbb{B}}|u|^{p+1}\frac{{\rm d}x_b}{x_b}{\rm d}\widetilde{x}&\leq C^{p+1}_{*}\|u\|^{p+1}_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})} < C^{p+1}_{*}r^{p-1}\|u\|^{2}_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}\\& = \frac{1}{c^2+1}\|u\|^{2}_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})} \le \|\nabla_{\mathbb{B}}u\|^2_{L^{\frac{n}{2}}_{2}(\mathbb{B})}. \end{align*} |
Then by the definitions of
(ⅱ) It is easy to see that
\begin{align*} \|u\|^{2}_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})} & = \int_{\mathbb{B}}|\nabla_{\mathbb{B}}u|^{2}\frac{{\rm d}x_b}{x_b}{\rm d}\widetilde{x}+\int_{\mathbb{B}}|u|^{2}\frac{{\rm d}x_b}{x_b}{\rm d}\widetilde{x}\\ &\leq (c^2+1)\int_{\mathbb{B}}|\nabla_{\mathbb{B}}u|^{2}\frac{{\rm d}x_b}{x_b}{\rm d}\widetilde{x}\\ & < (c^2+1)\int_{\mathbb{B}}|u|^{p+1}\frac{{\rm d}x_b}{x_b}{\rm d}\widetilde{x} \notag\\ &\leq (c^2+1)C^{p+1}_{*}\|u\|^{p+1}_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}, \notag \end{align*} |
then we get
\begin{align*} \|u\|_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})} > \left(\frac{1}{ (c^2+1)C^{p+1}_{*}}\right)^{\frac{1}{p-1}} = r. \end{align*} |
(ⅲ) If
\begin{align*} \|u\|^{2}_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}& = \int_{\mathbb{B}}|\nabla_{\mathbb{B}}u|^{2}\frac{{\rm d}x_b}{x_b}{\rm d}\widetilde{x}+\int_{\mathbb{B}}|u|^{2}\frac{{\rm d}x_b}{x_b}{\rm d}\widetilde{x}\\ &\leq (c^2+1)\int_{\mathbb{B}}|\nabla_{\mathbb{B}}u|^{2}\frac{{\rm d}x_b}{x_b}{\rm d}\widetilde{x}\\ & = (c^2+1)\int_{\mathbb{B}}|u|^{p+1}\frac{{\rm d}x_b}{x_b}{\rm d}\widetilde{x} \notag\\ &\leq (c^2+1)C^{p+1}_{*}\|u\|^{p+1}_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}, \notag \end{align*} |
we get
The depth
Lemma 3.4 (The potential well depth). Suppose that
\begin{align} d = \inf\limits_{u\in\mathcal{N}}J(u) = \frac{p-1}{2(p+1)}\left(\frac{1}{ (c^2+1)^{\frac{p+1}{2}}C^{p+1}_{*}}\right)^{\frac{2}{p-1}}, \end{align} | (3.11) |
where
Proof. Suppose that
\begin{align*} J(u)& = \left(\frac{1}{2}-\frac{1}{p+1}\right)\int_{\mathbb{B}}|\nabla_{\mathbb{B}}u|^{2}\frac{{\rm d}x_b}{x_b}{\rm d}\widetilde{x}+\frac{1}{p+1}I(u) \\ &\geq\left(\frac{1}{2}-\frac{1}{p+1}\right)\frac{1}{c^2+1}\|u\|^{2}_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})} \notag\\ &\geq \frac{p-1}{2(p+1)(c^2+1)}r^{2},\notag \end{align*} |
which gives (3.11).
Lemma 3.5 (Osgood Lemma, [10]). Let
\rho(t)\le a+\int^{t}_{t_0}\gamma(s)\mu(\rho(s)){\rm d}s, |
holds almost everywhere for
-M(\rho(t))+M(a)\le \int^{t}_{t_0}\gamma(s){\rm d}s, |
is true almost everywhere for
In this section, we prove the local existence of the solution of problem (1.1)-(1.3). The local existence theorem is given as follows,
Theorem 4.1 (Local existence). Suppose that
T_{\max} = \sup\{T > 0: u = u(t)\ \mathit{\text{exists on}}\ [0,T]\} < \infty, |
then
\lim\limits_{t\rightarrow T_{\max}}\| u(t)\|_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})} = \infty. |
Proof. We divide the proof into 2 steps.
Step 1. Local exisence. We prove the local existence of the solution to problem (1.1)-(1.3) by virtue of the Galerkin method and the compactness property [35]. For the initial data
\begin{align} u_{m0} = \sum\limits^{m}_{j = 1}(\nabla_{\mathbb{B}}u_0,\nabla_{\mathbb{B}}\psi_{j})_{\mathbb{B}}\psi_{j},\ m\in \mathbb{N}^+ \end{align} | (4.1) |
such that
\begin{align} u_{m0}\rightarrow u_0\ \text{in}\ \mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})\ \text{as}\ m\rightarrow \infty. \end{align} | (4.2) |
For all
\begin{align} u_{m}(t, x_b, \widetilde{x}) = \sum^{m}_{j = 1}g_{mj}(t)\psi_{j}(x_b, \widetilde{x}), \end{align} | (4.3) |
which solves the problem
\begin{align} \begin{cases} (u_{mt}(t),\psi_{j})_{\mathbb{B}} +(\nabla_{\mathbb{B}}u_{mt}(t),\nabla_{\mathbb{B}}\psi_{j})_{\mathbb{B}} +(\nabla_{\mathbb{B}}u_m(t),\nabla_{\mathbb{B}}\psi_{j})_{\mathbb{B}} = (|u_m(t)|^{p-1}u_m(t),\psi_{j})_{\mathbb{B}},\\ u_{m}(0,x_b, \widetilde{x}) = u_{m0}, \end{cases} \end{align} | (4.4) |
for
\begin{align} \begin{cases} (1+\lambda_j)g_{mjt}(t)+\lambda_jg_{mj}(t) = (|u_m(t)|^{p-1}u_m(t),\psi_j)_{\mathbb{B}},\\ g_{mj}(0) = (\nabla_{\mathbb{B}}u_0,\nabla_{\mathbb{B}}\psi_j)_{\mathbb{B}},\ j = 1,2,...,m. \end{cases} \end{align} | (4.5) |
One can deduce that for any fixed
\begin{align*} &(u_{mt}(t), u_{mt}(t))_{\mathbb{B}}+(\nabla_{\mathbb{B}}u_{mt}(t),\nabla_{\mathbb{B}}u_{mt}(t))_{\mathbb{B}}+(\nabla_{\mathbb{B}}u_m(t),\nabla_{\mathbb{B}}u_{mt}(t))_{\mathbb{B}} \\& = (|u_m(t)|^{p-1}u_m(t), u_{mt}(t))_{\mathbb{B}}, \end{align*} |
which tells us that for all
\begin{align} &\|u_{mt}(t)\|^2_{L^{\frac{n}{2}}_{2}(\mathbb{B})}+\|\nabla_{\mathbb{B}}u_{mt}(t)\|^2_{L^{\frac{n}{2}}_{2}(\mathbb{B})}+\frac{1}{2}\frac{{\rm d}}{{\rm d}t}\|\nabla_{\mathbb{B}}u_{m}(t)\|^2_{L^{\frac{n}{2}}_{2}(\mathbb{B})}\\ = &\int_{\mathbb{B}}|u_m(t)|^{p-1}u_m(t)u_{mt}(t)\frac{{\rm d}x_b}{x_b}{\rm d}\widetilde{x}. \end{align} | (4.6) |
For the last term in equation (4.6), by using the cone Hölder inequality (Proposition 1), cone Sobolev inequality (Proposition 3) and Young's inequality, we deduce
\begin{align} \int_{\mathbb{B}}|u_m(t)|^{p-1}u_m(t)u_{mt}(t)\frac{{\rm d}x_b}{x_b}{\rm d}\widetilde{x} \le&\int_{\mathbb{B}}|u_m(t)|^{p}|u_{mt}(t)|\frac{{\rm d}x_b}{x_b}{\rm d}\widetilde{x}\\ \le&\|u_{mt}(t)\|_{L^{\frac{n}{p+1}}_{p+1}(\mathbb{B})}\|u_m(t)\|^p_{L^{\frac{n}{p+1}}_{p+1}(\mathbb{B})}\\ \le&C^{p+1}_*\|\nabla_\mathbb{B}u_{mt}(t)\|_{L^{\frac{n}{2}}_{2}(\mathbb{B})}\|\nabla_\mathbb{B}u_m(t)\|^p_{L^{\frac{n}{2}}_{2}(\mathbb{B})}\\ \le&\frac12\|\nabla_\mathbb{B}u_{mt}(t)\|^2_{L^{\frac{n}{2}}_{2}(\mathbb{B})}+\frac{C^{2(p+1)}_*}{2}\|\nabla_\mathbb{B}u_m(t)\|^{2p}_{L^{\frac{n}{2}}_{2}(\mathbb{B})}, \end{align} | (4.7) |
which together with (4.6) gives,
\begin{align} \|u_{mt}(t)\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}+\frac{{\rm d}}{{\rm d}t}\|\nabla_{\mathbb{B}}u_{m}(t)\|^2_{L^{\frac{n}{2}}_{2}(\mathbb{B})}\le C^{2(p+1)}_*\|\nabla_\mathbb{B}u_m(t)\|^{2p}_{L^{\frac{n}{2}}_{2}(\mathbb{B})},t\in[0,t_m]. \end{align} | (4.8) |
Integrating (4.8) over
\begin{align*} &\|\nabla_{\mathbb{B}}u_{m}(t)\|^2_{L^{\frac{n}{2}}_{2}(\mathbb{B})}+\int^{t}_{0}\|u_{mt}(s)\|^{2}_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}{\rm d}s \\&\le \|\nabla_{\mathbb{B}}u_{m}(0)\|^2_{L^{\frac{n}{2}}_{2}(\mathbb{B})} +C_*^{2(p+1)}\int^{t}_{0}\|\nabla_\mathbb{B}u_m(s)\|^{2p}_{L^{\frac{n}{2}}_{2}(\mathbb{B})}{\rm d}s, \end{align*} |
which combining the formula (4.2) and the fact
\begin{align} \|\nabla_{\mathbb{B}}u_{m}(t)\|^2_{L^{\frac{n}{2}}_{2}(\mathbb{B})}+\int^{t}_{0}\|u_{mt}(s)\|^{2}_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}{\rm d}s \le R^2 +C_*^{2(p+1)}\int^{t}_{0}\|\nabla_\mathbb{B}u_m(s)\|^{2p}_{L^{\frac{n}{2}}_{2}(\mathbb{B})}{\rm d}s, \end{align} | (4.9) |
for
For any fixed
\rho(t) = \sum\limits^m_{j = 1}\lambda_j|g_{mj}(t)|^2\le m\max\limits_{1\le j\le m}\left(\lambda_j\max\limits_{t\in[0,t_m]} |g_{mj}(t)|^2\right): = \alpha_m < +\infty, |
which implies that
\begin{align*} \gamma(s)&\equiv C^{2(p+1)}_*:[0,t_m]\rightarrow \mathbb{R}\ \text{is a locally integrable, positive function},\\ \mu(s)& = s^p:[0,\alpha_{m}]\rightarrow [0,+\infty)\ \text{is a continuous, non-decreasing function}, \end{align*} |
which satisfies
\begin{align*} M(\nu) = \int^{\alpha_m}_\nu\frac{{\rm d}s}{\mu(s)} = \frac{1}{p-1}\left(\nu^{-(p-1)}-\alpha_m^{-(p-1)}\right). \end{align*} |
Therefore, we have
\begin{align*} -M(\rho(t))+M(a)\le \int^t_0\gamma(s){\rm d}s = C^{2(p+1)}_* t, \end{align*} |
that is,
\begin{align*} \frac{1}{p-1}\left(\alpha_m^{-(p-1)}-\|\nabla_{\mathbb{B}}u_{m}(t)\|^{-2(p-1)}_{L^{\frac{n}{2}}_{2}(\mathbb{B})}\right) +\frac{1}{p-1}\left(R^{-2(p-1)}-\alpha_m^{-(p-1)}\right)\le C^{2(p+1)}_* t. \end{align*} |
By a simple calculation, we obtain
\begin{align} \|\nabla_{\mathbb{B}}u_{m}(t)\|^2_{L^{\frac{n}{2}}_{2}(\mathbb{B})}\leq \left[R^{2(1-p)}-(p-1)C_*^{2(p+1)} t \right]^{-\frac{1}{p-1}}, \ \ t\in[0,t_m]. \end{align} | (4.10) |
Taking
\begin{align} T = T(R): = \frac{R^{2(1-p)}}{2 (p-1)C_*^{2(p+1)}}, \end{align} | (4.11) |
it follows from estimates (4.9)-(4.11) that
\begin{equation} \|\nabla_{\mathbb{B}}u_{m}(t)\|^2_{L^{\frac{n}{2}}_{2}(\mathbb{B})}+\int^{t}_{0}\|u_{mt}(s)\|^{2}_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}{\rm d}s\le C(R),\ \ t\in[0, T],\ m\ge m_0, \end{equation} | (4.12) |
where
\begin{equation*} C(R) = R^2\left(1+\frac{2^{\frac{1}{p-1}}}{p-1}\right). \end{equation*} |
Then combining with (4.12) and Proposition 1 we obtain
\begin{equation} \||u_m(t)|^{p-1}u_m(t)\|_{L^{\frac{np}{p+1}}_{\frac{p+1}{p}}(\mathbb{B})} = \|u_m(t)\|^p_{L^{\frac{n}{p+1}}_{p+1}(\mathbb{B})}\leq C_*^{p}\|\nabla_{\mathbb{B}}u_{m}(t)\|^p_{L^{\frac{n}{2}}_{2}(\mathbb{B})}\leq \left(C_*\sqrt{C(R)}\right)^{p} \end{equation} | (4.13) |
for all
\begin{align*} &\{u_m\}\ \ \hbox{is bounded in}\ \ L^\infty(0, T; \mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})),\\ &\{u_{mt}\}\ \ \hbox{is bounded in}\ \ L^2(0, T; \mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})),\\ &\{|u_m|^{p-1}u_m\}\ \ \hbox{is bounded in}\ \ L^\infty(0, T; L^{\frac{np}{p+1}}_{\frac{p+1}{p}}(\mathbb{B})). \end{align*} |
Hence, by the Aubin-Lions-Simon Lemma [46] and the weak compactness there exist a
\begin{equation} \begin{split} &u_{m}\rightarrow u\ \hbox{in}\ L^{\infty}(0,T;\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B}))\ \hbox{weakly star}, \\ &u_{m}\rightarrow u\ \hbox{in}\ C([0, T]; L^{\frac{n}{2}}_{2}(\mathbb{B}))\ \hbox{and a.e. in}\ [0, T]\times \text{int}\mathbb{B},\\ & u_{mt}\rightarrow u_t\ \hbox{in}\ L^2(0, T;\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B}))\ \hbox{weakly},\\ & |u_{m}|^{p-1}u_m\rightarrow \chi \ \hbox{in}\ L^\infty(0,T; L^{\frac{np}{p+1}}_{\frac{p+1}{p}}(\mathbb{B}))\ \hbox{weakly star}, \end{split} \end{equation} | (4.14) |
which together with the Lions Lemma [35,Chap. 1,p12] deduce that
\begin{equation*} \chi = |u|^{p-1}u. \end{equation*} |
Then for each
\begin{align*} &\int_{\mathbb{B}}u_{t}(t) \psi_{j}\frac{{\rm d}x_b}{x_b}{\rm d}\widetilde{x} + \int_{\mathbb{B}}\nabla_{\mathbb{B}}u(t)\nabla_{\mathbb{B}} \psi_{j}\frac{{\rm d}x_b}{x_b}{\rm d}\widetilde{x} +\int_{\mathbb{B}}\nabla_{\mathbb{B}}u_{t}(t)\nabla_{\mathbb{B}}\psi_{j}\frac{{\rm d}x_b}{x_b}{\rm d}\widetilde{x} \\& = \int_{\mathbb{B}}|u(t)|^{p-1}u(t)\psi_{j}\frac{{\rm d}x_b}{x_b}{\rm d}\widetilde{x} \end{align*} |
for a.e.
\begin{align*} (u_{t}(t), \eta)_{\mathbb{B}} +(\nabla_{\mathbb{B}}u(t), \nabla_{\mathbb{B}}\eta)_{\mathbb{B}} +(\nabla_{\mathbb{B}}u_{t}(t), \nabla_{\mathbb{B}}\eta)_{\mathbb{B}} = \int_{\mathbb{B}}|u(t)|^{p-1}u(t) \eta\frac{{\rm d}x_b}{x_b}{\rm d}\widetilde{x} \end{align*} |
for a.e.
\begin{equation} \|\nabla_{\mathbb{B}}u(t)\|^2_{L^{\frac{n}{2}}_{2}(\mathbb{B})}+\int^{t}_{0}\|u_{t}(s)\|^{2}_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}{\rm d}s\le C(R),\ \ t\in[0, T]. \end{equation} | (4.15) |
Moreover, it follows from the fact
\begin{equation*} u_{m0} = u_m(0)\rightarrow u(0)\ \ \hbox{in}\ \ L^{\frac{n}{2}}_{2}(\mathbb{B}), \end{equation*} |
which combining with (4.2) implies that
\begin{equation*} u(0) = u_0\ \ \hbox{in}\ \ \mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B}). \end{equation*} |
Thus,
Step 2. Uniqueness. Suppose that there are two solutions
\begin{align} &w_{t}-\Delta_{\mathbb{B}} w_{t}-\Delta_{\mathbb{B}}w = |u|^{p-1}u-|v|^{p-1}v, && (x_b, \widetilde{x})\in \text{int}\mathbb{B},t > 0, \end{align} | (4.16) |
\begin{align} &w(x_b, \widetilde{x},0) = 0,&& (x_b, \widetilde{x})\in \text{int}\mathbb{B}, \end{align} | (4.17) |
\begin{align} &w(0, \widetilde{x},t) = 0, && (0, \widetilde{x})\in\partial \mathbb{B},t\ge0. \end{align} | (4.18) |
Since
\begin{equation} \begin{split} & \frac{\mathrm d}{\mathrm d t}\left(\|w\|^2_{L^{\frac{n}{2}}_{2}(\mathbb{B})}+\|\nabla_{\mathbb{B}}w\|^2_{L^{\frac{n}{2}}_{2}(\mathbb{B})}\right)+ 2\|\nabla_{\mathbb{B}}w\|^2_{L^{\frac{n}{2}}_{2}(\mathbb{B})}\\ = \ &2\int_{\mathbb{B}}\left(|u|^{p-1}u-|v|^{p-1}v\right)w \frac{{\rm d}x_b}{x_b}{\rm d}\widetilde{x}, \ \ t\in [0, T], \end{split} \end{equation} | (4.19) |
For the last term in equation (4.19), by using the cone Hölder inequality (Proposition 1), cone Sobolev inequality (Proposition 3) and estimate (4.15), we deduce
\begin{equation*} \begin{split} &2\int_{\mathbb{B}}\left(|u|^{p-1}u-|v|^{p-1}v\right)w \frac{{\rm d}x_b}{x_b}{\rm d}\widetilde{x}\\ = \ & 2p\int_{\mathbb{B}}\int_0^1|\theta u+(1-\theta)v|^{p-1}|w|^2 {\rm d} \theta \frac{{\rm d}x_b}{x_b}{\rm d}\widetilde{x} \\ \leq\ & 2p\int_{\mathbb{B}}\left(|u|^{p-1}+|v|^{p-1}\right)|w|^2\frac{{\rm d}x_b}{x_b}{\rm d}\widetilde{x}\\ \leq\ & 2p \left( \|u\|^{p-1}_{L^{\frac{n}{p+1}}_{p+1}(\mathbb{B})}+ \|v\|^{p-1}_{L^{\frac{n}{p+1}}_{p+1}(\mathbb{B})}\right) \|w\|^2_{L^{\frac{n}{p+1}}_{p+1}(\mathbb{B})}\\ \leq\ & 2pC_*^{p+1} \left( \|\nabla_\mathbb{B}u\|^{p-1}_{L^{\frac{n}{2}}_{2}(\mathbb{B})}+ \|\nabla_\mathbb{B}v\|^{p-1}_{L^{\frac{n}{2}}_{2}(\mathbb{B})}\right) \|\nabla_\mathbb{B}w\|^2_{L^{\frac{n}{2}}_{2}(\mathbb{B})}\\ \leq\ & C_1(R)\|\nabla_\mathbb{B}w\|^2_{L^{\frac{n}{2}}_{2}(\mathbb{B})}, \ \ t\in [0, T], \end{split} \end{equation*} |
with
\begin{equation} \frac{\mathrm d}{\mathrm d t}\left(\|w\|^2_{L^{\frac{n}{2}}_{2}(\mathbb{B})}+\|\nabla_{\mathbb{B}}w\|^2_{L^{\frac{n}{2}}_{2}(\mathbb{B})}\right)\leq C_1(R)\left(\|w\|^2_{L^{\frac{n}{2}}_{2}(\mathbb{B})} +\|\nabla_{\mathbb{B}}w\|^2_{L^{\frac{n}{2}}_{2}(\mathbb{B})}\right),\ \ t\in[0,T]. \end{equation} | (4.20) |
Applying the Gronwall inequality to (4.20) and making use of (4.17), we have
\begin{equation*} \|w(t)\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}\leq e^{C_1(R) t} \|w(0)\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})} = 0,\ \ \forall t\in [0, T], \end{equation*} |
which leads to the uniqueness of weak solution.
Concerning formula (4.11) we observe that the local existence time
\begin{align} \limsup\limits_{t\rightarrow T_{\max}}\|\nabla_{\mathbb{B}} u(t)\|^2_{L^{\frac{n}{2}}_{2}(\mathbb{B})} = +\infty. \end{align} | (4.21) |
In fact, if
\sup\limits_{t\in [0,T_{\max})}\|\nabla_{\mathbb{B}} u(t)\|^2_{L^{\frac{n}{2}}_{2}(\mathbb{B})}\le M(T_{\max}), |
then for any
Moreover, we give the following corollary.
Corollary 1 (Blow-up of the weak solution). Suppose that
\begin{align*} \lim\limits_{t\rightarrow T_{\max}}\|u(t)\|^2_{L^{\frac{n}{s}}_{s}(\mathbb{B})} = \infty\ \ \ \mathit{\text{for}}\ \ \ s\geq \max \left\{1,\frac{n(p-1)}{2}\right\}. \end{align*} |
Proof. Recalling the definition of energy functional
\begin{align*} \frac{1}{2}\|\nabla_\mathbb{B}u\|^2_{L^{\frac{n}{2}}_{2}(\mathbb{B})} \leq \frac{1}{p+1}\|u\|^{p+1}_{L^{\frac{n}{p+1}}_{p+1}(\mathbb{B})}+J(u_0)\ \text{for all}\ t \in [0,T_{\max}). \end{align*} |
Combining with the following Gagliardo-Nirenberg interpolation inequality
\begin{align*} \|u\|_{L^{\frac{n}{B_1}}_{B_1}(\mathbb{B})} \leq C\|\nabla_\mathbb{B}u\|^{a}_{L^{\frac{n}{B_2}}_{B_2}(\mathbb{B})} \|u\|^{1-a}_{L^{\frac{n}{B_3}}_{B_3}(\mathbb{B})} \end{align*} |
for
\begin{align*} \frac{1}{2}\|\nabla_\mathbb{B}u\|^2_{L^{\frac{n}{2}}_{2}(\mathbb{B})}-J(u_0) \leq \frac{1}{p+1}\|u\|^{p+1}_{L^{\frac{n}{p+1}}_{p+1}(\mathbb{B})} \leq C\|\nabla_\mathbb{B}u\|^{(p+1)a}_{L^{\frac{n}{2}}_{2}(\mathbb{B})} \|u\|^{(p+1)(1-a)}_{L^{\frac{n}{s}}_{s}(\mathbb{B})}, \end{align*} |
where
\begin{align*} \frac{1}{2}\|\nabla_\mathbb{B}u\|^{2-(p+1)a}_{L^{\frac{n}{2}}_{2}(\mathbb{B})} -J(u_0)\|\nabla_\mathbb{B}u\|^{-(p+1)a}_{L^{\frac{n}{2}}_{2}(\mathbb{B})} \leq C\|u\|^{(p+1)(1-a)}_{L^{\frac{n}{s}}_{s}(\mathbb{B})}, \end{align*} |
which implies that
In this section, we study the well-posedness of solutions of problem (1.1)-(1.3) in the case of sub-critical and critical initial energy levels. The succeeding result is given to show the invariant sets of the solution for problem (1.1)-(1.3).
Lemma 5.1. Suppose that
(i) all weak solutions of problem (1.1)-(1.3) belong to
(ii) all weak solutions of problem (1.1)-(1.3) belong to
Proof. (ⅰ) Suppose that
\begin{align} \int^{t_0}_{0}\|u_t(\tau)\|^{2}_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}{\rm d}\tau+J(u(t_0)) = J(u_{0}) < d \end{align} | (5.1) |
for any
(ⅱ) Similar to the proof of (i), we can obtain that
Theorem 5.2 (Global existence and asymptotic behavior). Suppose that
\begin{equation} \|u(t)\|^{2}_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}+\int^{t}_{0}\|u_t(\tau)\|^{2}_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}{\rm d}\tau < \left(1+\frac{2(p+1)(c^2+1)}{p-1}\right)d,\ \ t\ge0. \end{equation} | (5.2) |
Moreover, the solution satisfies the estimate
\begin{align*} \|u\|^{2}_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}\leq e^{-2\beta t}\|u_0\|^{2}_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})},\ \ \ 0\leq t < \infty, \end{align*} |
where
Proof. We divide the proof into two parts, which are the global existence and the asymptotic behavior.
Part Ⅰ: Global existence.
First, we give the global existence of the solution of problem (1.1)-(1.3) for
Since the conclusion is trivial when
\begin{equation} J(u(t)) = \frac{p-1}{2(p+1)}\|\nabla_{\mathbb{B}}u(t)\|^{2}_{L^{\frac{n}{2}}_{2}(\mathbb{B})}+\frac{1}{p+1}I(u(t)) \end{equation} | (5.3) |
and
\begin{align} \int^{t}_{0}\|u_t(\tau)\|^{2}_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}{\rm d}\tau+J(u(t)) = J(u_{0}) < d. \end{align} | (5.4) |
for all
\begin{align*} u(t)\in\mathcal{W},\ \text{for all}\ 0 < t < T_{\max}, \end{align*} |
which implies
\begin{equation} I(u(t)) > 0\ \ \hbox{for all}\ \ 0 < t < T_{\max}. \end{equation} | (5.5) |
Thus, the combination of (5.3)-(5.5) and Proposition 1 shows that
\begin{equation} \|u(t)\|^{2}_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}+\int^{t}_{0}\|u_t(\tau)\|^{2}_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}{\rm d}\tau < \left(1+\frac{2(p+1)(c^2+1)}{p-1}\right)d,\ \ 0 < t < T_{\max}. \end{equation} | (5.6) |
Therefore, by virtue of the Continuation Principle, it follows
For the case
Let
\begin{align} &u_{t}-\Delta_{\mathbb{B}} u_{t}-\Delta_{\mathbb{B}}u = |u|^{p-1}u,&& (x_b, \widetilde{x})\in \text{int}\mathbb{B},t > 0, \end{align} | (5.7) |
\begin{align} &u(x_b, \widetilde{x},0) = u_{k}(0),&& (x_b, \widetilde{x})\in \text{int}\mathbb{B}, \end{align} | (5.8) |
\begin{align} &u(0, \widetilde{x},t) = 0,&& (0, \widetilde{x})\in\partial \mathbb{B},t\ge0, \end{align} | (5.9) |
according to Theorem 4.1 and the estimate (5.6), we know that the weak solution
\begin{align} \int^{t}_{0}\|u_{t}(\tau)\|^{2}_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}{\rm d}\tau+J(u(t)) = J(u_k(0)), 0 < t < T_{\max}, \end{align} | (5.10) |
where
By
Since
\begin{align} u_{k}(0)\rightarrow u_0\ \text{strongly in}\ \mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B}),\ \text{as}\ k\rightarrow \infty, \end{align} | (5.11) |
and
\begin{align} \int^{t}_{0}\|u_{kt}(\tau)\|^{2}_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}{\rm d}\tau+J(u_{k}(t)) = J(u_{k}(0)) < J(u_0) = d,\ \ 0 < t < \tilde{T}, \end{align} | (5.12) |
then we can obtain the boundness of
Part Ⅱ: Asymptotic behavior.
In this part, we start with the claim that
If
If
\begin{align*} J(u(t_1))\ge d. \end{align*} |
In addition, by the energy identity (3.3), we have
\begin{align*} 0 < J(u(t_1)) = J(u_{0})-\int^{t_1}_{0}\|u_t(\tau)\|_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}{\rm d}\tau\le d, \end{align*} |
which tells us that
(u_{t},u )_{\mathbb{B}} +(\nabla_{\mathbb{B}}u_{t}, \nabla_{\mathbb{B}} u )_{\mathbb{B}} +(\nabla_{\mathbb{B}}u, \nabla_{\mathbb{B}}u)_{\mathbb{B}} = \int_{\mathbb{B}}|u|^{p+1}\frac{{\rm d}x_b}{x_b}{\rm d}\widetilde{x}, t\ge0. |
Then from the definition of
\begin{align} (u_{t},u )_{\mathbb{B}} +(\nabla_{\mathbb{B}}u_{t}, \nabla_{\mathbb{B}} u )_{\mathbb{B}} = -I(u) < 0, t\in [0,t_1), \end{align} | (5.13) |
that is,
\frac{{\rm d}}{{\rm d}t}\|u_t\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})} = -2I(u) < 0, t\in[0,t_1), |
which contradicts with
Since
\begin{align} J(u_0)&\geq J(u(t)) \\ & = \left(\frac{1}{2}-\frac{1}{p+1}\right)\|\nabla_{\mathbb{B}}u\|^{2}_{L^{\frac{n}{2}}_{2}(\mathbb{B})}+ \frac{1}{p+1}I(u) \\ & > \frac{p-1}{2(p+1)(c^2+1)}\|u\|^{2}_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}, \end{align} | (5.14) |
where
\begin{align} \int_{\mathbb{B}}|u|^{p+1}\frac{{\rm d}x_b}{x_b}{\rm d}\widetilde{x} &\leq C^{p+1}_{*}\|u\|^{p+1}_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}\\ & = C^{p+1}_{*}\left(\|u\|^{2}_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}\right)^{\frac{p-1}{2}}\|u\|^{2}_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}. \end{align} | (5.15) |
Then from (5.14) we define
\begin{align*} \alpha: = &C^{p+1}_{*}\left(\|u\|^{2}_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}\right)^{\frac{p-1}{2}}\\ < &C^{p+1}_{*}\left(\frac{2(p+1))(c^2+1)}{p-1}J(u_0)\right)^{\frac{p-1}{2}}\\ \le&C^{p+1}_{*}\left(\frac{2(p+1))(c^2+1)}{p-1}d\right)^{\frac{p-1}{2}} = \frac{1}{c^2+1} < 1. \end{align*} |
Hence, taking
\begin{align*} \int_{\mathbb{B}}|u|^{p+1}\frac{{\rm d}x_b}{x_b}{\rm d}\widetilde{x}\le\alpha\|u\|^{2}_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})} = (1-\beta)\|u\|^{2}_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}, \end{align*} |
which gives
\begin{align} \beta\|u\|^{2}_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}\le I(u(t)). \end{align} | (5.16) |
On the other hand, by the definition of
\begin{align} \frac{{\rm d}}{{\rm d}t}\left(\int_{\mathbb{B}}(|u(t)|^{2}+|\nabla_{\mathbb{B}}u(t)|^{2})\frac{{\rm d}x_b}{x_b}{\rm d}\widetilde{x}\right) = -2I(u(t))\leq -2\beta\|u\|^{2}_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}. \end{align} | (5.17) |
Then by Gronwall's inequality we can obtain
\begin{align*} \|u\|^{2}_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})} \leq e^{-2\beta t}\|u_0\|^{2}_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}. \end{align*} |
Theorem 5.3 (Finite time blow up and lower bound estimate of blowup time). Suppose that
\begin{align*} \lim\limits_{t\rightarrow T^{-}}\int^{t}_{0}\|u(\tau)\|^{2}_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}{\rm d}\tau = +\infty,\ \ \ 0 < t < T. \end{align*} |
Moreover,
\begin{align*} T\geq \frac{\|u_0\|^{-p+1}_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}-r^{-p+1}}{(p-1)C_*^{p+1}}. \end{align*} |
Proof. Firstly, by Theorem 4.1, we already have the local existence for
\begin{align} M(t): = \int^{t}_{0}\|u(\tau)\|^{2}_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}{\rm d}\tau, t\in[0,\infty). \end{align} | (5.18) |
For
\begin{align} M'(t)& = \|u(t)\|^{2}_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})} = \|u(t)\|^{2}_{L^{\frac{n}{2}}_{2}(\mathbb{B})}+\|\nabla_{\mathbb{B}} u(t)\|^{2}_{L^{\frac{n}{2}}_{2}(\mathbb{B})} \end{align} | (5.19) |
and further by (1.1) and (3.2) we have
\begin{align} M''(t) = 2(u_{t}(t), u(t))_{\mathbb{B}}+2(\nabla_\mathbb{B} u_{t}(t),\nabla_\mathbb{B} u(t))_{\mathbb{B}} = -2I(u(t)). \end{align} | (5.20) |
Next, we will reveal that the solution actually does not exist globally by showing that
\begin{align} M''(t)& = -2(p+1)J(u)+(p-1) \| \nabla_{\mathbb{B}}u(t)\|^{2}_{L^{\frac{n}{2}}_{2}(\mathbb{B})} \\ &\geq2(p+1)\left(\int^{t}_{0}\| u_t\|^{2}_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}{\rm d}\tau-J(u_0)\right)+\frac{(p-1) M'(t)}{c^2+1}, \end{align} | (5.21) |
where
\begin{align*} \left(\int^{t}_{0}(u,u_t)_{\mathbb{B}}{\rm d}\tau\right)^{2} = &\left(\frac{1}{2}\int^{t}_{0}\frac{{\rm d}}{{\rm d}\tau}\| u\|^{2}_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}{\rm d}\tau\right)^{2} \notag \\ = &\frac{1}{4}\left(\|u\|^{4}_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}-2\|u_0\|^{2}_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}\| u\|^{2}_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}+ \|u_0\|^{4}_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}\right) \\ = &\frac{1}{4}\left((M'(t))^{2}-2M'(t)\| u_0\|^{2}_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}+\| u_0\|^{4}_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}\right), \end{align*} |
hence
\begin{align} (M'(t))^{2} = 4\left(\int^{t}_{0}(u,u_t)_{\mathbb{B}}{\rm d}\tau\right)^{2}+2\|u_0\|^{2}_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}M'(t)-\| u_0\|^{4}_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}. \end{align} | (5.22) |
From (5.18), (5.21) and (5.22), making use of the Hölder inequality, we have for
\begin{align} &M(t)M''(t)-\frac{p+1}{2}(M'(t))^{2} \\ \geq& \int^{t}_{0}\|u\|^{2}_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}{\rm d}\tau\left(2(p+1)\left( \int^{t}_{0}\|u_t\|^{2}_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}{\rm d}\tau-J(u_0)\right)+\frac{(p-1)M'(t)}{c^2+1}\right) \\ &-\frac{p+1}{2}\left(4\left(\int^{t}_{0}(u,u_t)_{\mathbb{B}}{\rm d}\tau\right)^{2}+2M'(t)\|u_0\|^{2}_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})} -\|u_0\|^{4}_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}\right) \\ = &2(p+1)\left(\int^{t}_{0}\|u\|^{2}_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}{\rm d}\tau\int^{t}_{0}\|u_t\|^{2}_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}{\rm d}\tau -\left(\int^{t}_{0}(u,u_t)_{\mathbb{B}}{\rm d}\tau\right)^{2}\right) \\ &-2(p+1)J(u_0)M(t)+\frac{(p-1)M(t)M'(t)}{c^2+1} \\ &-(p+1)M'(t)\|u_0\|^{2}_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}+\frac{p+1}{2}\|u_0\|^{4}_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}\\ \geq&-2(p+1)J(u_{0})M(t)+\frac{(p-1)M(t)M'(t)}{c^2+1}-(p+1)M'(t)\|u_0\|^{2}_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}. \end{align} | (5.23) |
To estimate the right hand side of (5.23), we claim first that
\begin{align} &M''(t) = -2I(u(t))\ge\delta,t\ge0, \end{align} | (5.24) |
Integrating over the both sides of (5.24) from
\begin{align} &M'(t)\ge\delta t+M'(0)\ge\delta t,t\ge0. \end{align} | (5.25) |
By applying the same operation that we took for (5.24), we have
\begin{align} &M(t)\ge\delta t^2+M(0)\ge\delta t^2,t\ge0. \end{align} | (5.26) |
Thus by (5.23), for sufficiently large
\begin{align} &M(t)M''(t)-\frac{p+1}{2}(M'(t))^{2}\\ \ge&-2(p+1)J(u_{0})M(t)+\frac{(p-1)M(t)M'(t)}{c^2+1}-(p+1)M'(t)\|u_0\|^{2}_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}\\ = &M(t)\left(\frac{p-1}{2(c^2+1)}M'(t)-2(p+1)J(u_0)\right)\\ & \quad +M'(t)\left(\frac{p-1}{2(c^2+1)}M(t)-(p+1)\|u_0\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}\right) > 0. \end{align} | (5.27) |
By direct computation we can get that
\begin{align} (M^{-\gamma}(t))'' = -\gamma M^{-\gamma-2}(t)\left(M(t)M''(t)-(\gamma+1)(M'(t))^{2}\right). \end{align} | (5.28) |
Let
Note first that there exists a sufficiently small
\begin{align*} N'(t) = -\gamma M^{-\gamma-1}M'(t) < 0,t\in(0,\infty), \end{align*} |
which makes
In fact, the case of the asymptote won't occur since
\begin{align*} N(t) = M(t)^{-\gamma}\rightarrow0,t\rightarrow T^-, \end{align*} |
which means also
Next, we seek the lower bound of the blow up time. By (5.20) we have
\begin{align} M''(t) = -2I(u(t)) = -2\|\nabla_{\mathbb{B}}u(t)\|^2_{L^{\frac{n}{2}}_{2}(\mathbb{B})}+2\|u(t)\|^{p+1}_{L^{\frac{n}{p+1}}_{p+1}(\mathbb{B})}. \end{align} | (5.29) |
Then Proposition 2, (5.19) and (5.29) imply
\begin{align} M''(t)\leq2C^{p+1}_*(M'(t))^{\frac{p+1}{2}}. \end{align} | (5.30) |
By (5.25) we have already known
\begin{align} \frac{M''(t)}{(M'(t))^{\frac{p+1}{2}}}\leq 2C^{p+1}_*. \end{align} | (5.31) |
Integrating the inequality (5.31) from
\begin{align} (M'(0))^{-\frac{p-1}{2}}-(M'(t))^{-\frac{p-1}{2}}\leq (p-1)C_*^{p+1}t. \end{align} | (5.32) |
Let
\begin{align*} T\geq \frac{\|u_0\|^{-p+1}_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}-r^{-p+1}}{(p-1)C_*^{p+1}}. \end{align*} |
In this section we give the finite time blow up result for the sup-critical initial energy case, for which we introduce the following three lemmas first.
Lemma 6.1 ([26]). Suppose that a positive, twice-differentiable function
\begin{align*} \psi''(t)\psi(t)-(1+\theta)(\psi'(t))^2\ge0,\ t > 0,\psi(t)\in C^2,\psi(t) > 0 \end{align*} |
where
Lemma 6.2. Suppose that
\begin{align*} t\mapsto \|u(t)\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})} \end{align*} |
increases strictly while
Proof. Firstly, an auxiliary function is defined as follows
\begin{align} F(t): = \|u(t)\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}. \end{align} | (6.1) |
Then it follows from (1.1) that
\begin{align} \begin{split} F'(t) = & 2(u_{t}(t), u(t))_{\mathbb{B}}+2(\nabla_{\mathbb{B}}u_{t}(t),\nabla_{\mathbb{B}}u(t))_{\mathbb{B}} = -2I(u). \end{split} \end{align} | (6.2) |
Hence by
\begin{align} F'(t) > 0,t\in[0, T_0], \end{align} | (6.3) |
which implies that the map
t\mapsto \|u(t)\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})} |
is strictly increasing for
Lemma 6.3 (Invariant set
\begin{equation} \frac{(p-1)}{2(c^2+1)(p+1)}\|u_0\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})} > J(u_0) > 0, \end{equation} | (6.4) |
where
Proof. First we claim that
\begin{align} J(u_0) = &\frac{1}{2}\|\nabla_{\mathbb{B}} u_0\|^2_{L^{\frac{n}{2}}_{2}(\mathbb{B})} - \frac{1}{p+1}\|u_0\|^{p+1}_{L^{\frac{n}{p+1}}_{p+1}(\mathbb{B})}\\ = &\left(\frac{1}{2}- \frac{1}{p+1}\right)\|\nabla_{\mathbb{B}} u_0\|^2_{L^{\frac{n}{2}}_{2}(\mathbb{B})}+\frac{1}{p+1}I(u_0)\\ \ge&\frac{(p-1)}{2(c^2+1)(p+1)}\|u_0\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}+\frac{1}{p+1}I(u_0), \end{align} | (6.5) |
thus by (6.4) and (6.5) we can drive that
Then we prove that
\begin{align} \|u(t)\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})} > \|u_0\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})} > \frac{2(c^2+1)(p+1)}{(p-1)} J(u_0),\ t\in(0,t_1), \end{align} | (6.6) |
then from the continuity of
\begin{align} \|u(t_1)\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})} > \|u_0\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})} > \frac{2(c^2+1)(p+1)}{p-1} J(u_0). \end{align} | (6.7) |
On the other hand, recalling the definition of
\begin{align} J(u_0) = &J(u(t_1)) +\int_0^{t_{1}} \| u_t\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})} {\rm d}\tau\\ \ge &\frac{1}{2}\|\nabla_{\mathbb{B}} u(t_1)\|^2_{L^{\frac{n}{2}}_{2}(\mathbb{B})} - \frac{1}{p+1}\|u(t_1)\|^{p+1}_{L^{\frac{n}{p+1}}_{p+1}(\mathbb{B})}\\ = &\left(\frac{1}{2}- \frac{1}{p+1}\right)\|\nabla_{\mathbb{B}} u(t_1)\|^2_{L^{\frac{n}{2}}_{2}(\mathbb{B})}+\frac{1}{p+1}I(u(t_1)), \end{align} | (6.8) |
then applying the Cone Poincar
\begin{align} J(u_0)&\ge\frac{p-1}{2(p+1)}\|\nabla_{\mathbb{B}} u(t_1)\|^2_{L^{\frac{n}{2}}_{2}(\mathbb{B})}\\ &\ge\frac{(p-1)}{2(c^2+1)(p+1)}\|u(t_1)\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})},\\ &\ge\frac{(p-1)}{2(c^2+1)(p+1)}\|u_0\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}, \end{align} | (6.9) |
which contradicts (6.7), thus we can drive that
Next we give the blow up results for arbitrary positive initial energy as follows:
Theorem 6.4 (Finite time Blow up with
\begin{align*} T\le\frac{4\|u_0\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}}{(p-1)\sigma}, \end{align*} |
where
Proof. Similar as Theorem 5.2, we also divide the proof into two parts, which are the finite time blow up and the estimating of the upper bound of the blow up time.
Part Ⅰ: Finite time blow up.
Firstly, Theorem 4.1 has asserted the local existence of the solution, then arguing by contradiction, we suppose that
Now we take a sufficiently small
\begin{align} c_0 > \frac{1}{4}\varepsilon^{-2}\|u_0\|^4_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})} \end{align} | (6.10) |
and define a new auxiliary function for
\begin{align} P(t): = (M(t))^2+\varepsilon^{-1}\|u_0\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})} M(t)+c_0, \end{align} | (6.11) |
where
\begin{align} P'(t) = \left(2M(t)+\varepsilon^{-1}\|u_0\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}\right)M'(t) \end{align} | (6.12) |
and
\begin{align*} P''(t) = \left(2M(t)+\varepsilon^{-1}\|u_0\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}\right)M''(t)+2(M'(t))^2. \end{align*} |
Set
\begin{align*} (P'(t))^2& = \left(4(M(t))^2+4\varepsilon^{-1}\|u_0\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}M(t)+\varepsilon^{-2}\|u_0\|^4_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}\right)(M'(t))^2\\ & = \left(4(M(t))^2+4\varepsilon^{-1}\|u_0\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}M(t)+4c_0-\xi\right)(M'(t))^2\\ & = \left(4P(t)-\xi\right)(M'(t))^2, \end{align*} |
which tells
\begin{align} 4P(t)(M'(t))^2 = (P'(t))^2+\xi(M'(t))^2,t\in[0,\infty). \end{align} | (6.13) |
By (6.13), for
\begin{align} &2P(t)P''(t)\\ = &2\left(\left(2M(t)+\varepsilon^{-1}\|u_0\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}\right)M''(t)+2(M'(t))^2\right)P(t)\\ = &2\left(2M(t)+\varepsilon^{-1}\|u_0\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}\right)M''(t)P(t)+4P(t)(M'(t))^2\\ = &2\left(2M(t)+\varepsilon^{-1}\|u_0\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}\right)M''(t)P(t)+(P'(t))^2+\xi(M'(t))^2. \end{align} | (6.14) |
Then from (6.13) and (6.14), for
\begin{align} &2P(t)P''(t)-(1+\beta)(P'(t))^2\\ = & 2\left(2M(t)+\varepsilon^{-1}\|u_0\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}\right)M''(t)P(t)+\xi(M'(t))^2-\beta(P'(t))^2\\ = & 2\left(2M(t)+\varepsilon^{-1}\|u_0\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}\right)M''(t)P(t)+\xi(M'(t))^2-\beta(4P(t)-\xi)(M'(t))^2\\ = & 2\left(2M(t)+\varepsilon^{-1}\|u_0\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}\right)M''(t)P(t)-4\beta P(t)(M'(t))^2+\xi(1+\beta)(M'(t))^2\\ > & 2\left(2M(t)+\varepsilon^{-1}\|u_0\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}\right)M''(t)P(t)-4\beta P(t)(M'(t))^2, \end{align} | (6.15) |
where
Next, we estimate the term
\begin{align} \frac{1}{2}\frac{{\rm d}}{{\rm d}t}\|u\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}& = -I(u)\\ & = -\|\nabla_{\mathbb{B}} u\|^2_{L^{\frac{n}{2}}_{2}(\mathbb{B})}+ \|u\|^{p+1}_{L^{\frac{n}{p+1}}_{p+1}(\mathbb{B})}\\ & = -2J(u)+\frac{p-1}{p+1}\|u\|^{p+1}_{L^{\frac{n}{p+1}}_{p+1}(\mathbb{B})}. \end{align} | (6.16) |
By (6.4), we can take
\begin{align} 1 < \beta < \frac{(p-1)\|u_0\|^{2}_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}}{2(c^2+1)(p+1)J(u_0)}. \end{align} | (6.17) |
Notice by Lemma 6.3 that
\begin{align} &\frac{1}{2}\frac{{\rm d}}{{\rm d}t}\|u\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}\\ = &-2J(u)+\frac{p-1}{p+1}\|u\|^{p+1}_{L^{\frac{n}{p+1}}_{p+1}(\mathbb{B})}\\ = &2(\beta-1)J(u)-2\beta J(u)+\frac{p-1}{p+1}\|u\|^{p+1}_{L^{\frac{n}{p+1}}_{p+1}(\mathbb{B})}\\ \geq&-2\beta J(u_0)+2\beta \int^t_0\|u_t\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}{\rm d}\tau+\frac{p-1}{p+1}\|u\|^{p+1}_{L^{\frac{n}{p+1}}_{p+1}(\mathbb{B})}\\ = &-2\beta J(u_0)+2\beta \int^t_0\|u_t\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}{\rm d}\tau-\frac{p-1}{p+1}I(u)+\frac{p-1}{p+1}\|\nabla_{\mathbb{B}} u\|^2_{L^{\frac{n}{2}}_{2}(\mathbb{B})}\\ > &-2\beta J(u_0)+2\beta \int^t_0\|u_t\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}{\rm d}\tau+\frac{p-1}{p+1}\|\nabla_{\mathbb{B}} u\|^2_{L^{\frac{n}{2}}_{2}(\mathbb{B})}. \end{align} | (6.18) |
The application of Cone Poincar
\begin{align} \frac{p-1}{p+1}\|\nabla_{\mathbb{B}} u\|^2_{L^{\frac{n}{2}}_{2}(\mathbb{B})}\geq \frac{(p-1)}{(c^2+1)(p+1)}\|u\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}. \end{align} | (6.19) |
Putting (6.19) into (6.18), for
\begin{align} M''(t) = &\frac{{\rm d}}{{\rm d}t}\|u\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}\\ > & -4\beta J(u_0)+4\beta \int^t_0\|u_t\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}{\rm d}\tau+\frac{2(p-1)}{(c^2+1)(p+1)}\|u\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}. \end{align} | (6.20) |
By (6.16), H
\begin{align} (M'(t))^2 = &\|u\|^4_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}\\ = &\left(\|u_0\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}+2\int^t_0(u,u_t)_{\mathbb{B}}{\rm d}\tau\right)^2\\ \leq& \left(\|u_0\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}+2\left(\int^t_0\|u\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}{\rm d}\tau\right)^{\frac{1}{2}}\left(\int^t_0\|u_t\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}{\rm d}\tau\right)^{\frac{1}{2}}\right)^2\\ = &\|u_0\|^4_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}+4\|u_0\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}\left(\int^t_0\|u\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}{\rm d}\tau\right)^{\frac{1}{2}}\left(\int^t_0\|u_t\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}{\rm d}\tau\right)^{\frac{1}{2}}\\ &+4M(t)\int^t_0\|u_t\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}{\rm d}\tau\\ \leq& \|u_0\|^4_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}+2\varepsilon\|u_0\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}M(t)+2\varepsilon^{-1}\|u_0\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}\int^t_0\|u_t\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}{\rm d}\tau\\ &+4M(t)\int^t_0\|u_t\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}{\rm d}\tau. \end{align} | (6.21) |
Then from (6.20), (6.21) and (6.15), for
\begin{align*} &2P''(t)P(t)-(1+\beta)(P'(t))^2\\ > & 2\left(2M(t)+\varepsilon^{-1}\|u_0\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}\right)M''(t)P(t)-4\beta P(t)(M'(t))^2\\ > & I_1I_2-I_3I_4, \end{align*} |
where
\begin{align*} I_1: = &2P(t)\left(2M(t)+\varepsilon^{-1}\|u_0\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}\right),\\ I_2: = &-4\beta J(u_0)+4\beta \int^t_0\|u_t\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}{\rm d}\tau+\frac{2(p-1)}{(c^2+1)(p+1)}\|u\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})},\\ I_3: = &4\beta P(t),\\ I_4: = &\|u_0\|^4_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}+2\varepsilon\|u_0\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}M(t)+2\varepsilon^{-1}\|u_0\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}\int^t_0\|u_t\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}{\rm d}\tau\\ &+4M(t)\int^t_0\|u_t\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}{\rm d}\tau. \end{align*} |
Taking
\begin{align*} \varepsilon < \frac{\gamma}{2\beta \|u_0\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}}, \end{align*} |
then recalling that
\begin{align*} &2P''(t)P(t)-(1+\beta)(P'(t))^2\\ > &I_1I_2-I_3I_4\\ = &I_1\left(4\beta \int^t_0\|u_t\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}{\rm d}\tau+\gamma \right)-I_3I_4\\ > &I_1\left(4\beta \int^t_0\|u_t\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}{\rm d}\tau+2\beta\varepsilon\|u_0\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}\right)-I_3I_4\\ = &4\beta P(t)\left(2M(t)+\varepsilon^{-1}\|u_0\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}\right)\left(2 \int^t_0\|u_t\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}{\rm d}\tau+\varepsilon\|u_0\|^2\right)-I_3I_4\\ = &I_3\left(\left(2M(t)+\varepsilon^{-1}\|u_0\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}\right)\left(2\int^t_0\|u_t\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}{\rm d}\tau+\varepsilon\|u_0\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}\right)-I_4\right)\\ = &0. \end{align*} |
Thus
\begin{align*} P''(t)P(t)-\frac{1+\beta}{2}(P'(t))^2 > 0,t\in[0,\infty). \end{align*} |
Since
\begin{align*} \lim\limits_{t\rightarrow T}P(t) = +\infty. \end{align*} |
According to the definition of
\begin{align*} \lim\limits_{t\rightarrow T}M(t) = +\infty, \end{align*} |
which claims the blow up of the solution.
Part Ⅱ: Upper bound of the blow up time
In Part I we have draw the conclusion that the maximal existence time
\begin{align} \psi(t): = \int^t_0\|u(\tau)\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}{\rm d}\tau+(T-t)\|u_0\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}+\mu(t+\nu)^2, \end{align} | (6.22) |
where
\begin{align} \psi'(t) = \|u(t)\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}-\|u_0\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}+2\mu(t+\nu), \end{align} | (6.23) |
then it follows from (3.3), Proposition 2 and (6.4) that
\begin{align} \psi''(t) = &-2I(u(t))+2\mu\\ \ge&(p-1)\|\nabla_{\mathbb{B}} u\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}-2(p+1)J(u)\\ \ge&\frac{p-1}{c^2+1}\|u(t)\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}-2(p+1)J(u)\\ = &\frac{p-1}{c^2+1}\|u(t)\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}-2(p+1)J(u_0)+2(p+1)\int^t_0\|u_t\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}{\rm d}\tau\\ \ge&2(p+1)\left(\frac{p-1}{2(c^2+1)(p+1)}\|u_0\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}-J(u_0)+\int^t_0\|u_t\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}{\rm d}\tau\right) > 0. \end{align} | (6.24) |
Furthermore, we obtain
On the other hand, we can derive that
\begin{align} -\frac{1}{4}(\psi'(t))^2 = &-\left(\frac{1}{2}\left(\|u(t)\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}- \|u_0\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}\right)+\mu(t+\nu)\right)^2\\ = &{\left(\int^t_0\|u\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}{\rm d}\tau+\mu(t+\nu)^2\right)\left(\int^t_0\|u_t\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}{\rm d}\tau+\mu\right)}\\ &-{\left(\frac{1}{2}\left(\|u(t)\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}-\|u_0\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}\right)+\mu(t+\nu)\right)^2}\\ &-\left(\psi(t)-(T-t)\|u_0\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}\right)\left(\int^t_0\|u_t\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}{\rm d}\tau+\mu\right)\\ = &I_5-I_6-\left(\psi(t)-(T-t)\|u_0\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}\right)\left(\int^t_0\|u_t\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}{\rm d}\tau+\mu\right), \end{align} | (6.25) |
where
\begin{align*} &I_5: = {\left(\int^t_0\|u\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}{\rm d}\tau+\mu(t+\nu)^2\right)\left(\int^t_0\|u_t\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}{\rm d}\tau+\mu\right)},\\ &I_6: = {\left(\frac{1}{2}\left(\|u(t)\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}-\|u_0\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}\right)+\mu(t+\nu)\right)^2}. \end{align*} |
To estimate (6.25) clearly, we will show that
\begin{align*} I_5-I_6 = &I_5-\left(\frac{1}{2}(\|u(t)\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}-\|u_0\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})})+\mu(t+\nu)\right)^2\\ = &I_5-\left(\frac{1}{2}\int^t_0\frac{d}{d\tau}\|u(\tau)\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}{\rm d}\tau+\mu(t+\nu)\right)^2\\ = &I_5-\left(\int^t_0(u,u_t)_{\mathbb{B}}{\rm d}\tau+\mu(t+\nu)\right)^2\\ \ge& I_5-\left(\int^t_0\|u(\tau)\|_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}\|u_t(\tau)\|_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}{\rm d}\tau+\mu(t+\nu)\right)^2, \end{align*} |
then by the Cauchy-Schwartz inequality we get
\begin{align*} I_5-I_6 \ge& I_5-\left(\int^t_0\|u(\tau)\|_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}{\rm d}\tau\int^t_0\|u_t(\tau)\|_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}{\rm d}\tau+\mu(t+\nu)\right)^2\\ = & I_5-\left(k_1(t)k_2(t)+\mu(t+\nu)\right)^2\\ = &\left((k_1(t))^2+\mu(t+\nu)^2\right)\left((k_2(t))^2+\mu\right) -\left(k_1(t)k_2(t)+\mu(t+\nu)\right)^2\\ = &\left(\sqrt{\mu}k_1(t)\right)^2-2\sqrt{\mu}k_1(t)\sqrt{\mu}(t+\nu)k_2(t) +\left(\sqrt{\mu}(t+\nu)k_2(t)\right)^2\\ = &\left(\sqrt{\mu}k_1(t)-\sqrt{\mu}(t+\nu)k_2(t)\right)^2\\ \ge&0, \end{align*} |
where
\begin{align} -(\psi'(t))^2\ge&-4\left(\psi(t)-(T-t)\|u_0\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}\right)\left(\int^t_0\|u_t\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}{\rm d}\tau+\mu\right)\\ \ge&-4\psi(t)\left(\int^t_0\|u_t\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}{\rm d}\tau+\mu\right). \end{align} | (6.26) |
Then by (6.22), (6.24) and (6.26), we achieve
\begin{align} &\psi(t)\psi''(t)-\frac{p+1}{2}(\psi'(t))^2\\ \ge&\psi(t)\left(\psi''(t)-2(p+1)\left(\int^t_0\|u_t\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}{\rm d}\tau+\mu\right)\right)\\ \ge&2(p+1)\psi(t)\left(\frac{p-1}{2(c^2+1)(p+1)}\|u_0\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}-J(u_0)-\mu\right). \end{align} | (6.27) |
Let
\begin{align} \frac{p-1}{2(c^2+1)(p+1)}\|u_0\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}-J(u_0)-\mu\ge0, \end{align} | (6.28) |
hence for
\begin{align*} \psi(t)\psi''(t)-\frac{p+1}{2}(\psi'(t))^2\ge0. \end{align*} |
It is easy to verify that
\begin{align} T\le\frac{2\psi(0)}{(p-1)\psi'(0)} \le\frac{\|u_0\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}}{(p-1)\mu\nu}T+\frac{\nu}{p-1}. \end{align} | (6.29) |
Let
\begin{align} \nu\in\left(\frac{\|u_0\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}}{(p-1)\mu},+\infty\right), \end{align} | (6.30) |
then it follows from (6.29) that
\begin{align} T\le\frac{\mu\nu^2}{(p-1)\mu\nu-\|u_0\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}}. \end{align} | (6.31) |
Note that
\begin{align*} \mathfrak{M}: = \left\{(\nu,\mu)\ \Bigg|\ \nu\in\left(\frac{\|u_0\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}}{(p-1)\sigma},+\infty\right), \mu\in \left(\frac{\|u_0\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}}{(p-1)\nu},\sigma\right]\right\}. \end{align*} |
From the above discussions, we get
\begin{align} T\le\inf\limits_{(\mu,\nu)\in\mathfrak{M}}\frac{\mu\nu^2}{(p-1)\mu\nu-\|u_0\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}}. \end{align} | (6.32) |
Next we define
\begin{align*} f(\mu,\nu): = \frac{\mu\nu^2}{(p-1)\mu\nu-\|u_0\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}}, \end{align*} |
where
\begin{align*} \frac{\partial}{\partial\mu}f(\mu,\nu) = \frac{-\nu^{2}\|u_0\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}}{\left((p-1) \mu \nu-\|u_0\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}\right)^{2}} < 0, \end{align*} |
which means that
\begin{align*} \inf\limits_{(\mu,\nu)\in\mathfrak{M}}f(\mu,\nu) = \inf\limits_{\nu}f(\sigma,\nu), \end{align*} |
where
\begin{align*} \nu_{\min} = \frac{2\|u_0\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}}{(p-1) \sigma}, \end{align*} |
thus we have
\begin{align*} \inf\limits_{(\mu,\nu)\in\mathfrak{M}}f(\mu,\nu) = f(\sigma,\nu_{\min}) = \frac{4\|u_0\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}}{(p-1)\sigma}, \end{align*} |
which means also
\begin{align*} T\le\frac{4\|u_0\|^2_{\mathcal{H}^{1,\frac{n}{2}}_{2,0}(\mathbb{B})}}{(p-1)\sigma}. \end{align*} |
In the first version [37] finished in 2016, XP Liu obtained the threshold conditions of the global existence and nonexistence for solutions together with the asymptotic behavior at both subcritical and critical initial energy levels. But this version [37] did not consider the local existence nor the dynamic behavior at the sup-critical initial energy level. Then, the authors realized that the framework of a family of potential wells brought some problems by unnecessary technical complexities without receiving the benefits expected. After XP Liu left HEU in 2016, YT Wang and YX Chen continued to reconsider problem (1.1)-(1.3) and reconstructed the conclusions again in the framework of a single potential well to replace the family version, and finally completed this second version in 2020. This new version of the present paper not only gives the same results with those in the first version [37] by a single potential well, but also proves the local existence and the finite time blow up at sup-critical initial energy level with the estimation of the blowup time at all initial energy levels.
The authors are grateful to Professor Hua Chen in Wuhan University, who strongly encouraged this work when he visited Harbin Engineering University in 2017 and 2018.
[1] |
G. McKhann, D. Drachman, M. Folstein, R. Katzman, D. Price, E. M. Stadlan, Clinical diagnosis of Alzheimer's disease: Report of the NINCDS-ADRDA Work Group* under the auspices of Department of Health and Human Services Task Force on Alzheimer's disease, Neurology, 34 (1984), 939–939. https://doi.org/10.1212/WNL.34.7.939 doi: 10.1212/WNL.34.7.939
![]() |
[2] |
L. F. Jia, M. N. Quan, Y. Fu, T. Zhao, Y. Li, C. B. Wei, et al., Dementia in China: epidemiology, clinical management, and research advances, Lancet Neurol., 19 (2020), 81–92. https://doi.org/10.1016/S1474-4422(19)30290-X doi: 10.1016/S1474-4422(19)30290-X
![]() |
[3] | Risk reduction of cognitive decline and dementia: WHO guidelines, World Health Organization, 2019. Available from: https://www.who.int/publications-detail-redirect/9789241550543. |
[4] |
M. Calabrò, C. Rinaldi, G. Santoro, C. Crisafulli, The biological pathways of Alzheimer disease: A review, AIMS Neurosci., 8 (2021), 86–86. https://doi.org/10.3934/Neuroscience.2021005 doi: 10.3934/Neuroscience.2021005
![]() |
[5] |
W. Jagust, Vulnerable neural systems and the borderland of brain aging and neurodegeneration, Neuron, 77 (2013), 219–234. http://dx.doi.org/10.1016/j.neuron.2013.01.002 doi: 10.1016/j.neuron.2013.01.002
![]() |
[6] |
N. Habib, C. McCabe, S. Medina, M. Varshavsky, D. Kitsberg, R. Dvir-Szternfeld, et al., Disease-associated astrocytes in Alzheimer's disease and aging, Nat. Neurosci., 23 (2020), 701–706. https://doi.org/10.1038/s41593-020-0624-8 doi: 10.1038/s41593-020-0624-8
![]() |
[7] |
Alzheimer's Association, 2019 Alzheimer's disease facts and figures, Alzheimer Dementia, 15 (2019), 321–387. https://doi.org/10.1016/j.jalz.2019.01.010 doi: 10.1016/j.jalz.2019.01.010
![]() |
[8] |
J. H. Wen, E. Thibeau-Sutre, M. Diaz-Melo, J. Samper-González, A. Routier, S. Bottani, et al., Convolutional neural networks for classification of Alzheimer's disease: Overview and reproducible evaluation, Med. Image Anal., 63 (2020), 101694. https://doi.org/10.1016/j.media.2020.101694 doi: 10.1016/j.media.2020.101694
![]() |
[9] |
M. H. Liu, F. Li, H. Yan, K. D. Wang, Y. X. Ma, L. Shen, et al., A multi-model deep convolutional neural network for automatic hippocampus segmentation and classification in Alzheimer's disease, Neuroimage, 208 (2020), 116459. https://doi.org/10.1016/j.neuroimage.2019.116459 doi: 10.1016/j.neuroimage.2019.116459
![]() |
[10] |
T. Abuhmed, S. El-Sappagh, J. M. Alonso, Robust hybrid deep learning models for Alzheimer's progression detection, Knowl. Based Syst., 213 (2021), 106688. https://doi.org/10.1016/j.knosys.2020.106688 doi: 10.1016/j.knosys.2020.106688
![]() |
[11] |
A. M. Alvi, S. Siuly, H. Wang, K. Wang, F. Whittaker, A deep learning based framework for diagnosis of mild cognitive impairment, Knowl. Based Syst., 248 (2022), 108815. https://doi.org/10.1016/j.knosys.2022.108815 doi: 10.1016/j.knosys.2022.108815
![]() |
[12] |
X. M. Chen, T. Wang, H. R. Lai, X. L. Zhang, Q. J. Feng, M. Y. Huang, Structure-constrained combination-based nonlinear association analysis between incomplete multimodal imaging and genetic data for biomarker detection of neurodegenerative diseases, Med. Image Anal., 78 (2022), 102419. https://doi.org/10.1016/j.media.2022.102419 doi: 10.1016/j.media.2022.102419
![]() |
[13] |
G. B. Frisoni, N. C. Fox, C. R. Jack Jr, P. Scheltens, P. M. Thompson, The clinical use of structural MRI in Alzheimer disease, Nat. Rev. Neurol., 6 (2010), 67–77. https://doi.org/10.1038/nrneurol.2009.215 doi: 10.1038/nrneurol.2009.215
![]() |
[14] |
P. Cao, X. L. Liu, J. Z. Yang, D. Z. Zhao, M. Huang, J. Zhang, et al., Nonlinearity-aware based dimensionality reduction and over-sampling for AD/MCI classification from MRI measures, Comput. Biol. Med., 91 (2017), 21–37. https://doi.org/10.1016/j.compbiomed.2017.10.002 doi: 10.1016/j.compbiomed.2017.10.002
![]() |
[15] | K. Bäckström, M. Nazari, I.Y. Gu, A.S. Jakola, An efficient 3D deep convolutional network for Alzheimer's disease diagnosis using MR images, in 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), (2018), 149–153. https://doi.org/10.1109/ISBI.2018.8363543 |
[16] | C. F. Lian, M. X. Liu, L. Wang, D. G. Shen, End-to-end dementia status prediction from brain mri using multi-task weakly-supervised attention network, in Medical Image Computing and Computer Assisted Intervention–MICCAI 2019: 22nd International Conference, Shenzhen, China, October 13–17, 2019, Proceedings, Part IV 22, (2019), 158–167. https://doi.org/10.1007/978-3-030-32251-9_18 |
[17] |
K. Mortensen, T. L. Hughes, Comparing Amazon's Mechanical Turk platform to conventional data collection methods in the health and medical research literature, J. Gene. Intern. Med., 33 (2018), 533–538. https://doi.org/10.1007/s11606-017-4246-0 doi: 10.1007/s11606-017-4246-0
![]() |
[18] |
S. Parisot, S. I. Ktena, E. Ferrante, M. Lee, R. Guerrero, B. Glocker, et al., Disease prediction using graph convolutional networks: application to autism spectrum disorder and Alzheimer's disease, Med. Image Anal., 48 (2018), 117–130. https://doi.org/10.1016/j.media.2018.06.001 doi: 10.1016/j.media.2018.06.001
![]() |
[19] | L. Peng, R. Y. Hu, F. Kong, J. Z. Gan, Y. J. Mo, X. S. Shi, et al., Reverse graph learning for graph neural network, IEEE Trans. Neural Networks Learn. Syst., (2022). https://doi.org/10.1109/TNNLS.2022.3161030 |
[20] |
Q. Ni, J. C. Ji, B. Halkon, K. Feng, A. K. Nandi, Physics-Informed Residual Network (PIResNet) for rolling element bearing fault diagnostics, Mechan. Syst. Signal Process., 200 (2023), 110544. https://doi.org/10.1016/j.ymssp.2023.110544 doi: 10.1016/j.ymssp.2023.110544
![]() |
[21] |
Y. D. Xu, K. Feng, X. A. Yan, R. Q. Yan, Q. Ni, B. B. Sun, et al., CFCNN: A novel convolutional fusion framework for collaborative fault identification of rotating machinery, Inf. Fusion, 95 (2023), 1–16. https://doi.org/10.1016/j.inffus.2023.02.012 doi: 10.1016/j.inffus.2023.02.012
![]() |
[22] | Z. Yang, K. Li, H. T. Gan, Z. W. Huang, M. Shi, HD-GCN: A hybrid diffusion graph convolutional network, preprint, arXiv: 2303.17966. |
[23] | B. Perozzi, R. Al-Rfou, S. Skiena, Deepwalk: Online learning of social representations, in Proceedings of the 20nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, (2014), 701–710. https://doi.org/10.1145/2623330.2623732 |
[24] | A. Grover, J. Leskovec, node2vec: Scalable feature learning for networks, in Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, (2016), 855–864. https://doi.org/10.1145/2939672.2939754 |
[25] | S. Abu-El-Haija, B. Perozzi, R. Al-Rfou, A. A. Alemi, Watch your step: Learning node embeddings via graph attention, in Advances in Neural Information Processing Systems 31 (NeurIPS 2018), 2018. |
[26] | S. Abu-El-Haija, A. Kapoor, B. Perozzi, J. Lee, N-gcn: Multi-scale graph convolution for semi-supervised node classification, Uncertainty Artif. Intell., 2020 (2020), 841–851. |
[27] |
J. L. Zhu, M. W. Jia, Y. Zhang, W. H. Zhou, H. Y. Deng, Y. Liu, Domain adaptation graph convolution network for quality inferring of batch processes, Chemom. Intell. Lab. Syst., 2023 (2023), 105028. https://doi.org/10.1016/j.chemolab.2023.105028 doi: 10.1016/j.chemolab.2023.105028
![]() |
[28] |
M. W. Jia, D. Y. Xu, T. Yang, Y. Liu, Y. Yao, Graph convolutional network soft sensor for process quality prediction, J. Process Control, 123 (2023), 12–25. https://doi.org/10.1016/j.jprocont.2023.01.010 doi: 10.1016/j.jprocont.2023.01.010
![]() |
[29] | T. N. Kipf, M. Welling, Semi-supervised classification with graph convolutional networks, preprint, arXiv: 1609.02907. |
[30] | D. Liben-Nowell, J. Kleinberg, The link prediction problem for social networks, in Proceedings of the Twelfth International Conference on Information and Knowledge Management, 2003 (2003), 556–559. https://doi.org/10.1145/956863.956972 |
[31] | A. Fout, J. Byrd, B. Shariat, A. Ben-Hur, Protein interface prediction using graph convolutional networks, in Advances in Neural Information Processing Systems 30 (NIPS 2017), (2017), 1–10. |
[32] | T. Hamaguchi, H. Oiwa, M. Shimbo, Y. Matsumoto, Knowledge transfer for out-of-knowledge-base entities: A graph neural network approach, preprint, arXiv: 1706.05674. |
[33] | E. Xing, M. Jordan, S. J. Russell, A. Ng, Distance Metric Learning with Application to Clustering with Side-Information, in Advances in Neural Information Processing Systems 15 (NIPS 2002), (2002), 521–528. |
[34] | K. Q. Weinberger, J. Blitzer, L. Saul, Distance metric learning for large margin nearest neighbor classification, in Advances in Neural Information Processing Systems 18 (NIPS 2005), (2005), 1473–1480. |
[35] | R. Y. Li, S. Wang, F. Y. Zhu, J. Z. Huang, Adaptive graph convolutional neural networks, in Proceedings of the AAAI Conference on Artificial Intelligence, 32 (2018). https://doi.org/10.1609/aaai.v32i1.11691 |
[36] | S. G. Lv, G. Wen, S. Y. Liu, L. S. Wei, M. Li, Robust graph structure learning with the alignment of features and adjacency matrix, preprint, arXiv: 2307.02126. |
[37] |
S. Parisot, S. I. Ktena, E. Ferrante, M. Lee, R. Guerrero, B. Glocker, et al., Disease prediction using graph convolutional networks: application to autism spectrum disorder and Alzheimer's disease, Med. Image Anal., 48 (2018), 117–130. https://doi.org/10.1016/j.media.2018.06.001 doi: 10.1016/j.media.2018.06.001
![]() |
[38] | A. Kazi, S. Shekarforoush, K. Kortuem, S. Albarqouni, N. Navab, Self-attention equipped graph convolutions for disease prediction, in 2019 IEEE 16th International Symposium on Biomedical Imaging (ISBI 2019), (2019), 1896–1899. https://doi.org/10.1109/ISBI.2019.8759274 |
[39] | A. Kazi, S. Shekarforoush, S. Arvind Krishna, H. Burwinkel, G. Vivar, B. Wiestler, et al., Graph convolution based attention model for personalized disease prediction, in Medical Image Computing and Computer Assisted Intervention, (2019), 122–130. https://doi.org/10.1007/978-3-030-32251-9_14 |
[40] | A. Kazi, S. Shekarforoush, S. Arvind Krishna, H. Burwinkel, G. Vivar, K. Kortüm, et al., InceptionGCN: receptive field aware graph convolutional network for disease prediction, in Information Processing in Medical Imaging: 26th International Conference, IPMI 2019, (2019), 73–85. https://doi.org/10.1007/978-3-030-20351-1_6 |
[41] | G. Vivar, A. Zwergal, N. Navab, S. A. Ahmadi, Multi-modal disease classification in incomplete datasets using geometric matrix completion, in Graphs in Biomedical Image Analysis and Integrating Medical Imaging and Non-Imaging Modalities, (2018), 24–31. https://doi.org/10.1007/978-3-030-00689-1_3 |
[42] | A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, et al., Attention is all you need, in Advances in Neural Information Processing Systems 30 (NIPS 2017), 2017. |
[43] | V. Mnih, N. Heess, A. Graves, Recurrent models of visual attention, in Advances in Neural Information Processing Systems 27 (NIPS 2014), 2014. |
[44] |
C. Cortes, V. Vapnik, Support-vector networks, Mach. Learn., 20 (1995), 273–297. https://doi.org/10.1007/BF00994018 doi: 10.1007/BF00994018
![]() |
[45] | K. M. He, X. Y. Zhang, S. Q. Ren, J. Sun, Deep residual learning for image recognition, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, (2016), 770–778. |
[46] | P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Lio, Y. Bengio, Graph attention networks, preprint, arXiv: 1710.10903. |
[47] | H. Y. Gao, S. W. Ji, Graph u-nets, in international Conference on Machine Learning, (2019), 2083–2092. |
[48] | J. Lee, I. Lee, J. Kang, Self-attention graph pooling, in International Conference on Machine Learning, (2019), 3734–3743. |
[49] | E. Rossi, B. Charpentier, F. Di Giovanni, F. Frasca, S. Günnemann, M. Bronstein, Edge directionality improves learning on heterophilic graphs, preprint, arXiv: 2305.10498 |
1. | Ngo Tran Vu, Dao Bao Dung, Huynh Thi Hoang Dung, General decay and blow-up results for a class of nonlinear pseudo-parabolic equations with viscoelastic term, 2022, 516, 0022247X, 126557, 10.1016/j.jmaa.2022.126557 |